

FOLLOWUS
State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi’an 710072, China
iambzhang@nwpu.edu.cn
Received:08 June 2025,
Accepted:02 August 2025,
Published Online:11 October 2025,
Published:05 November 2025
Scan QR Code
Liu, F. K.; Lu, Z.; Cui, J. J.; Guo, Y. L.; Liang, C.; Feng, S. W.; Wang, Z. X.; Mao, Z. J.; Zhang, B. 4D printing micelle-enhanced shape memory polymer for minimally invasive implant. Chinese J. Polym. Sci. 2025, 43, 1991–1999
Fu-Kang Liu, Zhe Lu, Jing-Jing Cui, et al. 4D Printing Micelle-enhanced Shape Memory Polymer for Minimally Invasive Implant[J]. Chinese journal of polymer science, 2025, 43(11): 1991-1999.
Liu, F. K.; Lu, Z.; Cui, J. J.; Guo, Y. L.; Liang, C.; Feng, S. W.; Wang, Z. X.; Mao, Z. J.; Zhang, B. 4D printing micelle-enhanced shape memory polymer for minimally invasive implant. Chinese J. Polym. Sci. 2025, 43, 1991–1999 DOI: 10.1007/s10118-025-3423-6.
Fu-Kang Liu, Zhe Lu, Jing-Jing Cui, et al. 4D Printing Micelle-enhanced Shape Memory Polymer for Minimally Invasive Implant[J]. Chinese journal of polymer science, 2025, 43(11): 1991-1999. DOI: 10.1007/s10118-025-3423-6.
We report a micelle-enhanced shape memory polymer fabricated via DLP-based 4D printing. The printed constructs exhibit high toughness
dual-stimuli responsiveness
and strong recovery stress under physiological conditions
enabling minimally invasive implantation and effective lumen reopening in vascular occlusion models.
4D-printable shape memory polymers (SMPs) hold great promise for fabricating shape morphing biomedical devices
but most existing printed polymers either require harsh activation conditions or lack sufficient mechanical strength for vascular implantation. Here
we report a dual-stimuli-responsive shape memory polymer system enhanced by acrylated Pluronic F127 (PF127-DA) micelles
which can be fabricated using digital light processing (DLP) based 3D printing. The PF127-DA based nanoscale micelles
which are formed
via
self-assembly in the hydrogel ink for 3D printing
act as crosslinkers to improve mechanical strength
fatigue resistance and elastic recovery. After drying the printed hydrogel
the obtained SMPs exhibit excellent shape recovery behaviour under mild physiological conditions—specifically body temperature (37 °C) and aqueous swelling—resulting in recovery stress up to about 150 kPa. This swelling-assisted actuation enables effective radial support
making the printed constructs suitable for vascular use.
In vitro
cytocompatibility assays with NIH/3T3 fibroblasts confirmed the suitable biocompatibility. Furthermore
the self-expanding behavior of the printed stents was validated in an occluded vessel model under physiological conditions. These results demonstrate the feasibility of 4D printed micelle-enhanced SMP for patient-specific
minimally invasive vascular stents and other soft implantable devices requiring high recovery force under physiological stimulation.
[Wu, H.; Yang, L.; Luo, R.; Li, L.; Zheng, T.; Huang, K.; Qin, Y.; Yang, X.; Zhang, X.; Wang, Y. A drug-free cardiovascular stent functionalized with tailored collagen supports in-situ healing of vascular tissues. Nat. Commun . 2024 , 15 , 735..
Byrne, R. A.; Stone, G. W.; Ormiston, J.; Kastrati, A. Coronary balloon angioplasty, stents, and scaffolds. Lancet 2017 , 390 , 781−792..
Stefanini, G. G.; Holmes, D. R. Drug-eluting coronary-artery stents. N. Engl. J. Med. 2013 , 368 , 254−265..
Maitland, D. J.; Metzger, M. F.; Schumann, D.; Le e, A.; Wilson, T. S. Photothermal properties of shape memory polymer micro-actuators for treating stroke. Lasers Surg. Med. 2002 , 30 , 1−11..
Liu, J.; Wang, S.; Huang, S.; Zhang, K.; Yulu, L.; Chen, Z.; Huang, C.; Zhang, Y.; Du, S.; Xu, T. Magnetic and radio frequency dual-responsive shape-programmable robots for adaptive aneurysm embolization. Cell Rep. Phys. Sci. 2024 , 5 , 100..
Orouji, O. S.; Goudarzi, Z.; Momeni Kangarshahi, L.; Mokhtarzade, A.; Bahrami, F. Self-expanding stents based on shape memory alloys and shape memory polymers. J. Compos. Compd. 2020 , 2 , 92−98..
Zong, J.; He, Q.; Liu, Y.; Qiu, M.; Wu, J.; Hu, B. Advances in the development of biodegradable coronary stents: A translational perspective. Mater. Today Bio 2022 , 16 , 100368..
[Yin, T.; Du, R.; Wang, Y.; Huang, J.; Ge, S.; Huang, Y.; Tan, Y.; Liu, Q.; Chen, Z.; Feng, H.; Du, J.; Wang, Y.; Wang, G. Two-stage degradation and novel functional endothelium characteristics of a 3D printed bioresorbable scaffold. Bioact. Mater . 2022 , 10 , 378–396..
[Wang, P.; Sun, Y.; Shi, X.; Shen, H.; Ning, H.; Liu, H. 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Biodes. Manuf . 2021 , 4 , 344–378..
Zhang, B.; Kowsari, K.; Serjouei, A.; Dunn, M. L.; Ge, Q. Reprocessable thermosets for sustainable three-dimensional printing. Nat. Commun. 2018 , 9 , 1831..
[Zhang, B.; Li, H.; Cheng, J.; Ye, H.; Sakhaei, A. H.; Yuan, C.; Rao, P.; Zhang, Y. F.; Chen, Z.; Wang, R.; He, X.; Liu, J.; Xiao, R.; Qu, S.; Ge, Q. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv. Mater . 2021 , 33 , 2101298..
[Yue, L.; Sun, X.; Yu, L.; Li, M.; Montgomery, S. M.; Song, Y.; Nomura, T.; Tanaka, M.; Qi, H. J. Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing. Nat. Commun . 2023 , 14 , 5519..
Liu, F.; Cui, J.; He, X.; Lu, Z.; Feng, S.; Liang, C.; Guo, Y.; Gao, W.; Ge, Q.; Zhang, B. Bio-inspired 4D printed regenerative thermosets en abled by synergistic dynamic reactions. Mater. Today 2024 , 80 , 276−285..
Yi, J.; Yang, S.; Yue, L.; Lei, I. M. Digital light processing 3D printing of flexible devices: actuators, sensors and energy devices. Microsyst. Nanoeng. 2025 , 11 , 51..
Sun, Y.; Cui, J.; Feng, S.; Cui, J.; Guo, Y.; Liang, C.; Gao, W.; Lu, Z.; Liu, F.; Zhang, B. Projection stereolithography 3D printing high-conductive hydrogel for flexible passive wireless sensing. Adv. Mater. 2024 , 36 , 2400103..
Zhang, Q.; Bei, H. P.; Zhao, M.; Dong, Z.; Zhao, X. Shedding light on 3D printing: printing photo-crosslinkable constructs for tissue engineering. Biomaterials 2022 , 286 , 121566..
Levato, R.; Dudaryeva, O.; Garciamendez-Mijares, C. E.; Kirkpatrick, B. E.; Rizzo, R.; Schimelman, J.; Anseth, K. S.; Chen, S.; Zenobi-Wong, M.; Zhang, Y. S. Light-based vat-polymerization bioprinting. Nat. Rev. Methods Primers 2023 , 3 , 46..
He, Y.; Xie, M.; Gao, Q.; Fu, J. Why choose 3D bioprinting? Part I: a brief introduction of 3D bioprinting for the beginners. Bio-Des. Manuf. 2019 , 2 , 221−224..
Li, H.; Dai, J.; Wang, Z.; Zheng, H.; Li, W.; Wang, M.; Cheng, F. Digital light processing (DLP)-based (bio)printing strategies for tissue modeling and regeneration. Aggregate 2022 , 4 , e270..
Yakacki, C. M.; Shandas, R.; Lanning, C.; Rech, B.; Eckstein, A.; Gall, K. Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications. Biomaterials 2007 , 28 , 2255−2263..
Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem. Int. Ed. 2002 , 41 , 2034−2057..
Wang, Q.; Zhang, Y.; Shao, F.; Yang, X.; Wang, S.; Shen, Y.; Wang, H. Bio-inspired design of 4D-printed scaffolds capable of programmable multi-step transformations toward vascular reconstruction. Adv. Funct. Mater. 2024 , 34 , 2407592..
Ni, C.; Chen, D.; Yin, Y.; Wen, X.; Chen, X.; Yang, C.; Chen, G.; Sun, Z.; Wen, J.; Jiao, Y.; Wang, C.; Wang, N.; Kong, X.; Deng, S.; Shen, Y.; Xiao, R.; Jin, X.; Li, J.; Kong , X.; Zhao, Q.; Xie, T. Shape memory polymer with programmable recovery onset. Nature 2023 , 622 , 748−753..
Gladman, A. S.; Matsumoto, E. A.; Nuzzo, R. G.; Mahadevan, L.; Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 2016 , 15 , 413−418..
Cui, J.; Liu, F.; Lu, Z.; Feng, S.; Liang, C.; Sun, Y.; Cui, J.; Zhang, B. Repeatedly recyclable 3D printing catalyst-free dynamic thermosetting photopolymers. Adv. Mater. 2023 , 35 , 2211417..
[Lin, C.; Lv, J.; Li, Y.; Zhang, F.; Li, J.; Liu, Y.; Liu, L.; Leng, J. 4D-printed biodegradable and remotely controllable shape memory occlusion devices. Adv. Funct. Mater . 2019 , 29 , 1906569..
Behl, M.; Lendlein, A. Shape-memory polymers. Mater. Today 2007 , 10 , 20−28..
Paunović, N.; Bao, Y.; Coulter, F. B.; Masania, K.; Geks, A. K.; Klein, K.; Rafsanjani, A.; Cadalbert, J.; Kronen, P. W.; Kleger, N.; Karol, A.; Luo, Z.; Rüber, F.; Brambilla, D.; von Rechenberg, B.; Franzen, D.; Studart, A. R.; Leroux , J.-C. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. Sci. Adv. 2021 , 7 , eabe9499..
[Ge, Q.; Chen, Z.; Cheng, J.; Zhang, B.; Zhang, Y. F.; Li, H.; He, X.; Yuan, C.; Liu, J.; Magdassi, S.; Qu, S. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci. Adv . 2021 , 7 , eaba4261..
Meng, H.; Li, G. A review of stimuli-responsive shape memory polymer composites. Polymer 2013 , 54 , 2199−2221..
Chen, Y.; Gao, P.; Huang, L.; Tan, X.; Zhou, N.; Yang, T.; Qiu, H.; Dai, X.; Michael, S.; Tu, Q.; Huang, N.; Guo, Z.; Zhou, J.; Yang, Z.; Wu, H. A tough nitric oxide-eluting hydrogel coating suppresses neointimal hyperplasia on vascular stent. Nat. Commun. 2021 , 12 , 7079..
Lu, Z.; Cui, J.; Liu, F.; Liang, C.; Feng, S.; Sun, Y.; Gao, W.; Guo, Y.; Zhang, B.; Huang, W. A 4D printed adhesive, thermo-contractile, and degradable hydrogel for diabetic wound healing. Adv. Healthc. Mater. 2023 , 13 , 2303499..
Lu, Z.; Gao, W.; Liu, F.; Cui, J.; Feng, S.; Liang, C.; Guo, Y.; Wang, Z.; Mao, Z.; Zhang, B. Vat photopolymerization based digital light processing 3D printing hydrogels in biomedical fields: key parameters and perspective. Addit. Manuf. 2024 , 94 , 103634..
Hong, H.; Seo, Y. B.; Kim, D. Y.; Lee, J. S.; Lee, Y. J.; Lee, H.; Ajiteru, O.; Sultan, M. T.; Lee, O. J.; Kim, S. H.; Park, C. H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 2020 , 232 , 119679..
[Ding, A.; Lee, S. J.; Ayyagari, S.; Tang, R.; Huynh, C. T.; Alsberg, E. 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioact. Mater . 2022 , 7 , 324–332..
Annabi, N.; Zhang, Y. N.; Assmann, A.; Sani, E. S.; Cheng, G.; Lassaletta, A. D.; Vegh, A.; Dehghani, B.; Ruiz-Esparza, G. U.; Wang, X.; Gangadharan, S.; Weiss, A. S.; Khademhosseini, A. Engineering a highly elastic human protein-based sealant for surgical applications. Sci. Transl. Med. 2017 , 9 , eaai7466..
Gong, J. P. Why are double network hydrogels so tough. Soft Matter 2010 , 6 , 2583−2590..
Li, X.; Feng, R.; Xu, Y.; Li, Y.; Zhang, Q. Shape memory hierarchical AB copolymer networks. Polym. Chem. 2020 , 11 , 909−921..
Wang, H.; Zhang, B.; Zhang, J.; He, X.; Liu, F.; Cui, J.; Lu, Z.; Hu, G.; Yang, J.; Zhou, Z.; Wang, R.; Hou, X.; Ma, L.; Ren, P.; Ge, Q.; Li, P.; Huang, W. General one-pot method for preparing highly water-soluble and biocompatible photoinitiators for digital light processing-based 3D printing of hydrogels. ACS Appl. Mater. Interfaces 2021 , 13 , 55507−55516..
Fairbanks, B. D.; Schwartz, M. P.; Halevi, A. E.; Nuttelman, C. R.; Bowman, C. N.; Anseth, K. S. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv. Mater. 2009 , 21 , 5005−5010..
0
Views
1
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621