

FOLLOWUS
College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
jlhe@suda.edu.cn
Received:14 July 2025,
Accepted:11 August 2025,
Published Online:03 November 2025,
Published:2025-09
Scan QR Code
Pan, C. L.; Qian, Z. Y.; Chen, H.; He, J. L.; Ni, P. H. Polymerizable deep eutectic solvent-derived ionic conductive elastomers for strain and temperature sensing. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3435-2
Chen-Lin Pan, Zheng-Yang Qian, Hao Chen, et al. Polymerizable Deep Eutectic Solvent-derived Ionic Conductive Elastomers for Strain and Temperature Sensing[J/OL]. Chinese journal of polymer science, 2025, 431-13.
Pan, C. L.; Qian, Z. Y.; Chen, H.; He, J. L.; Ni, P. H. Polymerizable deep eutectic solvent-derived ionic conductive elastomers for strain and temperature sensing. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3435-2 DOI:
Chen-Lin Pan, Zheng-Yang Qian, Hao Chen, et al. Polymerizable Deep Eutectic Solvent-derived Ionic Conductive Elastomers for Strain and Temperature Sensing[J/OL]. Chinese journal of polymer science, 2025, 431-13. DOI: 10.1007/s10118-025-3435-2.
In recent years
flexible ionic conductors have made remarkable progress in the fields of energy storage devices and flexible sensors. However
most of these materials still face challenges such as the difficult trade-off between stretchability and high mechanical strength
as well as insufficient ionic conductivity. Among them
polymerizable deep eutectic solvents (PDES)
which possess both hydrogen bond network construction capabilities and ionic conduction properties
have demonstrated great advantages in the synthesis of flexible ionic conductors. Herein
we report an ionic conductive elastomer (ICE) named PCHS-
X
based on PDES composed of 2-(methacryloyloxy)-
N
N
N
-trimethylammonium methyl sulfate (MA-MS)
choline chloride (ChCl)
and 2-hydroxyethyl acrylate (HEA). The introduction of MA-MS enabled the polymer network to form ab
undant hydrogen bonds
endowing PCHS-
X
with excellent mechanical strength
high transparency
favorable ionic conductivity
self-adhesiveness
and self-healing efficiency. When used as a strain sensor
the PCHS-
X
exhibits highly sensitive strain response
along with good stability and durability
allowing it to accurately monitor the movement of human body parts such as fingers
wrists
elbows
and knees. Additionally
owing to the enhanced ionic mobility at higher temperatures
this material also possesses excellent temperature sensing performance
enabling the fabrication of simple temperature sensors that can sensitively respond to temperature changes. This research provides new strategies for the practical applications of flexible electronic devices in fields such as wearable health monitoring and intelligent human-machine interaction.
Li, H. N.; Zhang, C.; Yang, H. C.; Liang, H. Q.; Wang, Z. K.; Xu, Z. K. Solid–state, liquid–free ion–conducting elastomers: rising–star platforms for flexible intelligent devices. Mater. Horiz. 2024 , 11 , 1152−1176..
Ohm, Y.; Pan, C. F.; Ford, M. J.; Huang, X. N.; Liao, J. H.; Majidi, C. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for soft electronics. Nat. Electron. 2021 , 4 , 185−192..
Zhang, T. F.; Wang, K. L.; Wang, H. W.; Wei, M. H.; Chen, Z.; Zhong, D. Y.; Chen, Y. X.; Pei, P. C. Polymer gels for aqueous metal batteries. Prog. Mater. Sci. 2025 , 151 , 101426..
Hong, J. W.; Rana, H. H.; Park, J. H.; Kim, J. S.; Lee, S. J.; Jang, G.; Kang, T. H.; Shin, K. H.; Baek, S. H.; Yang, W.; Kim, K. H.; Lee, J. H.; Park, H. S. High Na-ion conductivity and mechanical integrity of anion-exchanged polymeric hydrogel electrolytes for flexible sodium ion hybrid energy storage. SusMat 2024 , 4 , 140−153..
Sokolova, M. P.; Vorobiov, V. K.; Smirnov, N. N.; Kuryndin, I. S.; Bobrova, N. V.; Smirnov, M. A. Self–healable and robust film based on electroactive polymer brush as electrode for flexible supercapacitor. Chinese J. Polym. Sci. 2024 , 42 , 1049−1059..
Chen, H.; Wang, J. W.; Pan, C. L.; He, Q. X.; Guo, J. N.; Zhang, M. Z.; He, J. L.; Ni, P. H. Robust and recyclable poly(urethane–urea) ionogels with noncovalent cross–linkings for flexible strain sensors. ACS Appl. Polym. Mater. 2025 , 7 , 5725−5736..
Chen, X. C.; Sun, P. R.; Liu, H. L. Hierarchically crosslinked gels containing hydrophobic ionic liquids towards reliable sensing applications. Chinese J. Polym. Sci. 2019 , 38 , 332−341..
Zhu, Y. J.; Hong, A.; Yoon, S.; Park, J.; Yang, H.; Kwak, J.; Yoon, J. Bright bifacial white–light illumination by highly deformable electroluminescent devices based on transparent ionic–hydrogel electrodes and quantum–dot color conversion. Small 2024 , 20 , 2400704..
Ou, F. Y.; Li, X. Z.; Tuo, L.; Zhang, Z. C.; Tang, W.; Xie, T.; Ning, C.; Pan, W. Y.; Chen, Q. Z.; Liang, Q. H.; Qin, Z. Y.; Gao. W.; Liu, G. L.; Li, Z. Q.; Zhao, S. L. Solid–state ion–conductive elastomers with high mechanical robustness and ion–conductivity for highly durable triboelectric nanogenerators. Chem. Eng. J. 2025 , 505 , 159502..
Zhou, T. F.; Xing, F. J.; Wang, Z. L.; Chen, B. D. Multi–attribute triboelectric materials and innovative applications via tengs. Small 2024 , 20 , 2403996..
Fang, Z. Y.; Wang, L.; Liang, C. Y.; Qiu, J. H.; Zhang, T. Y.; Xu, D. H.; Qi, D. P.; Luan, S. F.; Shi, H. C. Bioinspired ionic elastomer with skin-like piezo-ionic dynamics enabled by a self-confined multi-interaction network. Adv. Funct. Mater. 2024 , 35 , 2418583..
Pi, M. H.; Wu, H. L.; Li, W. H.; Shen, H. W.; Li, M.; Cui, W.; Ran, R. Facile preparat ion of polymerizable deep eutectic solvents under mild conditions for multisensory ionic skins. Small 2025 , 21 , 2409754..
Niu, W. W.; Liu, X. K. Stretchable ionic conductors for soft electronics. Macromol. Rapid Commun. 2022 , 43 , 2200512..
Man, Y. Y.; Liu, Y. Y.; Miao, H. Y.; Huang, G.; Han, L.; Tong, L. L.; Fu, X. B.; Zheng, C. Y.; Huang, X. J.; Zhang, X.; Han, L.; Tang, Y. Y.; Huang, H. L.; Ge, M.; Xu, M.; Liu, H. T.; Qian, Y. Stretchable and high sensitive ionic conductive hydrogel for the direction recognizable motion detection sensor. Giant 2023 , 16 , 100199..
Yuan, Y.; Zhang, Q. Q.; Lin, S. M.; Li, J. L. Water: the soul of hydrogels. Prog. Mater. Sci. 2025 , 148 , 101378..
Zhang, Q.; Xu, Z. Y.; Liu, W. G. Hydrogen–bonding crosslinked supramolecular polymer materials: from design evolution of side–chain hydrogen–bonding to applications. Chinese J. Polym. Sci. 2024 , 42 , 1619−1641..
Wang, M. X.; Hu, J.; Dickey, M. D. Emerging applications of tough ionogels. NPG Asia Mater. 2023 , 15 , 66..
Li, L. L.; Wang, X. W.; Gao, S. N.; Zheng, S. J.; Zou, X. Y.; Xiong, J. F.; Li, W. Z.; Yan, F. High–toughness and high–strength solvent–free linear poly(ionic liquid) elastomers. Adv. Mater. 2024 , 36 , 2308547..
Yiming, B.; Han, Y.; Han, Z. L.; Zhang, X. N.; Li, Y.; Lian, W. Z.; Zhang, M. Q.; Yin, J.; Sun, T. L.; Wu, Z. L.; Li, T. F.; Fu, J. Z.; J, Z.; Qu, S. X. A mechanically robust and versatile liquid-free ionic conductive elastomer. Adv. Mater. 2021 , 33 , 2006111..
Wang, Z. W.; Lai, Y. C.; Chiang, Y. T.; Scheiger, J. M.; Li, S.; Dong, Z. Q.; Cai, Q. Y.; Liu, S. D.; Hsu, S. H.; Chou, C. C.; Levkin, P. A. Tough, self–healing, and conductive elastomer-ionic peggel. ACS Appl. Mater. Interfaces 2022 , 14 , 50152−50162..
Luo, C.; Huang, Z. K.; Guo, Z. H.; Yue, K. Recent progresses in liquid-free soft ionic conductive elastomers†. Chin. J. Chem. 2023 , 41 , 835−860..
Sun, S. Q.; Yu, L.; Teng, J. C.; Gu, Y. Z.; Pang, Y. C.; Xu, X. W.; Wang, W.; Li, Y. Eutecti c gels: presentation and prospect. Appl. Mater. Today 2024 , 39 , 102342..
Hansen, B. B.; Spittle, S.; Chen, B.; Poe, D.; Zhang, Y.; Klein, J. M.; Horton, A.; Adhikari, L.; Zelovich, T.; Doherty, B. W.; Gurkan, B.; Maginn, E. J.; Ragauskas, A.; Dadmun, M.; Zawodzinski, T. A.; Baker, G. A.; Tuckerman, M. E.; Savinell, R. F. Deep eutectic solvents: a review of fundamentals and applications. Chem. Rev. 2021 , 121 , 1232−1285..
Weerasinghe, U. A.; Wu, T. T.; Chee, P. L.; Yew, P. Y. M.; Lee, H. K.; Loh, X. J.; Dan, K. Deep eutectic solvents towards green polymeric materials. Green Chem. 2024 , 26 , 8497−8527..
Xu, K. J.; Zhang, B. Q.; Qiao, X.; Liu, C. Y. Cellulose solubility in deep eutectic solvents: inspecting quantitative hydrogen–bonding analysis. Chinese J. Polym. Sci. 2022 , 41 , 75−83..
Picchio, M. L.; Dominguez-Alfaro, A.; Minari, R. J.; Mota-Morales, J. D.; Mecerreyes, D. Dry ionic conductive elastomers based on polymeric deep eutectic solvents for bioelectronics. J. Mater. Chem. C 2024 , 12 , 11265−11284..
You, M. Q.; Zhou, J.; Zao, Y. M.; Xu, J. H.; Jin, Y. C.; Li, D. G.; Xu, Z. Y.; Chen, C. C. Green synthesis of multifunctional wood–based eutectogels via initiator–free solar polymerization. Chem. Eng. J. 2025 , 504 , 158902..
Yao, P. Q.; Bao, Q. W.; Yao, Y.; Xiao, M.; Xu, Z. Y.; Yang, J. H.; Liu, W. G. Environmentally stable, robust, adhesive, and conductive supramolecular deep eutectic gels as ultrasensitive flexible temperature sensor. Adv. Mater. 2023 , 35 , 2300114..
Xu, W. K.; Shen, T.; Ding, Y. T.; Ye, H. J.; Wu, B. Z.; Chen, F. Wearable and recyclable water–toleration sensor derived from lipoic acid. Small 2024 , 20 , 2310072..
Mota-Morales, J. D.; Gutierrez, M. C.; Sanchez, I. C.; Luna–Barcenas, G.; del Monte, F. Frontal polymerizations carried out in deep–eutectic mixtures providing both the monomers and the polymerization medium. Chem. Commun. 2011 , 47 , 5328−5330..
Li, R. A.; Chen, G. X.; He, M. H.; Tian, J. F.; Su, B. Patternable transparent and conductive elastomers towards flexible tactile/strain sensors. J. Mater. Chem. C 2017 , 5 , 8475−8481..
[Zhao, J. L.; Wang, X. C.; Lin, L.; Zhao, H. Y.; Jiang, Z. H.; Huang, R.; Cai, L.; He, M. H. High-strength and high-stretchability all-solid-state double-network ion-conductive elastomers based on supramolecular deep eutectic polymer. Adv. Funct. Mater . 2025 , 2500590..
Wei, C. X.; Yu, S. Y.; Wei, Y. Y.; Yang, W. J.; Zhu, S.; Yang, W.; Huang, J. J.; Lu, H. D.; Zhu, J. X. All–solid conductive elastomers bridging mechanical performance and sustainability for durable and multifunctional electronics. ACS Appl. Mater. Interfaces 2025 , 17 , 8117−8126..
Li, X. K.; Liu, J. Z.; Guo, Q. Q.; Zhang, X. X.; Tian, M. Polymerizable deep eutectic solvent–based skin–like elastomers with dynamic schemochrome and self–healing ability. Small 2022 , 18 , 2201012..
Wang, N.; Yang, X.; Zhang, X. X. Ultrarobust subzero healable materials enabled by polyphenol nano–assemblies. Nat. Commun. 2023 , 14 , 814..
Lu, C. W.; Wang, X. Y.; Shen, Y.; Wang, C. P.; Wang, J. F.; Yong, Q.; Chu, F. X. Liquid-free, anti-freezing, solvent-resistan t, cellulose-derived ionic conductive elastomer for stretchable wearable electronics and triboelectric nanogenerators. Adv. Funct. Mater. 2022 , 32 , 2207714..
Quan, Q.; Fan, C. L.; Pan, N. N.; Zhu, M. H.; Zhang, T.; Wang, Z.; Dong, Y.; Wu, Y. K.; Tang, M.; Zhou, X. Y.; Chen, M. Z. Tough and stretchable phenolic-reinforced double network deep eutectic solvent gels for multifunctional sensors with environmental adaptability. Adv. Funct. Mater. 2023 , 33 , 2303381..
Jin, Y. T.; Li, J. T.; Zhang, M. Z.; He, J. L.; Ni, P. H. Unexpected mechanically robust ionic conductive elastomer constructed from an itaconic acid–involved polymerizable des. Chem. Commun. 2023 , 59 , 12998−13001..
Li, J. T.; Zhang, M. Z.; He, J. L.; Ni, P. H. Development of multifunctional ionogels derived from a dynamic deep eutectic solvent. Chem. Commun. 2023 , 59 , 8814−8817..
Jin, Y. T.; Pan, C. L.; Chen, H.; Wang, J. W.; Zhang, M. Z.; He, J. L.; Ni, P. H. A polymerizable eutectic strategy toward multifunctional ionic conductive elastomers for strain sensors. ACS Appl. Polym. Mater. 2024 , 6 , 12734−12743..
Qian, Z. Y.; Pan, C. L.; Chen, H.; Zhang, M. Z.; He, J. L.; Ni, P. H. Development of an ionic conductive elastomer from the photocopolymerization of a ternary polymerizable deep eutectic solvent for human motions sensing. Macromol. Rapid Commun. 2025 , 46 , 2400798..
Yang, H. Y.; Wu, M.; Pan, M. F.; Zhou, C. L.; Sun, Y. X.; Huang, P.; Yang, L.; Liu, J. F.; Zeng, H. B. Highly stretchable, transparent, self–healing ion–conducting elastomers for long–term reliable human motion detection. Macromol. Rapid Commun. 2024 , 45 , 2400362..
Aseyev, V. O.; Tenhu, H. Contraction of a polyelectrolyte upon dilution light scattering studies on a polycation in saltless. Macromolecules 1998 , 31 , 7717−7722..
Wang, M.; Hu, J.; Dickey, M. D. Tough ionogels: synthesis, toughening mechanisms, and mechanical properties─a perspective. JACS Au 2022 , 2 , 2645−2657..
Zhang, W.; Wu, B.; Sun, S.; Wu, P. Skin–like mechanoresponsive self–healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021 , 12 , 4082..
Ren, F.; Wang, J.; Xie, F.; Zan, K.; Wang, S.; Wang, S. Applications of ionic liquids in starch chemistry: a review. Green Chem. 2020 , 22 , 2162−2183..
Shi, G. L.; Li, T. C.; Zhang, D. H.; Zhang, J. H. Recyclable high–performance carbon fiber reinforced epoxy composites based on dithioacetal covalent adaptive network. Chinese J. Polym. Sci. 2024 , 42 , 1514−1524..
Zhou, C. J.; Song, X.; Xia, W. J.; Liu, S. J.; Wu, Z. Q.; Chen, H. Recyclable multifunctional ion conductive elastomers for strain/temperature sensors and bioelectrodes. Chem. Eng. J. 2024 , 489 , 151433..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621