

FOLLOWUS
a.Hebei Key Laboratory of Green and Efficient New Electrical Materials and Equipment, North China Electric Power University, Baoding 071003, China
b.State Key Laboratory of New Energy Power System, North China Electric Power University, Beijing 102206, China
c.China Electric Power Research Institute, Beijing 100192, China
xinx_zhou@163.com
Received:11 June 2025,
Accepted:03 August 2025,
Published Online:16 October 2025,
Published:05 November 2025
Scan QR Code
Liu, H. C.; Zhou, X. X.; Zhou, S. S.; Zou, Y.; Wang, Y. L.; Li, X. Q. Preparation and properties study of itaconic acid-based degradable epoxy resin based on dynamic covalent bonds. Chinese J. Polym. Sci. 2025, 43, 2009–2021
He-Chen Liu, Xin-Xin Zhou, Song-Song Zhou, et al. Preparation and Properties Study of Itaconic Acid-based Degradable Epoxy Resin Based on Dynamic Covalent Bonds[J]. Chinese journal of polymer science, 2025, 43(11): 2009-2021.
Liu, H. C.; Zhou, X. X.; Zhou, S. S.; Zou, Y.; Wang, Y. L.; Li, X. Q. Preparation and properties study of itaconic acid-based degradable epoxy resin based on dynamic covalent bonds. Chinese J. Polym. Sci. 2025, 43, 2009–2021 DOI: 10.1007/s10118-025-3427-2.
He-Chen Liu, Xin-Xin Zhou, Song-Song Zhou, et al. Preparation and Properties Study of Itaconic Acid-based Degradable Epoxy Resin Based on Dynamic Covalent Bonds[J]. Chinese journal of polymer science, 2025, 43(11): 2009-2021. DOI: 10.1007/s10118-025-3427-2.
Bio-based epoxy resins incorporating dynamic ester bonds and dynamic disulfide bonds were synthesized using itaconic acid as the bio-based precursor. The resulting materials exhibit exceptional electrical insulation properties
mechanical strength
and thermal stability. Furthermore
the introduction of dynamic covalent networks significantly enhances degradation capabilities
enabling efficient decomposition under mild conditions.
The most widely used bisphenol A-type epoxy resin (DGEBA) in electrical engineering demonstrates excellent mechanical and electrical properties. However
the insoluble and infusible characteristics of cured DGEBA make it difficult to efficiently degrade and recycle decommissioned electrical equipment. In this study
a degradable itaconic acid-based epoxy resin incorporating dynamic covalent bonds was prepared through the integration of ester bonds
and disulfide bonds
with itaconic acid as the precursor. The covalent bonding effects on the mechanical
thermal
electrical
and degradation characteristics were systematically evaluated. The experimental results revealed that the introduction of dynamic ester bonds enhanced the mechanical properties and thermal stability of the resin system
achieving a flexural strength of 141.57 MPa and an initial decomposition temperature
T
5%
of up to 344.9 °C. The resin system containing dynamic disulfide bonds exhibited a dielectric breakdown strength of 41.11 kV/mm. Simultaneously
the incorporation of disulfide bonds endowed the epoxy resin with remarkable degradability
enabling complete dissolution within 1.5 h at 90 °C in a mixed solution of dithiothreitol (DTT) and
N
-methylpyrrolidone (NMP). This research provides a valuable reference for the application of itaconic acid-based vitrimer with dynamic covalent bonds in electrical materials
contributing to the development and utilization of environmentally friendly electrical equipment.
Memon, H.; Wei, Y.; Zhu, C. Y. Recyclable and reformable epoxy resins based on dynamic covalent bonds-present, past, and future. Polym. Test. 2022 , 105 , 107420..
Hu, Q. L.; Memon, H.; Qiu, Y. P.; Liu, W. S.; Wei, Y. A comprehensive study on the mechanical properties of different 3D woven carbon fiber-epoxy composites. Materials 2020 , 13 , 2765..
[Li, J.; Wang, Y. F.; Du, B. X.; Liang, H. C. Research progress on modification of standby epoxy resin insulating materials for high voltage electrical fixtures. Guangdong Electr. Power (in Chinese) 2019 , 32 , 3−11..
Shelby, F.; Tricia, M.; Sarah, T.; Elizabeth, W. Bisphenol A exposure, effects, and policy, a wildlife perspective. J. Environ. Manage. 2012 , 104 , 19−34..
Zhao, Q.; An, L.; Li, C. B.; Zhang, L. J.; Jiang, J. J.; Li, Y. J. Environment-friendly recycling of CFRP composites via gentle solvent system at atmospheric pressure. Compos. Sci. Technol. 2022 , 224 , 109461..
Chakma, P.; Konkolewicz, D. Dynamic covalent bonds in polymeric materials. Angew. Chem. Int. Ed. 2019 , 58 , 9682−9695..
Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermoset. J. Am. Chem. Soc. 2012 , 134 , 7664−7667..
Wu, Y. J.; Ding, D. L.; Lin, H.; Cai, F. J.; Zhang, X. X. Properties of intrinsic self-healing epoxy insulating materials based on dynamic disulfide bond. Trans. China Electrotech. Soc . (in Chinese) 2024 , 39 , 836−843..
Liu, H. C.; Sun, Z. L.; Wei, L. W.; Liu, C.; Liu, Y. P.; Zhou, S. S.; Liu, J. Electrical branch deterioration, partial discharge and degradation recovery characteristics in double dynamic cross-linked vitrimer resin. Proc. CSEE (in Chinese) 2024 , 44 , 7852−7863..
Ruibin, M.; Song, L. J.; Hu, J.; Sheng, X. X.; Zhang, X. Y. An acid-degradable biobased epoxy-imine adaptable network polymer for the fabrication of responsive structural color film. Polym. Chem. 2020 , 11 , 974−981..
Matsukizono, H.; Endo, T. Reworkable polyhydroxyurethane films with reversible acetal networks obtained from multifunctional six-membered cyclic carbonates. J. Am. Chem. Soc. 2018 , 140 , 884−887..
Zhang, X. T.; Wang, S. J.; Jiang, Z. K.; Li, Y.; Jing, X. L. Boronic ester based vitrimers with enhanced stability via internal boron-nitrogen coordination. J. Am. Chem. Soc. 2020 , 142 , 21852−21860..
Lyu, Z. Y.; Wu, T. F. Extremely stretchable vitrimers. Macromol. Rapid Commun. 2020 , 41 , 2000265..
Li, X. P.; Yu, R.; Zhao, T. T.; Zhang, Y.; Yang, X.; Zhao, X. J.; Wei, H. A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene michael addition reaction. Eur. Polym. J. 2018 , 108 , 399−405..
Liu, B. T.; Zhang, C. J.; Li, J. H.; Zhang, G. S.; Jian, X. G.; Weng, Z. H. Upcyclable thermosetting photopolymer containing degradable sulfite bonds for sustainable 3D printing. Sci. China Mater. 2024 , 67 , 4049−4058..
[Liu, B. T.; Li, J. H.; Zhang, C. J.; Wang, Y. B.; Jian, X. G.; Weng, Z. H. “Polymer to polymer” recycling and body-temperature triggered shape memory of a carvone-based epoxy thermoset system achieved using a thiol-michael covalent adaptable network. J. Mater. Chem. A 2024 , 12 , 25264-25273..
Li, P. Y.; Ma, S. Q.; Wang, B. B.; Xu, X. W.; Feng, H. Z.; Yu, Z.; Yu, T.; Liu, Y. L.; Zhu, J. Degradable benzyl cyclic acetal epoxy monomers with low viscosity, synthesis, structure-property relationships, application in recyclable carbon fiber composite. Compos. Sci. Technol. 2022 , 219 , 109243..
[Liu, H. C.; Wei, L. W.; Sun, Z. L.; Liu, C.; Liu, Y. P. Effect of catalysts on the performance of vitrimers based on dynamic ester exchange. Trans. China Electrotech. Soc . (in Chinese) 2024 , 39 , 5134−5148..
Liu, T.; Zhang, S.; Hao, C.; Verdi, C.; Liu, W. C.; Liu, H.; Zhang, J. W. Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromol. Rapid Commun. 2019 , 40 , 1800889..
Chiara, M. D.; Alice, M. Influence of the presence of disulphide bonds in aromatic or aliphatic dicarboxylic acid hardeners used to produce reprocessable epoxidized thermosets. Polymers 2021 , 13 , 534−534..
Liu, Y. Y.; He, J.; Li, Y. D.; Zhao, X. L.; Zeng, J. B. Biobased, reprocessable and weldable epoxy vitrimers from epoxidized soybean oil. Ind. Crop. Prod. 2020 , 153 , 112576..
Ocando, C.; Ecochard, Y.; Decostanzi, M.; Caillol, S.; Luc,A. Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials. Eur. Polym. J. 2020 , 135 , 109860..
Ma, Z. Y.; Wang, Y.; Zhu, J.; Yu, J. R.; Hu, Z. M. Bio-based epoxy vitrimers, reprocessibility, controllable shape memory, and degradability. J. Polym. Sci. A Polym. Chem. 2017 , 55 , 1790−1799..
Alaitz, R. D. L.; Gema, S.; Izaskun, A.; Virginie, B.; Hans, G.; Rekondo, A. Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer 2022 , 239 , 124457..
[Liu, H. C.; Liu, C.; Sun, Z. L.; Liu, Y. P.; Jiang, Y. Z. The influence of thermal oxygen aging on the performance of degradable resins based on double dynamic covalent bonds. Trans. China Electrotech. Soc . (in Chinese) 2025 , 40 , 2944−2957..
Dinu, R.; Lafont, U.; Damiano, O.; Mija, A. High glass transition materials from sustainable epoxy resins with potential applications in the aerospace and space sectors. ACS Appl. Polym. Mater. 2022 , 4 , 3636−3646..
Liu, X. H.; Zhang, E. D.; Feng, Z. Q.; Liu, J. M.; Chen, B. F.; Liang, L. Y. Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites. J. Mater. Sci. 2021 , 56 , 15733−15751..
Li, W. B.; Xiao, L. H.; Wang, Y. G.; Chen, J.; Nie, X. A. Self-healing silicon-containing eugenol-based epoxy resin based on disulfide bond exchange, synthesis and structure-property relationships. Polymer 2021 , 229 , 123967..
Li, C.; Ju, B. Z.; Zhang, S. F. Construction of a new green vitrimer material, introducing dynamic covalent bond into carboxymethyl cellulose. Cellulose 2021 , 28 , 2879−2888..
Xu, Y. S.; Hua, G.; Hakkarainen, M.; Odelius, K. Isosorbide as core component for tailoring biobased unsaturated polyester thermosets for a wide structure-property window. Biomacromolecules 2018 , 19 , 3077−3085..
[Liu, H. C.; Guo, Z. P.; Liu, Y. P.; Zhou, S. S.; Wu, X. Comparison of electrical branching properties between itaconate-based epoxy resin and bisphenol A epoxy resin. High Voltage (in Chinese) 2022 , 48 , 2607-2615..
[Liu, H. C.; Guo, Z. P.; Liu, Y. P.; Zhou, S. S.; Wu, X. Comparative study on the performance of itaconate-based epoxy resin and bisphenol A epoxy resin. Trans. China Electrotech. Soc . (in Chinese) 2022 , 37 , 2366−2376..
Liu, X. Q.; Xin, W. B.; Zhang, J. W. Rosin-based acid a nhydrides as alternatives to petrochemical curing agents. Green Chem. 2009 , 11 , 1018−1025..
Lu, Q. Y.; Gu, H. W.; Li, J. H.; Fan, Q. Q.; Liu, B. T.; Kou, Y.; Jian, X. G.; Weng, Z. H. Unleashing the power of bio-based thermotropic liquid crystal modifiers, toughening and reinforcing petroleum-based epoxy resin without compromising other properties. Chinese J. Polym. Sci. 2024 , 42 , 1093−1102..
Thomas, F.; Rachael, C.; James, C.; Duncan, M. Synthesis of unsaturated polyester resins from various bio-derived platform molecules. Int. J. Mech. Sci. 2015 , 16 , 14912−14932..
Ma, S. Q.; Liu, X. Q.; Jiang, Y. H. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. Green Chem. 2013 , 15 , 245−254..
Liu, Y. L.; Wang, B. B.; Ma, S. Q.; Yu, T.; Xu, X. W.; Li, Q.; Wang, S.; Han, Y. Y.; Yu, Z.; Zhu, J. Catalyst-free malleable, degradable, bio-based epoxy thermosets and its application in recyclable carbon fiber composites. Compos. Part B Eng. 2021 , 211 , 108654..
Si, H. W.; Zhou, L.; Wu, Y. P.; Song, L. X.; Kang, M.; Zhao, X. L.; Chen, M. Rapidly reprocessable, degradable epoxy vitrimer and recyclable carbon fiber reinforced thermoset composites relied on high contents of exchangeable aromatic disulfide crosslinks. Compos. Part B Eng. 2020 , 199 , 108278..
Wang, S.; Ma, S. Q.; Li, Q.; Xu, X. W.; Wang, B. B.; Yuan, W. C.; Zhou, S. H.; You, S. S.; Zhu, J. Facile in situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite. Green Chem. 2019 , 21 , 1484−1497..
Hao, C.; Liu, T.; Zhang, S.; Liu, W. C.; Shan, Y. F.; Zhang, J. W. Triethanolamine-mediated covalent adaptable epoxy network, excellent mechanical properties, fast repairing, and easy recycling. Macromolecules 2020 , 53 , 3110−3118..
Ding, X. M.; Chen, L.; Guo, D. M.; Liu, B. W.; Luo, X.; Lei, Y. F.; Zhong, H. Y.; Wang, Y. Z. Controlling cross-linking networks with different imidazole accelerators toward high-performance epoxidized soybean oil-based thermosets. ACS Sustain. Chem. Eng. 2021 , 9 , 3267−3277..
Kuang, X.; Shi, Q.; Zhou, Y. Y.; Zhao, Z. A.; Wang, T. J.; Jerry, Q. D issolution of epoxy thermosets via mild alcoholysis, the mechanism and kinetics study. RSC Adv. 2018 , 8 , 1493−1502..
Johnson, L.; Ledet, E.; Huffman, N.; Swarner, S.; Shepherd, S.; Durham, P.; Rothrock, G. Controlled degradation of disulfide-based epoxy thermosets for extreme environments. Polymer 2015 , 64 , 84−92..
Meng, F.; McKechnie, J.; Turner, T. A.; Pickering, S. J. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Compos. Part A 2017 , 100 , 206−214..
Esfandiar, P.; Sima, K.; Russell, V.; Wang, X. G. Recent progress in recycling carbon fibre reinforced composites and dry carbon fibre wastes. Resour. Conserv. Recy. 2020 , 166 , 105340..
Zabihi, O.; Ahmadi, M.; Liu, C.; Mahmoodi, R.; Li, Q. X.; Ferdowsi, M.; Naebe, M. A sustainable approach to the low-cost recycling of waste glass fibres composites towards circular economy. Sustainability 2020 , 12 , 641−641..
0
Views
8
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621