FOLLOWUS
School of Physics and Astronomy, China West Normal University, Nanchong 637009, China
pyj1992263@hotmail.com
Received:06 July 2025,
Accepted:02 August 2025,
Published Online:11 October 2025,
Published:05 November 2025
Scan QR Code
Hu, C. N.; He, J.; He, Y. T.; Peng, Y. J. Anti-freezing conductive gelatin hydrogel reinforced with polypyrrole-decorated cellulose nanofibers for strain sensors and triboelectric nanogenerators. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3419-2
Chang-Ning Hu, Jie He, Yu-Ting He, et al. Anti-Freezing Conductive Gelatin Hydrogel Reinforced with Polypyrrole-decorated Cellulose Nanofibers for Strain Sensors and Triboelectric Nanogenerators[J/OL]. Chinese journal of polymer science, 2025, 431-11.
Hu, C. N.; He, J.; He, Y. T.; Peng, Y. J. Anti-freezing conductive gelatin hydrogel reinforced with polypyrrole-decorated cellulose nanofibers for strain sensors and triboelectric nanogenerators. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3419-2 DOI:
Chang-Ning Hu, Jie He, Yu-Ting He, et al. Anti-Freezing Conductive Gelatin Hydrogel Reinforced with Polypyrrole-decorated Cellulose Nanofibers for Strain Sensors and Triboelectric Nanogenerators[J/OL]. Chinese journal of polymer science, 2025, 431-11. DOI: 10.1007/s10118-025-3419-2.
Conductive hydrogels derived from natural polymers have attracted increasing attention in wearable electronics due to their inherent biocompatibility and sustainability. However
their poor mechanical strength
limited conductivity and unsatisfactory environmental adaptability remain significant challenges for practical applications. In this study
we report a high-performance gelatin-based conductive hydrogel (GPC) reinforced with polypyrrole-decorated cellulose nanofibers (PPy@CNF) and enhanced by a zwitterionic betaine/(NH
4
)
2
SO
4
solution. The PPy@CNF hybrid nanofillers were synthesized
via in situ
oxidative polymerization
enabling homogeneous dispersion of PPy along the CNF surface. The incorporation of PPy@CNF significantly improved both mechanical strength and conductivity of the gelatin hydrogel. Meanwhile
the Hofmeister effect induced by (NH
4
)
2
SO
4
strengthened the hydrogel network
and the introduction of betaine further enhanced its anti-freezing and moisture-retention properties. The optimized GPC hydrogel exhibited a high tensile strength of 1.02 MPa
conductivity of 1.5 S·m
–1
and stable performance at temperatures down to –50 °C. Furthermore
it was successfully assembled into a wearable strain sensor for real-time human motion monitoring
and as an electrode layer in a flexible triboelectric nanogenerator (TENG)
enabling biomechanical energy harvesting and self-powered sensing. This work provides a promising strategy for developing sustainable
multifunctional hydrogels for next-generation wearable electronics.
Liang, Y.; Wang, K.; Li, J.; Wang, H.; Xie, X. Q.; Cui, Y.; Zhang, Y.; Wang, M .; Liu, C. S. Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors. Adv. Funct. Mater. 2021 , 31 , 2104963..
Ban, S.; Lee, Y. J.; Kwon, S.; Kim, Y. S.; Chang, J. W.; Kim, J. H.; Yeo, W. H. Soft wireless headband bioelectronics and electrooculography for persistent human–machine interfaces. ACS Appl. Electron. Mater 2023 , 5 , 877−886..
Zarei, M.; Lee, G.; Lee, S. G.; Cho, K. Advances in biodegradable electronic skin: material progress and recent applications in sensing, robotics, and human–machine interfaces. Adv. Mater. 2023 , 35 , 2203193..
Shen, K.; Xu, K.; Zhang, M.; Yu, J.; Yang, Y.; Zhao, X.; Zhang, Q.; Wu, Y.; Zhang, Y.; Cheng, Y. Multiple hydrogen bonds reinforced conductive hydrogels with robust elasticity and ultra-durability as multifunctional ionic skins. Chem. Eng. J. 2023 , 451 , 138525..
Jiang, Z.; Sha, R.; He, Y.; Wang, M.; Ma, W.; Gao, S.; Zhu, M.; Li, Y.; Ni, M.; Xu, M. Anti-swelling zwitterionic nanocomposite hydrogels with biocompatibility as flexible sensor for underwater application. Eng. Sci. 2024 , 31 , 1200..
Wan, B.; Yang, Y.; Yuan, Y.; Guo, R.; Yu, X. Functionalised conductive elastomers for strain monitoring of seismic isolation bearings: experiments and molecular simulations. Eng. Sci. 2025 , 34 , 1479..
Liu, X.; Wu, Z.; Alomar, T. S.; AlMasoud, N.; Liu, X.; Han, X.; Guo, N.; Weng, L.; Gao, J.; Algadi, H. Poly(vinyl alcohol)/carboxylated cellulose nanofibers composite hydrogel flexible strain sensors. Int. J. Biol. Macromol. 2025 , 309 , 142902..
Kwon, S. H.; Dong, L. Flexible sensors and machine learning for heart monitoring. Nano Energy 2022 , 102 , 107632..
Zhao, H.; Hao, S.; Fu, Q.; Zhang, X.; Meng, L.; Xu, F.; Yang, J. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors. Chem. Mater. 2022 , 34 , 5258−5272..
Yu, M.; Gao, Y.; Hong, H.; Wang, T.; Peng, Z. A versatile, highly stretchable, and anti-freezing alginate/polyacrylamide/polyaniline multi-network hydrogel for flexible strain sensors and supercapacitors. Int. J. Biol. Macromol. 2025 , 288 , 138740..
Lin, H.; Yuan, W.; Zhang, W.; Dai, R.; Zhang, T.; Li, Y.; Ma, S.; Song, S. Strong and tough anisotropic short-chain chitosan-based hydrogels with optimized sensing properties for flexible strain sensors. Carbohydr. Polym. 2025 , 348 , 122781..
Lv, R.; Cao, X.; Zhang, T.; Ji, W.; Muhammad, U.; Chen, J.; Wei, Y. A highly stretchable, self-healing, self-adhesive polyacrylic acid/chitosan multifunctional composite hydrogel for flexible strain sensors. Carbohydr. Polym. 2025 , 351 , 123111..
Wang, R.; Liu, Q.; Wei, J.; Zhu, C.; Wang, Y.; Yu, A.; Wang, W.; Zou, J.; Xie, J.; Fu, Z. Biocomposite silk fibroin hydrogel with stretchability, conductivity and biocompatibility for wireless strain sensor. J. Mater. Sci. Technol. 2025 , 210 , 195−203..
Karoyo, A. H.; Wilson, L. D. A review on the design and hydration properties of natural polymer-based hydrogels. Materials 2021 , 14 , 1095..
El Sayed, M. M. Production of polymer hydrogel composites and their applications. J. Polym. Environ. 2023 , 31 , 2855−2879..
Zheng, Y.; Huang, K.; You, X.; Huang, B.; Wu, J.; Gu, Z. Hybrid hydrogels with high strength and biocompatibility for bone regeneration. Int. J. Biol. Macromol. 2017 , 104 , 1143−1149..
Li, J.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016 , 1 , 1−17..
Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 2006 , 18 , 1345−1360..
Deng, P.; Chen, F.; Zhang, H.; Chen, Y.; Zhou, J. Conductive, self-healing, adhesive, and antibacterial hydrogels based on lignin/cellulose for rapid MRSA-infected wound repairing. ACS Appl. Mater. Interfaces 2021 , 13 , 52333−52345..
Tong, R.; Ma, Z.; Gu, P.; Yao, R.; Li, T.; Zeng, M.; Guo, F.; Liu, L.; Xu, J. Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors. Int. J. Biol. Macromol. 2023 , 246 , 125683..
Li, Z.; Yin, F.; He, W.; Hang, T.; Li, Z.; Zheng, J.; Li, X.; Jiang, S.; Chen, Y. Anti-freezing, recoverable and transparent conductive hydrogels co-reinforced by ethylene glycol as flexible sensors for human motion monitoring. Int. J. Biol. Macromol. 2023 , 230 , 123117..
Wang, Z.; Wei, H.; Huang, Y.; Wei, Y.; Chen, J. Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chem. Soc. Rev. 2023 , 52 , 2992−3034..
Yu, F.; Yang, P.; Yang, Z.; Zhang, X.; Ma, J. Double-network hydrogel adsorbents for environmental applications. Chem. Eng. J. 2021 , 426 , 131900..
Fan, X.; Geng, J.; Wang, Y.; Gu, H. PVA/gelatin/β-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor. Polymer 2022 , 246 , 124769..
He, Q.; Huang, Y.; Wang, S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 2018 , 28 , 1705069..
Wang, X.; Qiao, C.; Jiang, S.; Liu, L.; Yao, J. Strengthening gelatin hydrogels using the Hofmeister effect. Soft Matter 2021 , 17 , 1558−1565..
Bao, Z.; Xian, C.; Yuan, Q.; Liu, G.; Wu, J. Natural polymer-based hydrogels with enhanced mechanical performances: preparation, structure, and property. Adv. Healthc. Mater. 2019 , 8 , 1900670..
Zhang, Y.; Zhao, X.; Yang, W.; Jiang, W.; Chen, F.; Fu, Q. Enhancement of mechanical property and absorption capability of hydrophobically associated polyacrylamide hydrogels by adding cellulose nanofiber. Mater. Res. Express 2020 , 7 , 015319..
Ye, Y.; Zhang, Y.; Chen, Y.; Han, X.; Jiang, F. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 2020 , 30 , 2003430..
He, Q.; Cheng, Y.; Deng, Y.; Wen, F.; Lai, Y.; Li, H. Conductive hydrogel for flexible bioelectronic device: current progress and future perspective. Adv. Funct. Mater. 2024 , 34 , 2308974..
Zhou, N.; Wang, T.; Chen, S.; Hu, Q.; Cheng, X.; Sun, D.; Vupputuri, S.; Qiu, B.; Liu, H.; Guo, Z. Conductive polyaniline hydrogel enhanced methane production from anaerobic wastewater treatment. J. Colloid Interface Sci. 2021 , 581 , 314−322..
Zhao, W.; Zhou, M.; Lv, L.; Fu, H. Self-healing, conductive and magnetic ZnFe2O4/MCNT/PPy ternary composite hydrogels. J. Alloys Compd. 2021 , 886 , 161083..
Li, T.; Liang, B.; Ye, Z.; Zhang, L.; Xu, S.; Tu, T.; Zhang, Y.; Cai, Y.; Zhang, B.; Fang, L. An integrated and conductive hydrogel-paper patch for simultaneous sensing of chemical–electrophysiological signals. Biosens. Bioelectron. 2022 , 198 , 113855..
Sun, X.; Qin, Z.; Ye, L.; Zhang, H.; Yu, Q.; Wu, X.; Li, J.; Yao, F. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J. 2020 , 382 , 122832..
Zhou, C.; Wu, T.; Xie, X.; Song, G.; Ma, X.; Mu, Q.; Huang, Z.; Liu, X.; Sun, C.; Xu, W. Advances and challenges in conductive hydrogels: From properties to applications. Eur. Polym. J. 2022 , 177 , 111454..
Yang, X.; Biswas, S. K.; Han, J.; Tanpichai, S.; Li, M. C.; Chen, C.; Zhu, S.; Das, A. K.; Yano, H. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 2021 , 33 , 2002264..
Yao, S.; Sun, X.; Ye, L.; Liang, H. A strong and tough gelatin/polyvinyl alcohol double network hydrogel actuator with superior actuation strength and fast actuation speed. Soft Matter 2022 , 18 , 9197−9204..
[MA, C.; SG, P.; PR, G.; RN, M.; Shashwati, S.; VB, P. Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosc. Lett. 2011, 2011 ..
Yuan, X.; Floresyona, D.; Aubert, P.-H.; Bui, T.-T.; Remita, S.; Ghosh, S.; Brisset, F.; Goubard, F.; Remita, H. Photocatalytic degradation of organic pollutant with polypyrrole nanostructures under UV and visible light. Appl. Catal. B-Environ. 2019 , 242 , 284−292..
de Paula, E. L.; Roig, F.; Mas, A.; Habas, J.-P.; Mano, V.; Pereira, F. V.; Robin, J.-J. Effect of surfa ce-grafted cellulose nanocrystals on the thermal and mechanical properties of PLLA based nanocomposites. Eur. Polym. J. 2016 , 84 , 173−187..
Yu, H.-Y.; Zhang, H.; Song, M.-L.; Zhou, Y.; Yao, J.; Ni, Q.-Q. From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl. Mater. Interfaces 2017 , 9 , 43920−43938..
Chai, H.; Tie, J.; Zhong, Y.; Zhang, L.; Feng, X.;Xu, H.; Mao, Z. A noble composite film of cellulose/polypyrrole/MXene for electromagnetic interference shielding and infrared thermal camouflage. Cellulose 2024 , 31 , 6435−6452..
Tie, J.; Mao, Z.; Zhang, L.; Zhong, Y.; Sui, X.; Xu, H. Polypyrrole nanorods coated on cellulose nanofibers by pickering emulsion as conductive medium for multimodal gel-based sensor. Cellulose 2022 , 29 , 6719−6732..
Shu, K.; Wang, C.; Zhao, C.; Ge, Y.; Wallace, G. G. A free-standing graphene-polypyrrole hybrid paper via electropolymerization with an enhanced areal capacitance. Electrochim. Acta 2016 , 212 , 561−571..
Yang, C.; Zhang, L.; Hu, N.; Yang, Z.; Wei, H.; Zhang, Y. Reduced graphene oxide/polypyrrole nanotube papers for flexible all-solid-state supercapacitors with excellent rate capability and high energy density. J. Power Sources 2016 , 302 , 39−45..
Zhang, R.; Yang, A.; Yang, Y.; Zhu, Y.; Song, Y.; Li, Y.; Li, J. Mussel-inspired cellulose nanofiber/poly (vinyl alcohol) hydrogels with robustness, self-adhesion and antimicrobial activity for strain sensors. Int. J. Biol. Macromol. 2023 , 245 , 125469..
Cao, L.; Zhao, Z.; Wang, X.; Huang, X.; Li, J.; Wei, Y. Tough, antifreezing, and conductive hydrogel based on gelatin and oxidized dextran. Adv. Mater. Technol. 2022 , 7 , 2101382..
Xu, C.; Guan, S.; Dong, X.; Qi, M. Super strong gelatin/cellulose nanofiber hybrid hydrogels without covalent cross-linking for strain sensor and supercapacitor. Composites, Part A 2023 , 164 , 107287..
[Tang, S.; Yu, C.; Liu, X.; Fu, D.; Liao, W.; Xu, F.; Zhong, W.2-Methylimidazole assisted synthesis of nanocrystalline shell reinforced PPy hydrogel with high mechanical and electro chemical performance. Chem. Eng. J . 2022, 430 , 133033..
Zhao, L.; Fang, C.; Qin, B.; Yang, X.; Poechmueller, P. Conductive dual-network hydrogel-based multifunctional triboelectric nanogenerator for temperature and pressure distribution sensing. Nano Energy 2024 , 127 , 109772..
Li, W.; Li, S. M.; Kang, M. C.; Xiong, X.; Wang, P.; Tao, L. Q. Multi-characteristic tannic acid-reinforced polyacrylamide/sodium carboxymethyl cellulose ionic hydrogel strain sensor for human-machine interaction. Int. J. Biol. Macromol. 2024 , 254 , 127434..
Zhang, D.; Zhang, M.; Wang, J.; Sun, H.; Liu, H.; Mi, L.; Liu, C.; Shen, C. Impedance response behavior and mechanism study of axon-like ionic conductive cellulose-based hydrogel strain sensor. Adv. Compos. Hybrid Mater. 2022 , 5 , 1812−1820..
Chen, R.; Wang, L.; Ji, D.; Luo, M.; Zhang, Z.; Zhao, G.; Chang, X.; Zhu, Y. Highly stretchable, conductive, and self-adhesive starch-based hydrogel for high-performance flexible electronic devices. Carbohydr. Polym. 2025 , 352 , 123220..
Wang, J.; Li, W.; Liu, J.; Li, J.; Wang, F. A highly stretchable and self-adhesive cellulose complex hydrogels based on PDA@ Fe3+ mediated redox reaction for strain sensor. Int. J. Biol. Macromol. 2024 , 281 , 136307..
Zhu, T.; Cheng, Y.; Cao, C.; Mao, J.; Li, L.; Huang, J.; Gao, S.; Dong, X.; Chen, Z.; Lai, Y. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 2020 , 385 , 123912..
Li, R.; Xu, Z.; Li, L.; Wei, J.; Wang, W.; Yan, Z.; Chen, T. Breakage-resistant hydrogel electrode enables ultrahigh mechanical reliability for triboelectric nanogenerators. Chem. Eng. J. 2023 , 454 , 140261..
Bao, D.; Wen, Z.; Shi, J.; Xie, L.; Jiang, H.; Jiang, J.; Yang, Y.; Liao, W.; Sun, X. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature. J. Mater. Chem. A 2020 , 8 , 13787−13794..
Sun, L.; Chen, S.; Guo, Y.; Song, J.; Zhang, L.; Xiao, L.; Guan, Q.; You, Z. Ionogel-based, highly stretchable, transparent, durable triboelectric nanogenerators for energy harvesting and motion sensing over a wide temperature range. Nano Energy 2019 , 63 , 103847..
Lei, T.; Wang, Y.; Zhang, Q.; Wang, H.; Duan, X.; Yan, J.; Xia, Z.; Wang, R.; Shou, W.; Li, X. Ultra-stretchable and anti-freezing ionic conductive hydrogels as high performance strain sensors and flexible triboelectric nanogenerator in extreme environments. Nano Energy 2024 , 126 , 109633..
Zhang, H.; Zhang, D.; Wang, Z.; Xi, G.; Mao, R.; Ma, Y.; Wang, D.; Tang, M.; Xu, Z.; Luan, H. Ultrastretchable, self-healing conductive hydrogel-based triboelectric nanogenerators for human–computer interaction. ACS Appl. Mater. Interfaces 2023 , 15 , 5128−5138..
Li, M.; Lu, H.; Pi, M.; Zhou, H.; Wang, Y.; Yan, B.; Cui, W.; Ran, R. Water-induced phase separation for anti-swelling hydrogel adhesives in underwater soft electronics. Adv. Sci. 2023 , 10 , 2304780..
Zhang, H.; Xue, K.; Xu, X.; Wang, X.; Wang, B.; Shao, C.; Sun, R. Green and low-cost alkali-polyphenol synergetic self-catalysis system access to fast gelation of self-healable and self-adhesive conductive hydrogels for self-powered triboelectric nanogenerators. Small 2024 , 20 , 2305502..
Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv. Funct. Mater. 2019 , 29 , 1904507..
Jian, Y.; Handschuh-Wang, S.; Zhang, J.; Lu, W.; Zhou, X.; Chen, T. Biomimetic anti-freezing polymeric hydrogels: keeping soft-wet materials active in cold environments. Mater. Horiz. 2021 , 8 , 351−369..
Fu, Z.; Liu, H.; Lyu, Q.; Dai, J.; Ji, C.; Tian, Y. Anti-freeze hydrogel-based sensors for intelligent wearable human-machine interaction. Chem. Eng. J. 2024 , 481 , 148526..
Xu, C.; Yang, K.; Zhu, G.; Ou, C.; Jiang, J.; Zhuravlev, E.; Zhang, Y. Anti-freezing multifunctional conductive hydrogels: from structure design to flexible electronic devices. Mater. Chem. Front. 2024 , 8 , 381−403..
Wang, L.; Luo, M.; Zhang, Z.; Ji, D.; Chang, X.; Zhu, Y. Ultra-stretchable, robust, self-healable conductive hydrogels enabled by the synergistic effects of hydrogen bonds and ionic coordination bonds toward high-performance e-skins. Chem. Eng. J. 2024 , 500 , 156800..
Chen, L.; Chang, X.; Chen, J.; Zhu, Y. Ultrastretchable, antifreezing, and high-performance strain sensor based on a muscle-inspired anisotropic conductive hydrogel for human motion monitoring and wireless transmission. ACS Appl. Mater. Interfaces 2022 , 14 , 43833−43843..
Hu, J.; Wu, Y.; Yang, Q.; Zhou, Q.; Hui, L.; Liu, Z.; Xu, F.; Ding, D. One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydr. Polym. 2022 , 275 , 118697..
Zhu, K.-R.; Wu, L.-X.; Liu, M.-N.; Li, C.-L.; Song, W.-Z.; Wei, K.-Q.; Zhang, J.; Ramakrishna, S.; Long, Y.-Z. Triboelectric nanogenerator based on multi-component crosslinked network hydrogel for intelligent human motion sensing. Chem. Eng. J. 2024 , 486 , 149948..
Han, D.; Wang, G.; Xu, X.; Chen, J.; Lu, M.; Liu, X.; Zhang, L.; Lai, L. Ultra-stretchable, self-healing, bonding, and skin-inspired conductive triple network hydrogel for wearable strain sensors and friction nanogenerators. Polymer 2024 , 305 , 127169..
Du, T.; Su, X.; Zhu, Y.; Zhao, G.; Zhang, M.; Li, C.; Cai, Z.; Zhao, Y. Efficient fabrication of highly elastic, self-adhesive MXene-doped lignin-based conductive hydrogels for flexible strain sensing applications. ACS Appl. Electron. Mater 2025 , 7 , 2862−2872..
Zeng, H.; Zhang, L.; Wu, T.; Song, H.; Wan, Y.; Zhang, M. High-performance conductive hydrogel prepared by an electrohydrodynamic printing method for strain sensors and self-powered triboelectric nanogenerator. ACS Appl. Nano Mater. 2025 , 8 , 589−601..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution