

FOLLOWUS
Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
zhangyp@nwnu.edu.cn (Y.P.Z.)
wangrm@nwnu.edu.cn (R.M.W.)
songpf@nwnu.edu.cn (P.F.S.)
Received:24 June 2025,
Accepted:11 August 2025,
Published Online:03 November 2025,
Published:2025-09
Scan QR Code
Cheng, X. Q.; Li, J.; Li, T.; Zhang, Y. P.; Wang, R. M.; He, Y. F.; Song, P. F. Surface-engineered cationic copolymer microspheres with nano-multiple humps topography for enhancing antibacterial efficacy. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3434-3
Xiao-Qi Cheng, Jun Li, Tian Li, et al. Surface-engineered Cationic Copolymer Microspheres with Nano-multiple Humps Topography for Enhancing Antibacterial Efficacy[J/OL]. Chinese journal of polymer science, 2025, 431-11.
Cheng, X. Q.; Li, J.; Li, T.; Zhang, Y. P.; Wang, R. M.; He, Y. F.; Song, P. F. Surface-engineered cationic copolymer microspheres with nano-multiple humps topography for enhancing antibacterial efficacy. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3434-3 DOI:
Xiao-Qi Cheng, Jun Li, Tian Li, et al. Surface-engineered Cationic Copolymer Microspheres with Nano-multiple Humps Topography for Enhancing Antibacterial Efficacy[J/OL]. Chinese journal of polymer science, 2025, 431-11. DOI: 10.1007/s10118-025-3434-3.
Bacterial infections are becoming the second most common cause of death globally and have contributed significantly to morbidity and mortality. Cationic antibacterial polymers containing quaternary ammonium salts have been explored; h
owever
it remains a key scientific challenge for current research to synergistically optimize the conformational relationships between structural surface features
active sites
and properties. In this study
a novel cationic copolymer microsphere with nano-multiple humps (CPMs-nMHs) was constructed through emulsion polymerization and self-assembly in EtOH/H
2
O
with 3-methacrylamido-
N
N
N
-trimethylpropan-1-aminium chloride (MPAC) as the protruding functional component. Meanwhile
different hydrophilic monomers were adjusted to synthesize polymers with varying forms
which offered a significant research foundation for delving deeper into the impact of their morphology on performance. After being characterized by Fourier transform infrared (FTIR) spectroscopy
scanning electron microscopy (SEM)
atomic force microscopy (AFM)
X-ray photoelectron spectroscopy (XPS)
dynamic light scattering (DLS)
and thermogravimetric analysis (TG)
the obtained CPMs-nMHs were applied to antibacterial activity against
Escherichia coli
(E. coli)
and
Staphylococcus aureus
(S. aureus)
. Surprisingly
the synthesized CPMs-nMHs exhibited excellent antibacterial performance
discovering that the antibacterial rates of up to 100%
while the activities of contrast copolymers were low. We considered that the dual cooperation of cationic structures and nano-multiple humps were responsible for the antibacterial capabilities. Taken together
cationic copolymer microspheres with nano-multiple humps provide a promising strategy for enhancing the antibacterial properties of cationic polymers.
GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the global burden of disease study 2019. Lancet 2022 , 400 , 2221−2248..
Zhang, L. L.; Jin, H.; Ma, H. K.; Gregory, K.; Qi, Z. W.; Wang, C. X.; Wu, W. T.; Cang, D. Q.; Li, Z. F. Oxidative damage of antibioti c resistant and gene in a novel sulfidated micron zero-valent activated persulfate system. Chem. Eng. J. 2020 , 381 , 122787..
Yin, H. L.; Li, G. Y.; Chen, X. F.; Wang, W. J.; Wong, P. K.; Zhao, H. J.; An, T. C. Accelerated evolution of bacterial antibiotic resistance through early emerged stress responses driven by photocatalytic oxidation. Appl. Catal. B-Environ. 2020 , 269 , 118829..
Zhou, Y.; Chen, X. X.; Chen, T. T.; Chen, X. Q. A review of the antibacterial activity and mechanisms of plant polysaccharides. Trends Food Sci. Technol. 2022 , 123 , 264−280..
Xin, Y.; Zhao, H. J.; Xu, J. Q.; Xie, Z. X.; Li, G. F.; Gan, Z. H.; Wang, X. Borneol-modified chitosan: antimicrobial adhesion properties and application in skin flora protection. Carbohydr. Polym. 2020 , 228 , 115378..
Jha, R.; Mayanovic, R. A. A review of the preparation, characterization, and applications of chitosan nanoparticles in nanomedicine. Nanomaterials 2023 , 13 , 1302..
Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J. Am. Chem. Soc. 2010 , 132 , 12349−12356..
Guo, Z. C.; Chen, Y.; Wang, Y. H.; Jiang, H.; Wang, X. M. Advances and challenges in metallic nanomaterial synthesis and antibacterial applications. J. Mater. Chem. B 2020 , 8 , 4764−4777..
Singh, S.; Barick, K. C.; Bahadur, D. Shape-controlled hierarchical ZnO architectures: photocatalytic and antibacterial activities†. CrystEngComm 2013 , 15 , 4631−4639..
Dong, A.; Wang, Y. J.; Gao, Y. Y.; Gao, T. Y.; Gao, G. Chemical insights into antibacterial n-halamines. Chem. Rev. 2017 , 117 , 4806−4862..
Ding, X. K.; Duan, S.; Ding, X. J.; Liu, R. H.; Xu, F. J. Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv. Funct. Mater. 2018 , 28 , 1802140..
Zhu, J.; Wu, N. B.; Zhao, X. Y.; Fan, Y. B.; Huang, X. Y.; Chen, D. Y. Rational design of tadpole-like single-chain particle brush with anti-protein and antibacterial performance. Acta Polymerica Sinica (in Chinese) 2024 , 55 , 900−909..
Huang, Y. Q.; Li, Y. F.; Liu, Y.; Shi, L. Q. Triclosan-conjugated, lipase-responsive polymeric micelles for eradication of staphylococcal biofilms. Chinese J. Polym. Sci. 2024 , 42 , 718−728..
Sha, D.; Yang, X.; Wang, B. L.; Liu, X.; Li, C. X.; Tang, Y. K.; Wei, M.; Liang, Z. W.; Wei, H.; Xu, J. D.; Shi, K.; Ji, X. L. Surface grafting of a quaternary ammonium salt on macroporous polyvinyl alcohol-formaldehyde sponges and their highly efficient antibacterial performance. ACS Appl. Polym. Mater. 2020 , 22 , 4936−4942..
Liang, J. S.; She, J. Q.; He, H.; Fan, Z. Q.; Chen, S. G.; Li, J. H.; Liu, B. A new approach to fabricate polyimidazolium salt (PIMS) coatings with efficient antifouling and antibacterial properties. Appl. Surf. Sci. 2019 , 478 , 770−778..
Wu, J. J.; Wang, F.; Wan, P. Q.; Pan, L.; Xiao, C. S.; Ma, Z.; Li, Y. S. Synthesis, characterization of polyethylene ionomers and their antibacterial properties. Chinese J. Polym. Sci. 2024 , 42 , 1077−1084..
Zhou, W. H.; Lu, L.; Chen, D. F.; Wang, Z. G.; Zhai, J. X.; Wang, R. X.; Tan, G. X.; Mao, J. P.; Yu, P.; Ning, C. Y. Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties. J. Mater. Chem. B 2018 , 6 , 3128−3135..
Biying, A. O.; Ong, M. J. H.; Zhao, W. G.; Li, N.; Luo, H. K.; Chan, J. M. W. Broad-spectrum antimicrobial polymer-coated fabrics via commodity polystyrene upcycling. ACS Appl. Polym. Mater. 2024 , 14 , 8169−8177..
Song, Q.; Chan, S. Y.; Xiao, Z. H.; Zhao, R. X.; Zhang, Y. N.; Chen, X. M.; Liu, T.; Yan, Y. J.; Zhang, B.; Han,F.; Li, P. Contact-killing antibacterial mechanisms of polycationic coatings: a review. Prog. Org. Coat. 2024 , 188 , 108214..
Smith, C. A.; Cataldo, V. A.; Dimke, T.; Stephan, I.; Guterman, R. Antibacterial and degradable thioimidazolium poly(ionic liquid). ACS Sustain. Chem. Eng. 2020 , 8 , 8419−8424..
Salajkova, S.; Benkova, M.; Marek, J.; Sleha, R.; Prchal, L.; Malinak, D.; Dolezal, R.; Sepčić, K.; Gunde-Cimerman, N.; Kuca, K.; Soukup, O. Wide-antimicrobial spectrum of picolinium salts. Molecules 2020 , 25 , 2254..
Kullapa, C.; Pumis, T.; Suchada, C.; Hoong-Kun, F. New tunable pyridinium benzenesulfonate amphiphiles as anti-MRSA quaternary ammonium compounds (QACs). J. Mol. Struct. 2022 , 1254 , 132389..
Fanfoni, L.; Marsich, E.; Turco, G.; Breschi, L.; Cadenaro, M. Development of di-methacrylate quaternary ammonium monomers with antibacterial activity. Acta Biomater. 2021 , 129 , 138−147..
Foster, L. L.; Yusa, S. I.; Kuroda, K. Solution-mediated modulation of pseudomonas aeruginosa biofilm formation by a cationic synthetic polymer. Antibiotics 2019 , 8 , 61..
Bazina, L.; Maravić, A.; Krce, L.; Soldo, B.; Odžak, R.; Popović, V. B.; Aviani, I.; Primožič, I.; Šprung, M. Discovery of novel quaternary ammonium compounds based on quinuclidine-3-ol as new potential antimicrobial candidates. Eur. J. Med. Chem. 2018 , 163 , 626−635..
Chen, T.; Yang, H.; Wu, X.; Yu, D. F.; Ma, A. Q.; He, X.; Sun, K. J.; Wang, J. B. Ultrahighly charged amphiphilic polymer brushes with super-antibacterial and self-cleaning capab ilities. Langmuir 2019 , 35 , 3031−3037..
Morandini, A.; Leonetti, B.; Riello, P.; Sole, R.; Gatto, V.; Caligiuri, I.; Rizzolio, F.; Beghetto, V. Synthesis and antimicrobial evaluation of bis-morpholine triazine quaternary ammonium salts. ChemMedChem 2021 , 16 , 3172−3176..
Bai, S.; Li, X. H.; Zhao, Y. H.; Ren, L. X.; Yuan, X. Y. Antifogging/antibacterial coatings constructed by n-hydroxyethyl acrylamide and quaternary ammonium-containing copolymers. ACS Appl. Mater. Interfaces 2020 , 12 , 12305−12316..
Naves, A. F.; Palombo, R. R.; Carrasco, L. D. M.; Carmona-Ribeiro, A. M. Antimicrobial particles from emulsion polymerization of methyl methacrylate in the presence of quaternary ammonium surfactants. Langmuir 2013 , 29 , 9677−9684..
Mathew, R. T.; Cooney, R. P.; Doyle, C. S.; Swift,S.; Haessler, C. Anchored quaternary ammonium salts adsorbed on polyurethane film surfaces. Prog. Org. Coat. 2020 , 138 , 105343..
Jia, B.; Zhang, B. B.; Li, J. H.; Qin, J. L.; Huang, Y. S.; Huang, M. S.; Ming, Y.; Jiang, J. J.; Chen, R.; Xiao, Y. F.; Du, J. Z. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem. Soc. Rev. 2024 , 53 , 3273−3301..
Kuroda, K.; DeGrado, W. F. Amphiphilic polymethacrylate derivatives as antimicrobial agents. J. Am. Chem. Soc. 2005 , 127 , 4128−4129..
Senkum, H.; Kelly, P. V.; Gramlich, W. M. Water-stable thin-film nanostructures from amphiphilic cationic bottlebrush block copolymers by grafting-through ring-opening metathesis polymerization. Macromolecules 2021 , 54 , 7987−7997..
Rahman, M. A.; Jui, M. S.; Bam, M.; Cha, Y.; Luat, E.; Alabresm, A.; Nagarkatti, M.; Decho, A. W.; Tang, C. Facial amphiphilicity-induced polymer nanostructures for antimicrobial applications. ACS Appl. Mater. Interfaces 2020 , 12 , 21221−21230..
Zhu, M. M.; Fang, Y.; Chen, Y. C.; Lei, Y. Q.; Fang, L. F.; Zhu, B. K.; Matsuyama, H. Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers. J. Colloid Interf. Sci. 2020 , 584 , 225−235..
Tsukamoto, M.; Zappala, E.; Caputo, G. A.; Kikuchi, J. I.; Najarian, K.; Kuroda, K.; Yasuhara, K. Mechanistic study of membrane disruption by antimicrobial methacrylate random copolymers by the single giant vesicle method. Langmuir 2021 , 37 , 9982−9995..
Borisova, D.; Haladjova, E.; Kyulavska, M.; Petrov, P.; Pispas, S.; Stoitsova, S.; Paunova-Krasteva, T. Application of cationic polymer micelles for the dispersal of bacterial biofilms. Eng. Life Sci. 2018 , 18 , 943−948..
Jędrzejczak, P.; Parus, A.; Balicki, S.; Kornaus, K.; Janczarek, M.; Wilk, K. A.; Jesionowski, T.; Ślosarczyk, A.; Klapiszewski, Ł. The influence of various forms of titanium dioxide on the performance of resultant cement composites with photocatalytic and antibacterial functions. Mater. Res. Bull. 2022 , 160 , 112139..
Zhang, H. L.; Wang, X. L.; Liu, J. Y.; Mai, G. Q.; Liu, S. S.; Cui, W.; Guan, R. G.; Jiang, S. S.; Han, Y. Y.; He, T. Alginate composite films incorporated with Zn-based inorganic antimicrobials for food packaging: effects of morphology. J. Food Sci. 2024 , 89 , 5734−5747..
Salek Gilani, N.; Tilami, S. E.; Ahghari, M. R .; Azizi, S. N.; Hosseinkhani, S. The effect of size and morphology on the antibacterial activity of Zn-loaded LTL nanozeolite. Chem. Eng. Technol. 2023 , 47 , 664−671..
Wang, B.; Wang, F. W.; Kong, Y. D.; Wu, Z. M.; Wang, R. M.; Song, P. F.; He, Y. F. Polyurea-crosslinked cationic acrylate copolymer for antibacterial coating. Colloids Surf. A 2018 , 549 , 122−129..
Guo, W. L.; He, Y. L.; Wang, F. W.; Li, Y. G.; Wang, B.; Wang, R. M.; Song, P. F. Fabrication of AgNPs@Bowl- shaped structure with excellent antibacterial activity. Colloid Interface Sci. Commun. 2021 , 44 , 100473..
Wang, B.; Guo, W. L.; Liu, X. Q.; He, Y. F.; Song, P. F.; Wang, R. M. Fabrication of silver-decorated popcorn-like polymeric nanoparticles for enhanced antibacterial activity. Appl. Surf. Sci. 2020 , 522 , 146318..
Wu, H.; Yang, L. L.; Qian, J.; Wang, D. Q.; Pan, Y. K.; Wang, X. H.; Nabanita, S.; Tang, T. T.; Zhao, J.; Wei, J. Microporous coatings of PEKK/SN composites integration with PEKK exhibiting antibacterial and osteogenic activity, and promotion of osseointegration for bone substitutes. ACS Biomater. Sci. Eng. 2019 , 5 , 1290−1301..
Li, T.; Zhang, Y. P.; Wang, R. M.; Wang, F. W.; Song, P. F.; He, Y. F. Synthesis of polymer single-hole microjars and encapsulating amoxicillin for efficient antibacterial. Mater. Lett. 2022 , 312 , 131635..
Li, Y. F.; He, W.; Piao, Y. Z.; Wang, Y. M.; Peng, M. N.; Li, H. P.; Hu, R. D.; Li, D. D.; Shi, L. Q.; Liu, Y. Bacterial membrane nanovesicles encapsulating prodrug assemblies combine chemical and immunological therapies for chronic bacterial infection. Nat. Commun. 2025 , 16 , 5246..
Li, X. M.; Wang, B.; Liang, T. Y.; Wang, R. M.; Song, P. F.; He, Y. F. Synthesis of cationic acrylate copolyvidone-iodine nanoparticles with double active centers and their antibacterial application. Nanoscale 2020 , 12 , 21940−21950..
Wang, B.; Jia, L. Y.; Wang, F. W.; He, Y. F.; Song, P. F.; Wang, R. M. Anisotropic nano-/microparticles from diversified copolymers by solvent-mediated self-assembly. Langmuir 2019 , 35 , 12792−12798..
Zhong, B. C.; Jia, Z. X.; Luo, Y. F.; Guo, B. C.; Jia, D. M. Preparation of halloysite nanotubes supported 2-mercaptobenz imidazole and its application in natural rubber. Compos. Part A 2015 , 73 , 63−71..
Michailidis, M.; Gutner-Hoch, E.; Wengier, R.; Onderwater, R.; D’Sa, R. A.; Benayahu, Y.; Semenov, A.; Vinokurov, V.; Shchukin, D. G. Highly effective functionalized coatings with antibacterial and antifouling properties. ACS Sustain. Chem. Eng. 2020 , 8 , 8928−8937..
Li, X. M.; Gan, J. X.; Cao, P.; Guo, W. L.; Wang, R. M.; Song, P. F.; He, Y. F. Preparation of blackberry-shape cationic copolymer particles for highly effective antibacterial coatings. Colloids Surf. A 2021 , 614 , 126202..
Sukhorukova, I. V.; Sheveyko, A. N.; Shvindina, N. V.; Denisenko, E. A.; Ignatov, S. G.; Shtansky, D. V. Approaches for controlled Ag+ Ion release: influence of surface topography, roughness, and bactericide content. ACS Appl. Mater. Interfaces 2017 , 9 , 4259−4271..
Zhou, Z. X.; Wei, D. F.; Guan, Y.; Zheng, A. N.; Zhong, J. J. Damage of escherichia coli membrane by bactericidal agent polyhexamethylene guanidine hydrochloride: micrographic evidences. J. Appl. Microbiol. 2010 , 108 , 898−907..
Qian, Y. H.; Hu, X. L.; Wang, J. H.; Li, Y. F.; Liu, Y.; Xie, L. P. Polyzwitterionic micelles with antimicrobial-conjugation for eradication of drug-resistant bacterial biofilms. Colloids Surf. B 2023 , 231 , 113542..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621