Zhang, Y. H.; Cui, G. S.; Khan, S. A.; Shi, L. H.; Zhang, H. Z.; Yang, K.; Zhao, X. S.; Zhang, H. L. Self-powered posture recognition based on thermoelectric hydrogel. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3440-5
Yu-Hao Zhang, Guo-Shun Cui, Saeed Ahmed Khan, et al. Self-powered Posture Recognition Based on Thermoelectric Hydrogel[J/OL]. Chinese Journal of Polymer Science, 2025, 431-10.
Zhang, Y. H.; Cui, G. S.; Khan, S. A.; Shi, L. H.; Zhang, H. Z.; Yang, K.; Zhao, X. S.; Zhang, H. L. Self-powered posture recognition based on thermoelectric hydrogel. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3440-5DOI:
Yu-Hao Zhang, Guo-Shun Cui, Saeed Ahmed Khan, et al. Self-powered Posture Recognition Based on Thermoelectric Hydrogel[J/OL]. Chinese Journal of Polymer Science, 2025, 431-10. DOI: 10.1007/s10118-025-3440-5.
Self-powered Posture Recognition Based on Thermoelectric Hydrogel
Posture recognition technology plays a crucial role in health monitoring
motion analysis
and other related fields. However
traditional recognition devices are limited by a lack of comfort
stability
and environmental adaptability
which significantly restrict their performance and range of applications. In response
this study proposes a self-powered
strain-driven
intelligent posture recognition method based on a thermoelectric hydrogel. This approach enables high-precision posture recognition through simultaneous acquisition of dynamic strain signals from multiple joints. The proposed poly(vinyl alcohol) (PVA)/starch bi-network hydrogel
synthesized in a binary H
2
O/glycerol solvent system
exhibited outstanding flexibility and tensile strength
allowing it to conform closely to joint movements and ensure wearing comfort. Simultaneously
the hydrogel generated stable electrical signals
via
the redox reaction of [Fe(CN)
6
]
3–/4-
supporting continuous monitoring and data collection. Moreover
its self-powered nature allows effective joint strain signal acquisition
even in open environments. Using a machine learning algorithm that incorporates signal processing and analysis
the proposed method achieved a posture recognition accuracy of 96.82%. This study presents a novel technological route for posture recognition in wearable devices
demonstrating its strong application potential in real-time feedback for sports rehabilitation and performance analysis of athletes.
关键词
Keywords
references
Wu, X.; Bai, S.; O’Sullivan, L. Editorial for the special issue on wearable robots and intelligent device. Biomim. Intell. Robot. 2023 , 3 , 100102..
Li, X.;Zhou, Z.; Wu, J.; Xiong, Y. Human posture detection method based on wearable devices. J. Healthc. Eng. 2021 , 2021 , 1−8..
Roggio, F.; Ravalli, S.; Maugeri, G.; Bianco, A.; Palma, A.; Di Rosa, M.; Musumeci, G. Technological advancements in the analysis of human motion and posture management through digital devices. World J Orthop. 2021 , 12 , 467−484..
Jiang, T.; Fang, K.; Zhao, H.; Chen, G.; Wang, Y. A multi-view structured light measurement method based on pose estimation using deep learning. IEEE Access 2022 , 10 , 127718−127727..
Lan, G.; Wu, Y.; Hu, F.; Hao, Q. Vision-based human pose estimation via deep learning: a survey. IEEE Trans. Human-Mach. Syst. 2023 , 53 , 253−268..
[Xu, L.; Zhao, L.; Sun, X.; Wang, D.; Li, G.; Yan, K. A comprehensive framework for occluded human pose estimation. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ; IEEE: Seoul, Korea, Republic of, 2024 , pp. 3405–3409..
[Zhang, F.; Li, Z.; Zhu, X.; Chen, L. Robust low-light human pose estimation through illumination-texture modulation. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) ; IEEE: Hyderabad, India, 2025 , pp. 1–5..
Gu, K.; Su, B. A study of human pose estimation in low-light environments using YOLOv8 model. ACE 2024 , 32 , 136−142..
Zhao, J. A review of wearable IMU (inertial-measurement-unit)-based pose estimation and drift reduction technologies. J. Phys.: Conf. Ser. 2018 , 1087 , 042003..
Yu, Q.; Zhang, P.; Chen, Y. Human motion state recognition based on flexible, wearable capacitive pressure sensors. Micromachines (Basel) 2021 , 12 , 1219..
Liu, J.; Zhang, J.; Liu, J.; Sun, W.; Li, W.; Shen, H.; Wang, L.; Li, G. Advances in fiber-based wearable sensors for personal digital health monitoring. Materials 2023 , 16 , 7428..
Zhang, Q.; Niu, X.; Shi, C. Impact assessment of various IMU error sources on the relative accuracy of the GNSS/INS systems. IEEE Sensors J. 2020 , 20 , 5026−5038..
Chen, W.; Yu, C.; Tu, C.; Lyu, Z.; Tang, J.; Ou, S.; Fu, Y.; Xue, Z. A survey on hand pose estimation with wearable sensors and computer-vision-based methods. Sensors 2020 , 20 , 1074..
Palermo, E.; Rossi, S.; Patanè, F.; Cappa, P. Experimental evaluation of indoor magnetic distortion effects on gait analysis performed with wearable inertial sensors. Physiol. Meas. 2014 , 35 , 399−415..
Brasier, N.; Wang, J.; Gao, W.; Sempionatto, J. R.; Dincer, C.; Ates, H. C.; Güder, F.; Olenik, S.; Schauwecker, I.; Schaffarczyk, D.; Vayena, E.; Ritz, N.; Weisser, M.; Mtenga, S.; Ghaffari, R.; Rogers, J. A.; Goldhahn, J. Applied body-fluid analysis by wearable devices. Nature 2024 , 636 , 57−68..
Hu, J.; Liu, Z.; Yang, P.; Qin, S.; Li, N.; Ji, W.; Wang, Z. L.; Chen, X. Charge transfer behavior of triboelectric polymers and triboelectric sensors operated under ultrahigh pressure. SusMat 2024 , 4 , e250..
Yang, P.; Liu, Z.; Qin, S.; Hu, J.; Yuan, S.; Wang, Z. L.; Chen, X. A wearable triboelectric impedance tomography system for noninvasive and dynamic imaging of biological tissues. Sci. Adv. 2024 , 10 , eadr9139..
Bai, C.; Wang, Z.; Yang, S.; Cui, X.; Li, X.; Yin, Y.; Zhang, M.; Wang, T.; Sang, S.; Zhang, W.; Zhang, H. Wearable electronics based on the gel thermogalvanic electrolyte for self-powered human health monitoring. ACS Appl. Mater. Interfaces 2021 , 13 , 37316−37322..
Bai, C.; Li, X.; Cui, X.; Yang, X.; Zhang, X.; Yang, K.; Wang, T.; Zhang, H. Transparent stretchable thermogalvanic PVA/gelation hydrogel electrolyte for harnessing solar energy enabled by a binary solvent strategy. Nano Energy 2022 , 100 , 107449..
Fang, R.; Li, X.; Khan, S. A.; Wang, Z.; Cui, X.; Zhang, H.; Lin, Z.-H. Anhydrous thermogalvanic gel for simultaneous waste heat recovery and thermal management of electronics. ACS Appl. Polym. Mater. 2023 , 5 , 4628−4635..
Tian, C.; Bai, C.; Wang, T.; Yan, Z.; Zhang, Z.; Zhuo, K.; Zhang, H. Thermogalvanic hydrogel electrolyte for harvestingbiothermal energy enabled by a novel redox couple of SO 4/3 2- ions. Nano Energy 2023 , 106 , 108077..
Liu, Y.; Zhang, Q.; Odunmbaku, G. O.; He, Y.; Zheng, Y.; Chen, S.; Zhou, Y.; Li, J.; Li, M.; Sun, K. Solvent effect on the seebeck coefficient of Fe 2+ /Fe 3+ hydrogel thermogalvanic cells. J. Mater. Chem. A 2022 , 10 , 19690−19698..
Jin, L.; Greene, G. W.; MacFarlane, D. R.; Pringle, J. M. Redox-active quasi-solid-state electrolytes for thermal energy harvesting. ACS Energy Lett. 2016 , 1 , 654−658..
Yu, B.; Duan, J.; Cong, H.; Xie, W.; Liu, R.; Zhuang, X.; Wang, H.; Qi, B.; Xu, M.; Wang, Z. L.; Zhou, J. Thermosensitive crystallization–boosted liquid thermocells for low-grade heat harvesting. Science 2020 , 370 , 342−346..
Yang, H.; Li, N.; Yang, K.; Sun, L.; Zhang, H.; Zhang, Z.; Cui, X. Coupling thermogalvanic and piezoresistive effects in a robust hydrogel for deep-learning-assisted self-powered sign language and object recognition. Chem. Eng. J. 2024 , 488 , 150816..
Jose, J.; Al-Harthi, M. A. Citric acid crosslinking of poly(vinyl alcohol)/starch/graphene nanocomposites for superior properties. Iran Polym. J. 2017 , 26 , 579−587..
Liang, J.; Ludescher, R. D. Effects of glycerol on the molecular mobility and hydrogen bond network in starch matrix. Carbohyd Polym. 2015 , 115 , 401−407..
Kovtun, G.; Casas, D.; Cuberes, T. Influence of glycerol on the surface morphology and crystallinity of polyvinyl alcohol films. Polymers 2024 , 16 , 2421..
Ma, X.; Yu, J.; He, K. Thermoplastic starch plasticized by glycerol as solid polymer electrolytes. Macromol. Mater. Eng. 2006 , 291 , 1407−1413..
Phattarateera, S.; Xin, L.; Amphong, C.; Limsamran, V.; Threepopnatkul, P. Comparative studies of starch blends on the properties of PVA films. Carbohydr. Polym. Tech. 2023 , 6 , 100340..
[Development of starch-polyvinyl alcohol (PVA) biodegradable film: effect of cross-linking agent and antimicrobials on film characteristics. J. Appl. Packag. Res . 2017 , 9 , 1..
Li, Y.; Li, N.; Zhang, X.; Zhang, J.; Sun, L.; Huang, Z.; Zhang, H. Deep-learning-enabled breathable thermogalvanic hydrogel array for self-powered mental monitoring. J. Mater. Chem. A 2025 , 13 , 10531−10539..
Cazón, P.; Velazquez, G.; Vázquez, M. Characterization of mechanical and barrier properties of bacterial cellulose, glycerol and polyvinyl alcohol (PVOH) composite films with eco-friendly UV-protective properties. Food Hydrocolloid 2020 , 99 , 105323..
The trial reading is over, you can activate your VIP account to continue reading.
Block Copolymer Aided Controllable Design of Colloidal Molecules by DNA-programmable Assembly
Machine-learning-assisted Materials Genome Approach for Designing High-performance Thermosetting Polyimides
Data-efficient Machine Learning for Polymer Informatics
Machine Learning-assisted Prediction of Polymer Glass Transition Temperature: A Structural Feature Approach
Related Author
Xian-Deng Qiu
Hao Tang
Rong Wang
Wan-Xun Feng
Song-Qi Zhang
Yin-Yi Xu
Xiang-Fei Ye
Xin-Yao Xu
Related Institution
Department of Polymer Science and Engineering, State Key Laboratory of Coordination Chemistry, Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology
Zhejiang Key Laboratory of Functional Ionic Membrane Materials and Technology for Hydrogen Production
Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology
School of Chemistry and Chemical Engineering, Shaoxing University