FOLLOWUS
a.School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
b.School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
c.Department of Mathematics and Statistics, Boston University, 665 Commonwealth Avenue, Boston, Massachusetts 02215, USA
yunlonghan@mail.dlut.edu.cn (Y.L.H.)
tfshi@gdut.edu.cn (T.F.S.)
Received:30 June 2025,
Accepted:08 August 2025,
Published Online:16 October 2025,
Published:05 November 2025
Scan QR Code
Zhang, Y. N.; Han, Y. L.; Li, J. W.; Shi, T. F. Perforation dynamics and directional motion of janus vesicles under the coupled effects of flow and electric fields. Chinese J. Polym. Sci. 2025, 43, 1939–1949
Yi-Ning Zhang, Yun-Long Han, Jia-Wei Li, et al. Perforation Dynamics and Directional Motion of Janus Vesicles under the Coupled Effects of Flow and Electric Fields[J/OL]. Chinese journal of polymer science, 2025, 431939-1949.
Zhang, Y. N.; Han, Y. L.; Li, J. W.; Shi, T. F. Perforation dynamics and directional motion of janus vesicles under the coupled effects of flow and electric fields. Chinese J. Polym. Sci. 2025, 43, 1939–1949 DOI: 10.1007/s10118-025-3430-7.
Yi-Ning Zhang, Yun-Long Han, Jia-Wei Li, et al. Perforation Dynamics and Directional Motion of Janus Vesicles under the Coupled Effects of Flow and Electric Fields[J/OL]. Chinese journal of polymer science, 2025, 431939-1949. DOI: 10.1007/s10118-025-3430-7.
Janus vesicles
unique nanostructures
have attracted significant attention for their diverse applications in biomedical and microfluidic systems. In practical micro-nano systems
flow and electric fields often coexist
and the perforation dynamics of Janus vesicles exhibit complex motion due to their synergistic effects. Studying Janus vesicle perforation dynamics under the combined influence of fluid flow and electric fields provides valuable insights into their applications in drug delivery
catalyst delivery
and controlled release. This study focuses on the perforation dynamics and directional motion of Janus vesicles in microchannels
emphasizing how electric field strength and charge distribution on the membrane influence vesicle migration
deformation
and trajectories. Results show that when electromagnetic forces and flow-driven forces align
increasing electric field strength promotes vesicle migration and perforation. Vesicle migration is correlated with charge distribution on the membrane
with broader distributions resulting in more pronounced migration. When electric field strength remains constant
charge distribution has little effect on vesicle deformation. Conversely
when electromagnetic forces and flow-driven forces oppose
increasing electric field strength inhibits vesicle migration. At a specific potential difference
charged vesicles cease movement before reaching the perforation site
indicating the critical potential for perforation. The study also reveals that the direction of the electric field significantly affects vesicle migration direction. Adjusting potential values at microchannel boundaries can control the directional movement of Janus vesicles. This research provides new insights into Janus vesicle behavior in complex environments and deepens understanding of their potential as drug carriers for delivery and targeted therapy.
Wiemann, J. T.; Shen, Z.; Ye, H.; Li, Y.; Yu, Y. Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic janus nanoparticles. Nanoscale 2020 , 12 , 20326−20336..
Hu, F.; Sun, Y.; Zhu, Y.; Huang, Y.; Li, Z.; Sun, Z. Enthalpy-driven self-assembly of amphiphilic janus dendrimers into onion-like vesicles: a Janus particle model. Nanoscale 2019 , 11 , 17350−17356..
Choi, Y.; Akyildiz, K.; Seong, J.; Lee, Y.; Jeong, E.; Park, J. S.; Lee, D. H.; Kim, K.; Koo, H. J.; Choi, J. Dielectrophoretic capture of cancer-derived small-extracellular-vesicle-bound janus nanoparticles via lectin-glycan interaction. Adv. Healthc. Mater. 2024 , 13 , 230231..
Li, X.; Chen, L.; Cui, D.; Jiang, W.; Han, L.; Niu, N. Preparation and application of janus nanoparticles: recent development and prospects. Coord. Chem. Rev. 2022 , 454 , 214318..
Zhang, X.; Yu, N.; Ren, Q.; Niu, S.; Zhu, L.; Hong, L.; Cui, K.; Wang, X.; Jiang, W.; Wen, M.; Chen, Z. Janus nanofiber membranes with photothermal-enhanced biofluid drainage and sterilization for diabetic wounds. Adv. Funct. Mater. 2024 , 34 , 202315020..
Li, X.; Li, Y.; Yu, C.; Bao,H.; Cheng, S.; Huang, J.; Zhang, Z. Ros-responsive janus au/mesoporous silica core/shell nanoparticles for drug delivery and long-term ct imaging tracking of msc s in pulmonary fibrosis treatment. ACS Nano 2023 , 17 , 6387−6399..
Berger, S.; Synytska, A.; Ionov, L.; Eichhorn, K. J.; Stamm, M. Stimuli-responsive bicomponent polymer janus particles by “grafting from”/“grafting to” approaches. Macromolecules 2008 , 41 , 9669−9676..
He, W.; Frueh, J.; Wu, Z.; He, Q. Leucocyte membrane-coated janus microcapsules for enhanced photothermal cancer treatment. Langmuir 2016 , 32 , 3637−3644..
Shaghaghi, B.; Khoee, S.; Bonakdar, S. Preparation of multifunctional janus nanoparticles on the basis of spions as targeted drug delivery system. Int. J. Pharm. 2019 , 559 , 1−12..
He, H. L.; Liang, F. X. Interfacial engineering of polymer blend with janus particle as compatibilizer. Chinese J. Polym. Sci. 2023 , 41 , 500−515..
Luo, F. H.; Dong, Z. T.; Chen, G. H.; Ma, C.; Wang, H. Y. Preparation of pva/go/h-bn janus film with high thermal conductivity and excellent flexibility via a density deposition self-assembly method. Chinese J. Polym. Sci. 2024 , 42 , 1217−1226..
Li, M.; Li, D. Janus droplets and droplets with multiple heterogeneous surface strips generated with nanoparticles under applied electric field. J. Phys. Chem. C 2018 , 122 , 8461−8472..
Gangwal, S.; Cayre, O. J.; Bazant, M. Z.; Velev, O. D. Induced-charge electrophoresis of metallodielectric particles. Phys. Rev. Lett. 2008 , 100 , 058302..
Zhou, Y.; Zheng, S.; Cheng, X.; Liu, L.; Lei, H.; Zhong, N.; Deng, Z.; Zhang, W.; He, X. In-situ bubble emission and transport mechanisms in janus electrode within direct liquid fuel cells. J. Power Sources 2025 , 626 , 235810..
Asmolov, E. S.; Nizkaya, T. V.; Vinogradova, O. I. Self-diffusiophoresis of janus particles that release ions. Phys. Fluids 2022 , 34 , 032011..
Debnath, T.; Ghosh, P. K. Activated barrier crossing dynamics of a janus particle carrying cargo. Phys. Chem. Chem. Phys. 2018 , 20 , 25069−25077..
Sahoo, S.; Singh, S. P.; Thakur, S. Role of viscoelasticity on the dynamics and aggregation of chemically active sphere-dimers. Phys. Fluids 2021 , 33 , 017120..
Tang, C.; Li, Y.; Fei, X.; Zhao, W.; Tian, J.; Xu, L.; Wang, Y. An integrally formed janus supramolecular bio-gel with intelligent adhesion for multifunctional healthcare. J. Colloid Interface Sci. 2025 , 680 , 1030−1041..
Fang, Y.; Zheng, Y.; Chi, C.; Jiang, S.; Qin, W.; Zhang, Y.; Liu, H.; Chen, Q. Paapu janus hydrogels stabilized by janus particles and its interfacial performance during hemostatic processing. Adv. Healthc. Mater. 2024 , 13 , 202303802..
Sun, Y.; Zhou, J.; Zhang, Z.; Yu, D.-G.; Bligh, A. Integrated janus nanofibers enabled by a co-shell solvent for enhancing icariin delivery efficiency. Int. J. Pharm. 2024 , 658 , 124180..
Lei, M.; Wan, H.; Song, J.; Lu, Y.; Chang, R.; Wang, H.; Zhou, H.; Zhang, X.; Liu, C.; Qu, X. Programmable electro-assembly of collagen: constructing porous janus films with customized dual signals for immunomodulation and tissue regeneration in periodontitis treatment. Adv. Sci. 2024 , 11 , 202305756..
Shao, J.; Abdelghani, M.; Shen, G.; Cao, S.; Williams, D. S.; Hest, J. C. M. Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano 2018 , 12 , 4877−4885..
Vinze, P. M.; Choudhary, A.; Pushpavanam, S. Motion of an active particle in a linear concentration gradient. Phys. Fluids 2021 , 33 , 032011..
Wu, Y.; Si, T.; Shao, J.; Wu, Z.; He, Q. Near-infrared light-driven janus capsule motors: fabrication, propulsion, and simulation. Nano Res. 2016 , 9 , 3747−3756..
Wu, Z.; Lin, X.; Wu, Y.; Si, T.; Sun, J.; He, Q. Near-infrared light-triggered on/off motion of polymer multilayer rockets. ACS Nano 2014 , 8 , 6097−6105..
Zhou, J.; Pan, H.; Gong, W.; Yu, D.-G.; Sun, Y. Electrosprayed eudragit rl100 nanoparticles with janus polyvinylpyrrolidone patches for multiphase release of paracetamol. Nanoscale 2024 , 16 , 8573−8582..
Han, Y.; Lin, H.; Ding, M.; Li, R.; Shi, T. Flow-induced translocation of vesicles through a narrow pore. Soft Matter 2019 , 15 , 3307−3314..
Han, Y. L.; Ding, M. M.; Li, R.; Shi, T. F. Kinematics of non-axially positioned vesicles through a pore. Chinese J. Polym. Sci. 2020 , 38 , 776−783..
Li, B.; Han, Y.; Li, J.; Shi, T. Dynamics of janus vesicles passing through a narrow pore. Phys. Fluids 2023 , 35 , 123613..
Bai, Z.; Lodge, T. P. Polymersomes with ionic liquid interiors dispersed in water. J. Am. Chem. Soc. 2010 , 132 , 16265−16270..
Njikang, G.; Han, D.; Wang, J.; Liu, G. Abc triblock copolymer micelle-like aggregates in selective solvents for a and c. Macromolecules 2008 , 41 , 9727−9735..
Srinivas, G.; Discher, D. E.; Klein, M. L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat. Mater. 2004 , 3 , 638−644..
Zhang, Q.; Zhu, S. Ionic liquids: versatile media for preparation of vesicles from polymerization-induced self-assembly. ACS Macro Lett. 2015 , 4 , 755−758..
Warren, N. J.; Mykhaylyk, O. O.; Ryan, A. J.; Williams, M.; Doussineau, T.; Dugourd, P.; Antoine, R.; Portale, G.; Armes, S. P. Testing the vesicular morphology to destruction: birth and death of diblock copolymer vesicles prepared via polymerization-induced self-assembly. J. Am. Chem. Soc. 2015 , 137 , 1929−1937..
Hou, G.; Li, Y.; Cui, X.; Zhao, B.; Liu, L.; Zhang, Y.; Yuan, H.; Zhang, L. Electric field assisted tangential flow filtration device for highly effective isolation of bioactive small extracellular vesicles from cell culture medium. Anal. Chem. 2024 , 96 , 13345−13351..
Wu, M.; Zhu, Y.; Jiang, W. Release behavior of polymeric vesicles in solution controlled by external electrostatic field. ACS Macro Lett. 2016 , 5 , 1212−1216..
Essafri, I.; Ghosh, B.; Desgranges, C.; Delhommelle, J. Designing, synthesizing, and modeling active fluids. Phys. Fluids 2022 , 34 , 071301..
Wu, Y.; Lin, X.; Wu, Z.; Moehwald, H.; He, Q. Self-propelled polymer multilayer janus capsules for effective drug delivery and light-triggered release. ACS Appl. Mater. Interfaces 2014 , 6 , 10476−10481..
Xuan, M.; Shao, J.; Lin, X.; Dai, L.; He, Q. Light-activated janus self-assembled capsule micromotors. Colloids Surf. A Physicochem. Eng. Asp. 2015 , 482 , 92−97..
Böker, A.; Schmidt, K.; Knoll, A.; Zettl, H.; Hänsel, H.; Urban, V.; Abetz, V.; Krausch, G. The influence of incompatibility and dielectric contrast on the electric field-induced orientation of lamellar block copolymers. Polymer 2006 , 47 , 849−857..
Matsen, M. W. Converting the nanodomains of a diblock-copolymer thin film from spheres to cylinders with an external electric field. J. Chem. Phys. 2006 , 124 , 074906..
Morkved, P.; Lu, M.; Urbas, A.; Ehrichs, E.; Jaeger, H.; Mansky, P.; Russell, T. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 1996 , 273 , 931−933..
Tsori, Y.; Tournilhac, F.; Andelman, D.; Leibler, L. Structural changes in block copolymers: coupling of electric field and mobile ions. Phys. Rev. Lett. 2003 , 90 , 145504..
Wang, J.-Y.; Chen, W.; Russell, T. P. Influence of interfacial energy on electric-field-induced sphere-to-cylinder transition in block copolymer thin films. Macromolecules 2008 , 41 , 7227−7231..
Xu, T.; Zhu, Y. Q.; Gido, S. P.; Russell, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 2004 , 37 , 2625−2629..
Xu, T.; Zvelindovsky, A. V.; Sevink, G. J. A.; Gang, O.; Ocko, B.; Zhu, Y. Q.; Gido, S. P.; Russell, T. P. Electric field induced sphere-to-cylinder transition in diblock copolymer thin films. Macromolecules 2004 , 37 , 6980−6984..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution