FOLLOWUS
a.College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
b.Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
qiangfu@scu.edu.cn
Received:29 May 2025,
Revised:2025-07-03,
Accepted:07 July 2025,
Published Online:10 September 2025,
Published:2025-07
Scan QR Code
Xue, S.; Tan, H.; Fu, Q. Enhanced regenerated chitin fiber by a deacetylation-mediated strategy based on alkali/urea green dissolution system. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3411-x
Sen Xue, Hong Tan, Qiang Fu. Enhanced Regenerated Chitin Fiber by a Deacetylation-mediated Strategy Based on Alkali/Urea Green Dissolution System[J/OL]. Chinese journal of polymer science, 2025, 431-9.
Xue, S.; Tan, H.; Fu, Q. Enhanced regenerated chitin fiber by a deacetylation-mediated strategy based on alkali/urea green dissolution system. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3411-x DOI:
Sen Xue, Hong Tan, Qiang Fu. Enhanced Regenerated Chitin Fiber by a Deacetylation-mediated Strategy Based on Alkali/Urea Green Dissolution System[J/OL]. Chinese journal of polymer science, 2025, 431-9. DOI: 10.1007/s10118-025-3411-x.
Chitin
distinguished by its nitrogen-rich acetamido and amino groups
imparts a distinctive cationic nature
enabling chitin to have indispensable features in various applications. Despite its significant promise in the textile industry
particularly for sustainable and functional fabric applications
the practical utilization of chitin fibers remains constrained by insufficient mechanical strength. The degree of deacetylation (DD)
a key molecular-level structural determinant
has not been adequately addressed in previous studies despite its critical role in influencing chitin properties across multiple scales. In this study
a deacetylation-mediated design strategy was used to achieve enhanced mechanical performance coupled with multifunctional efficacy using an aqueous KOH/urea solution dissolution system. We prepared a series of deacetylated chitins with different DD values and systematically studied the effect of deacetylation on the multiple-scale structure of regenerated fibers
such as intermolecular interactions and chain orientation at the molecular level
and the aggregation behavior of chitin nanofibers within the gel-state and dried fibers at the micro/nano scale. To achieve an enhanced mechanical performance coupled with multifunctional efficacy by relying on an aqueous KOH/urea solution dissolution system. Moreover
deacetylation enhances intermolecular interactions
resulting in densified internal structures and improved fiber orientation. Concomitantly
it augmented the antimicrobial functionality of the fibers. This deacetylation-mediated design strategy provides a deeper understanding of the structure and properties of regenerated chitin and advances the utility of chitin in strong and sustainable fibers.
Bai, L.; Liu, L.; Esquivel, M.; Tardy, B. L.; Huan, S.; Niu, X.; Liu, S.; Yang, G.; Fan, Y.; Rojas, O. J. Nanochitin: chemistry, structure, assembly, and applications. Chem. Rev. 2022 , 122 , 11604−11674..
Yang, X.; Liu, J.; Pei, Y.; Zheng, X.; Tang, K. Recent progress in preparation and application of nanochitin materials. Energy Environ. Mater. 2020 , 3 , 492−515..
Beach, E. S.; Cui, Z.; Anastas, P. T. Green chemistry: a design framework for sustainability. Energy Environ. Sci. 2009 , 2 , 1038−1049..
Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A review on chitosan-based flocculants and their applications in water treatment. Water Res. 2016 , 95 , 59−89..
Yu, D.; Yu, Z.; Zhao, W.; Regenstein, J. M.; Xia, W. Advances in the application of chitosan as a sustainable bioactive material in food preservation. Crit. Rev. Food Sci. Nutr. 2022 , 62 , 3782−3797..
Islam, Md. M.; Shahruzzaman, Md.; Biswas, S.; Nurus Sakib, Md.; Rashi d, T. U. Chitosan based bioactive materials in tissue engineering applications-a review. Bioact. Mater. 2020 , 5 , 164−183..
Pawariya, V.; De, S.; Dutta, J. Chitosan-based schiff bases: Promising materials for biomedical and industrial applications. Carbohydr. Polym. 2024 , 323 , 121395..
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci. 2019 , 263 , 131−194..
Yan, N.; Chen, Xi. Sustainability: don’t waste seafood waste. Nature 2015 , 524 , 155−157..
Tardy, B. L.; Mattos, B. D.; Otoni, C. G.; Beaumont, M.; Majoinen, J.; Kämäräinen, T.; Rojas, O. J. Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials. Chem. Rev. 2021 , 121 , 14088−14188..
[Li, C.; Wu, J.; Shi, H.; Xia, Z.; Sahoo, J. K.; Yeo, J.; Kaplan, D. L. Fiber-based biopolymer processing as a route toward sustainability. Adv. Mater. 2022 , 34, 2105196.
Cao, W.; Zhao, X.; Lu, B.; Cui, D.; Chen,F. Assembly of nanowires into macroscopic one-dimensional fibers in liquid state. Adv. Fiber Mater. 2023 , 5 , 928−954..
Luan, P.; Zhao, X.; Copenhaver, K.; Ozcan, S.; Zhu, H. Turning natural herbaceous fibers into advanced materials for sustainability. Adv. Fiber Mater. 2022 , 4 , 736−757..
Pillai, C. K. S.; Paul, W.; Sharma, C. P. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci . 2009 , 34 , 641−678..
Yang, K.; Zhou, Y.; Wang, Z.; Li, M.; Shi, D.; Wang, X.; Jiang, T.; Zhang, Q.; Ding, B.; You, J. Pseudosolvent intercalator of chitin: self-exfoliating into sub-1 nm thick nanofibrils for multifunctional chitinous materials. Adv. Mater . 2021 , 33 , 2007596..
Duan, B.; Huang, Y.; Lu, A.; Zhang, L. Recent advances in chitin based materials constructed via physical methods. Prog. Polym. Sci. 2018 , 82 , 1−33..
Shamshina, J. L. Chitin in ionic liquids: historical insights into the polymer’s dissolution and isolation. a review. Green Chem. 2019 , 21 , 3974−3993..
Özel, N.; Elibol, M. A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydr. Polym. 2021 , 262 , 117942..
Sun, X.; Zhu, Y.; Zhu, J.; Le, K.; Servati, P.; Jiang, F. Tough and ultrastretchable liquid-free ion conductor strengthened by deep eutectic solvent hydrolyzed cellulose microfibers. Adv. Funct. Mater . 2022 , 32 , 2202533..
Cai, J.; Zhang, L. Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol. Biosci . 2005 , 5 , 539−548..
Fang, Y.; Duan, B.; Lu, A.; Liu, M.; Liu, H.; Xu, X.; Zhang, L. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH /urea aqueous solution. Biomacromolecules 2015 , 16 , 1410−1417..
Huang, J.; Zhong, Y.; Zhang , L.; Cai, J. Distinctive viewpoint on the rapid dissolution mechanism of α -chitin in aqueous potassium hydroxide−urea solution at low temperatures. Macromolecules 2020 , 53 , 5588−5598..
Huang, J.; Zhong, Y.; Wei, P.; Cai, J. Rapid dissolution of β-chitin and hierarchical self-assembly of chitin chains in aqueous KOH/urea solution. Green Chem. 2021 , 23 , 3048−3060..
Zhong, Y.; Zhang, X.; Zhang, Q.; Cai, J. Rapid dissolution of chitin and chitosan with degree of deacetylation less than 80% in KOH/urea aqueous solution. Green Chem. 2023 , 25 , 8593−8605..
Huang, J.; Zhong, Y.; Zhang, L.; Cai, J. Extremely strong and transparent chitin films: a high-efficiency, energy-saving, and “green” route using an aqueous KOH/urea solution. Adv. Funct. Mater. 2017 , 27 , 1701100..
Chen, Y.; Zhang, Q.; Zhong, Y.; Wei, P.; Yu, X.; Huang, J.; Cai, J. Super-strong and super-stiff chitosan filaments with highly ordered hierarchical structure. Adv. Funct. Mater. 2021 , 31 , 2104368..
Zhang, Q.; Chen, Y.; Wei, P.; Zhong, Y.; Chen, C.; Cai, J. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Mater. Today 2021 , 51 , 27−38..
Kasaai, M. R. Various methods for determination of the degree of n-acetylation of chitin and chitosan: a review. J. Agric. Food Chem. 2009 , 57 , 1667−1676..
Yu, M.; Zhang, K.; Guo, X.; Qian, L. Effects of the degree of deacetylation on the single-molecule mechanics of chitosans. J. Phys. Chem. B 2023 , 127 , 4261−4267..
Lim, C.; Hwang, D. S.; Lee, D. W. Intermolecular interactions of chitosan: degree of acetylation and molecular weight. Carbohydr. Polym. 2021 , 259 , 117782..
Yu, Z.; Lau, D. Flexibility of backbone fibrils in α-chitin crystals with different degree of acetylation. Carbohydr. Polym. 2017 , 174 , 941−947..
Duan, B.; Chang, C.; Ding, B.; Cai, J.; Xu, M.; Feng, S.; Ren, J.; Shi, X.; Du, Y.; Zhang, L. High strength films with gas-barrier fabricated from chitin solution dissol ved at low temperature. J. Mater. Chem. A 2013 , 1 , 1867−1874..
Zhu, K.; Tu, H.; Yang, P.; Qiu, C.; Zhang, D.; Lu, A.; Luo, L.; Chen, F.; Liu, X.; Chen, L.; Fu, Q.; Zhang, L. Mechanically strong chitin fibers with nanofibril structure, biocompatibility, and biodegradability. Chem. Mater. 2019 , 31 , 2078−2087..
El-Tahlawy, K.; Hudson, S. M. Chitosan: aspects of fiber spinnability. J. Appl. Polym. Sci . 2006 , 100 , 1162−1168..
Terbojevich, M.; Carraro, C.; Cosani, A.; Marsano, E. Solution studies of the chitin-lithium chloride- N,N -di-methylacetamide system. Carbohydr. Res. 1988 , 180 , 73−86..
Lu, L.; Fan, S.; Geng, L.; Lin, J.; Yao, X.; Zhang, Y. Flow Analysis of Regenerated Silk Fibroin/Cellulose Nanofiber Suspensions via a Bioinspired Microfluidic Chip. Adv. Mater. Technol. 2021 , 6 , 2100124..
Cárdenas, G.; Cabrera, G.; Taboada, E.; Miranda, S. P. Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. J. Appl. Polym. Sci. 2004 , 93 , 1876−1885..
Ogawa, K.; Yui, T.; Okuyama, K. Three d structures of chitosan. Int. J. Biol. Macromol. 2004 , 34 , 1−8..
Moura, C. M. de; Moura, J. M. de; Soares, N. M.; Pinto, L. A. de A. Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chem. Eng. Process. Process Intensif. 2011 , 50 , 351−355..
Huang, J.; Zhong, Y.; Lu, A.; Zhang, L.; Cai, J. Temperature and time-dependent self-assembly and gelation behavior of chitin in aqueous KOH/urea solution. Giant 2020 , 4 , 100038..
Li, J.; Fu, J.; Tian, X.; Hua, T.; Poon, T.; Koo, M.; Chan, W. Characteristics of chitosan fiber and their effects towards improvement of antibacterial activity. Carbohydr. Polym. 2022 , 280 , 119031..
Anitha, A.; Sowmya, S.; Kumar, P. T. S.; Deepthi, S.; Chennazhi, K. P.; Ehrlich, H.; Tsurkan, M.; Jayakumar, R. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014 , 39 , 1644−1667..
Shahid-ul-Islam; Butola, B. S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol. 2019 , 121 , 905−912..
Li, M. C.; Wu, Q.; Song, K.; Cheng, H. N.; Suzuki, S.; Lei, T. Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain. Chem. Eng. 2016 , 4 , 4385−4395..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution