FOLLOWUS
a.School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
b.Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
c.Zhejiang Key Laboratory of Functional Ionic Membrane Materials and Technology for Hydrogen Production, Shaoxing 312000, China
lq_wang@ecust.edu.cn (L.Q.W.)
yjiang@usx.edu.cn (Y.J.)
Received:28 May 2025,
Revised:22 June 2025,
Accepted:25 June 2025,
Published Online:02 September 2025,
Published:2025-07
Scan QR Code
Xu, X. Y.; Hu, X.; Wang, L. Q.; Jiang, Y. Data-efficient machine learning for polymer informatics. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3401-z
Xin-Yao Xu, Xiao Hu, Li-Quan Wang, et al. Data-efficient Machine Learning for Polymer Informatics[J/OL]. Chinese journal of polymer science, 2025, 431-11.
Xu, X. Y.; Hu, X.; Wang, L. Q.; Jiang, Y. Data-efficient machine learning for polymer informatics. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3401-z DOI:
Xin-Yao Xu, Xiao Hu, Li-Quan Wang, et al. Data-efficient Machine Learning for Polymer Informatics[J/OL]. Chinese journal of polymer science, 2025, 431-11. DOI: 10.1007/s10118-025-3401-z.
Polymer informatics faces challenges owing to data scarcity arising from complex chemistries
experimental limitations
and processing-dependent properties. This review presents the recent advances in data-efficient machine learning for polymers. First
data preparation techniques such as data augmentation and rational representation help expand the dataset size and develop useful features for learning. Second
modeling approaches
including classical algorithms and physics-informed methods
enhance the model robustness and reliability under limited data conditions. Third
learning strategies
such as transfer learning and active learning
aim to improve generalization and guide efficient data acquisition. This review concludes by outlining future opportunities in machine learning for small-data scenarios in polymers. This review is expected to serve as a useful tool for newcomers and offer deeper insights for experienced researchers in the field.
Li, C.; Zhang, K.; Cheng, X.; Li, J.; Jiang, Y.; Li, P.; Wang, B.; Peng, H. Polymers for flexible energy storage devices. Prog. Polym. Sci. 2023 , 143 , 101714..
Li, P.; Hao, J.; He, S.; Chang, Z.; Li, X.; Wang, R.; Ma, W.; Wang, J.; Lu, Y.; Li, H.; Zhang, L.; Zhou, W. Li + -migration influencing factors and non-destructive life extension of quasi-solid-state polymer electrolytes. Nat. Commun. 2025 , 16 , 3727..
Saifi, S.; Xiao, X.; Cheng, S.; Guo, H.; Zhang, J.; Müller-Buschbaum, P.; Zhou, G.; Xu, X.; Cheng, H. M. An ultraflexible energy harvesting-storage system for wearable applications. Nat. Commun. 2024 , 15 , 6546..
Xian, J.; Xiao, F.; Zou, J.; Luo, W.; Han, S.; Liu, Z.; Chen, Y.; Zhu, Q.; Li, M.; Yu, C.; Saiding, Q.; Tao, W.; Kong, N.; Xie, T. Elemene hydrogel modulates the tumor immune microenvironment for enhanced treatment of postoperative cancer recurrence and metastases. J. Am. Chem. Soc. 2024 , 146 , 35252−35263..
Cor ley, C. A.; Guenthner, A. J.; Sahagun, C. M.; Lamison, K. R.; Reams, J. T.; Hassan, M. K.; Morgan, S. E.; Iacono, S. T.; Mabry, J. M. Di(cyanate ester) networks based on alternative fluorinated bisphenols with extremely low water uptake. ACS Macro Lett. 2014 , 3 , 105−109..
Gu, J.; Zhang, R.; Zhang, L.; Lin, J. Harnessing zone annealing to program directional motion of nanoparticles in diblock copolymers: creating periodically well-ordered nanocomposites. Macromolecules 2020 , 53 , 2111−2122..
Tian, H.; Bi, C.; Li, Z.; Wang, C.; Zuo, B. Metastable polymer adsorption dictates the dynamical gradients at interfaces. Macromolecules 2023 , 56 , 4346−4353..
Wang, K.; Chen, F.; Li, Z.; Fu, Q.Control of the hierarchical structure of polymer articles via "structuring" processing. Prog. Polym. Sci. 2014 , 39 , 891−920..
Zeng, T.; Lin, J.; Zhang, L. Enhancement of mechanical performance of nanostructured materials by architectural design of pentablock terpolymers. Macromolecules 2024 , 57 , 7990−8002..
Atasi, C.; Kern, J.; Ramprasad, R. Design of recyclable plastics with machine learning and genetic algorithm. J. Chem. Inf. Model. 2024 , 64 , 9249−9259..
Zhang, S.; Du, S.; Wang, L.; Lin, J.; Du, L.; Xu, X.; Gao, L. Design of silicon-containing arylacetylene resins aided by machine learning enhanced materials genome approach. Chem. Eng. J. 2022 , 448 , 137643..
Butler, K. T.; Davies, D. W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018 , 559 , 547−555..
Li, Y.; Jiang, Y.; Wang, L.; Li, J. Data and machine learning in polymer science. Chinese J. Polym. Sci. 2023 , 41 , 1371−1376..
Zhang, S.; Li, S.; Song, S.; Zhao, Y.; Gao, L.; Chen, H.; Li, H.; Lin, J. Deep learning-assisted design of novel donor-acceptor combinations for organic photovoltaic materials with enhanced efficiency. Adv. Mater. 2024 , 37 , 2407613..
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 2013 , 1 , 011002..
Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S. H. PubChem substance and compound databases. Nucleic Acids Res. 2016 , 44 , D1202−D1213..
Ramakrishnan, R.; Dral, P. O.; Rupp, M.; Lilienfeld, O. A. v. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 2014 , 1 , 140022..
Lang, C.; Lloyd, E. C.; Matuszewski, K. E.; Xu, Y.; Ganesan, V.; Huang, R.; Kumar, M.; Hickey, R. J. Nanostructured block copolymer muscles. Nat. Nanotechnol. 2022 , 17 , 752−758..
Liu, X.; Han, T.; Lam, J. W. Y.; Tang, B. Z. Functional heterochain polymers constructed by alkyne multicomponent polymerizations. Macromol. Rapid Commun. 2020 , 42 , 2000386..
Memon, H.; Liu, H.; Rashid, M. A.; Chen, L.; Jiang, Q.; Z hang, L.; Wei, Y.; Liu, W.; Qiu, Y. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules 2020 , 53 , 621−630..
Froese, R. D.; Arriola, D. J.; Doelder, J. d.; Hou, J.; Kashyap, T.; Lu, K.; Martinetti, L.; Stubbert, B. D. A commercially viable solution process to control long-chain branching in polyethylene. Science 2024 , 383 , 1223−1228..
Song, Q.; Dong, Q.; Liang, R.; Xue, Y.; Zhong, M.; Li, W. Hierarchical self-assembly of ABC-type bottlebrush copolymers. Macromolecules 2023 , 56 , 5470−5481..
Sun, H.; Haque, F. M.; Zhang, Y.; Commisso, A.; Mohamed, M. A.; Tsianou, M.; Cui, H.; Grayson, S. M.; Cheng, C. Linear-dendritic alternating copolymers. Angew. Chem. Int. Ed. 2019 , 58 , 10572−10576..
Tian, C.; Zhou, K.; Lu, Y.; Li, J.; Yao, Y.; Tao, X.; Zhuang, Q.; Xie, Y.; Lin, S. Hyperbranched azopolymer with quadruple responsibility. Chinese J. Polym. Sci. 2021 , 39 , 1169−1176..
Wahlen, C.; Rauschenbach, M.; Blankenburg, J.; Kersten, E.; Ender, C. P.; Frey, H. Myrcenol-based monomer for carbanionic polymerization: functional copolymers with myrcene and bio-based graft copolymers. Macromolecules 2020 , 53 , 9008−9017..
Yi, T.; Cen, Z.; Ji, Y.; Huang, J.; Liang, M.; Liu, S. Amidoxime-based star polymer adsorbent with ultra-high uranyl affinity for extremely fast uranium extraction from natural seawater. Adv. Funct. Mater. 2024 , 34 , 2404220..
Zhong, S.; Zhu, Z.; Huo, Q.; Long, Y.; Gong, L.; Ma, Z.; DingshanYu; Zhang, Y.; Liang, W.; Liu, W.; Wang, C.; Yuan, Z.; YuzhaoYang; Lu, S.; Chen, Y.; Zheng, Z.; Chen, X. Designed wrinkles for optical encryption and flexible integrated circuit carrier board. Nat. Commun. 2024 , 15 , 5616..
Bon, F. D.; Bernardino, T. J. L. o.; Serra, A. C.; Fantin, M.; Matyjaszewski, K.; Coelho, J. F. J. Synergistic radical taming by concurrent degenerative transfer and atom transfer radical polymerization in emulsion. Macromolecules 2024 , 57 , 10297−10310..
Hou, J.; Froese, R. D. J.; Delemeester, A.; Marshall, S.; Klosin, J. Copolymerization of ethylene and 1,4-pentadiene: structure characterization and reaction mechanism. Macromolecules 2024 , 57 , 3614−36 22..
Wong, A. R.; Barrera, M.; Pal, A.; Lamb, J. R. Improved characterization of polyoxazolidinones by incorporating solubilizing side chains. Macromolecules 2022 , 55 , 11006−11012..
Li, R. Time-temperature superposition method for glass transition temperature of plastic materials. Mater. Sci. Eng. A 2000 , 278 , 36−45..
Shang, C.; Zhao, X.; Sun, B.; Yang, X.; Zhang, Y.; Huang, W. Synthesis and properties of novel trifunctional epoxy triglycidyl of 4-(4-aminophenoxy)phenol with high toughness. J. Appl. Polym. Sci. 2015 , 132 , 41878..
Tang, X.; Zhou, Y.; Peng, M. Green preparation of epoxy/graphene oxide nanocomposites using a glycidylamine epoxy resin as the surface modifier and phase transfer agent of graphene oxide. ACS Appl. Mater. Interfaces 2016 , 8 , 1854−1866..
Zhu, J.; Chu, M.; Chen, Z.; Wang, L.; Lin, J.; Du, L. Rational design of heat-resistant polymers with low curing energies by a materials genome approach. Chem. Mater. 2020 , 32 , 4527−4535..
Zhu,J.; Wang, L.; Lin, J.; Du, L.; Zhuang, Q. Effect of curing reaction types on the structures and properties of acetylene-containing thermosets: towards optimization of curing procedure. Phys. Chem. Chem. Phys. 2021 , 23 , 14027−14036..
Bhattacharjee, R.; Kertesz, M. Continuous topological transition and bandgap tuning in ethynylene-linked acene π -conjugated polymers through mechanical strain. Chem. Mater. 2024 , 36 , 1395−1404..
He, J.; Li, L.; Zhou, J.; Tian, J.; Chen, Y.; Zou, H.; Liang, M. Ultra-high modulus epoxy resin reinforced by intensive hydrogen bond network: from design, synthesis, mechanism to applications. Compos. Sci. Technol. 2023 , 231 , 109815..
Benatto, L.; Koehler, M. Effects of fluorination on exciton binding energy and charge transport of π -conjugated donor polymers and the ITIC molecular acceptor: a theoretical study. J. Phys. Chem. C 2019 , 123 , 6395−6406..
Brown, G. B. A new treatment of electric and magnetic induction. Proc. Phys. Soc. 1940 , 52 , 577−615..
Havriliak, S.; Negami, S. A complex plane analysis of α -dispersions in some polymer systems. J. Polym. Sci., Part C 2007 , 14 , 99−117..
Hollmann, N.; Müller, S.; Purucker, L.; Krishnakumar, A.; Körfer, M.; Hoo, S. B.; Schirrmeister, R. T.; Hutter, F. Accurate predictions on small data with a tabular foundation model. Nature 2025 , 637 , 319−326..
Lu, D.; Zhang, B.; Liu, L.; Zhang, H.; Cao, L.; Zhou, Y. Three-dimensional cohesive finite element simulations coupled with machine learning to predict mechanical properties of polymer-bonded explosives. Compos. Sci. Technol. 2025 , 259 , 110947..
Liu, Z.; Huo, Y.; Chen, Q.; Zhan, S.; Li, Q.; Zhao, Q.; Cui, L.; Liu, J. Predicting the glass transition temperature of polymer based on generative adversarial networks and automated machine learning. MGE Adv. 2024 , 2 , e78..
Liu, N.; Jafarzadeh, S.; Lattimer, B. Y.; Ni, S.; Lua, J.; Yu, Y. Harnessing large language models for data-scarce learning of polymer properties. Nat. Comput. Sci. 2025 , 5 , 245−254..
Gupta, S.; Mahmood, A.; Shetty, P.; Adeboye, A.; Ramprasad, R. Data extraction from polymer literature using large language models. Commun. Mater. 2024 , 5 , 269..
Mavračić, J.; Court, C. J.; Isazawa, T.; Elliott, S. R.; Cole, J. M. ChemDataExtractor 2.0: autopopulated ontologies for materials science. J. Chem. Inf. Model. 2021 , 61 , 4280−4289..
Shetty, P.; Rajan, A. C.; Kuenneth, C.; Gupta, S.; Panchumarti, L. P.; Holm, L.; Zhang, C.; Ramprasad, R. A general-purpose material property data extraction pipeline from large polymer corpora using natural language processing. NPJ Comput. Mater. 2023 , 9 , 52..
Swain, M. C.; Cole, J. M. ChemDataExtractor: a toolkit for automated extraction of chemical information from the scientific literature. J. Chem. Inf. Model. 2016 , 56 , 1894−1904..
Shetty, P.; Adeboye, A.; Gupta, S.; Zhang, C.; Ramprasad, R. Accelerating materials discovery for polymer solar cells: data-driven insights enabled by natural language processing. Chem. Mater. 2024 , 36 , 7676−7689..
Yang, J.; Cai, Y.; Zhao, K.; Xie, H.; Chen, X. Concepts and applications of chemical fingerprint for hit and lead screening. Drug Discov. Today 2022 , 27 , 103356..
Moriwaki, H.; Tian, Y. S.; Kawashita, N.; Takagi, T. Mordred: a molecular descriptor calculator. J. Cheminform. 2018 , 10 , 4..
Chen, L.; Kim, C.; Batra, R.; Lightstone, J. P.; Wu, C.; Li, Z.; Deshmukh, A. A.; Wang, Y.; Tran, H. D.; Vashishta, P.; Sotzing, G. A.; Cao, Y.; Ramprasad, R. Frequency-dependent dielectric constant prediction of polymers using machine learning. NPJ Comput. Mater. 2020 , 6 , 61..
Hu, Y.; Zhao, W.; Wang, L.; Lin, J.; Du, L. Machine-learning-assisted design of highly tough thermosetting polymers. ACS Appl. Mater. Interfaces 2022 , 14 , 55004−55016..
Chen, F.; Weng, L.; Wang, J.; Wu, P.; Ma, D.; Pan, F.; Ding, P. An adaptive framework to accelerate optimization of high flame retardant composites using machine learning. Compos. Sci. Technol. 2023 , 231 , 109818..
Zhao, W.; Xu, X.; Lan, H.; Wang, L.; Lin, J.; Du, L.; Zhang, C.; Tian, X. Designing multicomponent thermosetting resins through machine learning and high-throughput screening. Macromolecules 2025 , 58 , 744−753..
Reiser, P.; Neubert, M.; Eberhard, A.; Torresi, L.; Zhou, C.; Shao, C.; Metni, H.; Hoesel, C. V.; Schopmans, H.; Sommer, T.; Friederich, P. Graph neural networks for materials science and chemistry. Commun. Mater. 2022 , 3 , 93..
Coley, C. W.; Barzilay, R.; Green, W. H.; Jaakkola, T. S.; Jensen, K. F. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 2017 , 57 , 1757−1772..
Chen, C.; Ye, W.; Zuo, Y.; Zheng, C.; Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 2019 , 31 , 3564−3572..
Antoniuk, E. R.; Li, P.; Kailkhura, B.; Hiszpanski, A. M. Representing polymers as periodic graphs with learned descriptors for accurate polymer property predictions. J. Chem. Inf. Model. 2022 , 62 , 5435−5445..
Mohapatra, S.; An, J.; Gómez-Bombarelli, R. Chemistry-informed macromolecule graph representation for similarity computation, unsupervised and supervised learning. Mach. Learn.: Sci. Technol. 2022 , 3 , 015028..
Krenn, M.; Häse, F.; Nigam, A.; Friederich, P.; Aspuru-Guzik, A. Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn.: Sci. Technol. 2020 , 1 , 045024..
Lin, T.-S.; Coley, C. W.; Mochigase, H.; Beech, H. K.; Wang, W.; Wang, Z.; Woods, E.; Craig, S. L.; Johnson, J. A.; Kalow, J. A.; Jensen, K. F.; Olsen, B. D. BigSMILES: a structurally-based line notation for describing macromolecules. ACS Cent. Sci. 2019 , 5 , 1523−1531..
[Ye, X.; Zhang, Z.; Lan, H.; Zhang, C.; Wang, L.; Lin, J.; Xu, X.; Xu, Y.; Du, L.; Tian, X. Design of thermosetting polymers with high thermal stability and enhanced processability via ML-assisted material genome approach. Macromolecules 2025, 10.1021/acs.macromol.5c00386..
Irwin, R.; Dimitriadis, S.; He, J.; Bjerrum, E. J. Chemformer: a pre-trained transformer for computational chemistry. Mach. Learn.: Sci. Technol. 2022 , 3 , 015022..
Li, H.; Zhang, R.; YaosenMin; Ma, D.; Zhao, D.; Zeng, J. A knowledge-guided pre-training framework for improving molecular representation learning. Nat. Commun. 2023 , 14 , 7568..
Wang, Y.; Wang, J.; Cao, Z.; Farimani, A. B. Molecular contrastive learning of representations via graph neural networks. Nat. Mach. Intell. 2022 , 4 , 279−287..
Zeng, X.; Xiang, H.; Yu, L.; Wang, J.; Li, K.; Nussinov, R.; Cheng, F. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework. Nat. Mach. Intell. 2022 , 4 , 1004−1016..
Zhang, H.; Wu, J.; Liu, S.; Han, S. A pre-trained multi-representation fusion network for molecular property prediction. Inform. Fusion 2024 , 103 , 102092..
Choudhary, K.; DeCost, B. Atomistic line graph neural network for improved materials property predictions. NPJ Comput. Mater. 2021 , 7 , 185..
Jiang, Y.; Yang, Z.; Guo, J.; Li, H.; Liu, Y.; Guo, Y.; Li, M.; Pu, X. Coupling complementary strategy to flexible graph neural network for quick discovery of coformer in diverse co-crystal materials. Nat. Commun . 2021 , 12 , 5950..
Guo, J.; Sun, M.; Zhao, X.; Shi, C.; Su, H.; Guo, Y.; Pu, X. General graph neural network-based model to accurately predict cocrystal density and insight from data quality and feature representation. J. Chem. Inf. Model. 2023 , 63 , 1143−1156..
Mi, W.; Chen, H.; Zhu, D. A.; Zhang, T.; Qian, F. Melting point prediction of organic molecules by deciphering the chemical structure into a natural language. Chem. Commun. 2021 , 57 , 2633−2636..
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, É. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2011 , 12 , 2825−2830..
[Xu, Y.; Feng, W.; Wang, L.; Lin, J.; Ye, X.; Xu, X.; Du, L. Data-driven design of high-performance polyimides with enhanced heat resistance and dielectric properties. Adv. Funct. Mater. 2025 , 35 , 2507614..
Li, X.; Yang, H.; Tao, Y.; Wang, Q.; Shi, T.; Li, L. Interpretable machine learning combined TD-DFT calculations for the study of colorless transparency polyimides. Macromolecules 2025 , 58 , 2266−2275..
Bhowmik, R.; Sihn, S.; Pachter, R.; Vernon, J. P. Prediction of the specific heat of polymers from experimental data and machine learning methods. Polymer 2021 , 220 , 123558..
Kranthiraja, K.; Saeki, A. Experiment-oriented machine learning of polymer: non-fullerene organic solar cells. Adv. Funct. Mater. 2021 , 31 , 2011168..
Xu, X.; Zhao, W.; Wang, L.; Lin, J.; Du, L. Efficient exploration of compositional space for high-performance copolymers via Bayesian optimization. Chem. Sci. 2023 , 14 , 10203−10211..
Zhao, W.; Fu, X.; Xu, X.; Zhang, L.; Wang, L.; Lin, J.; Hu, Y.; Gao, L.; Du, L.; Tian, X. Design of multicomponent thermosetting polymers with enhanced tensile properties through active learning. Compos. Sci. Technol. 2024 , 256 , 110779..
Karniadakis, G. E.; Kevrekidis, I. G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021 , 3 , 422−440..
Pun, G. P. P.; Batra, R.; Ramprasad, R.; Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 2019 , 10 , 2339..
Raissi, M.; Perdikaris, P.; Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019 , 378 , 686−707..
Bradford, G.; Lopez, J.; Ruza, J.; Stolberg, M. A.; Osterude, R.; Johnson, J. A.; Gomez-Bombarelli, R.; Shao-Horn, Y. Chemistry-informed machine learning for polymer electrolyte discovery. ACS Cent. Sci. 2023 , 9 , 206−216..
An, J.; Ran, Y.; Lin, J.; Zhang, L. Prediction of microstructural evolution of multicomponent polymers by Physics-Informed neural networks. Comput. Mater. Sci. 2025 , 246 , 113502..
Song, S.; Xu, X.; Lan, H.; Gao, L.; Lin, J.; Du, L.; Wang, Y. Design of co-cured multi-component thermosets with enhanced heat resistance, toughness, and processability via a machine learning approach. Macromol. Rapid Commun. 2024 , 45 , 2400337..
Qiu, H.; Wang, J.; Qiu, X.; Dai, X.; Sun, Z.-Y. Heat-resistant polymer discovery by utilizing interpretable graph neural network with small data. Macromolecules 2024 , 57 , 3515−3528..
Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.; Morikawa, J.; Yoshida, R. Predicting materials properties with little data using shotgun transfer learning. ACS Cent. Sci. 2019 , 5 , 1717−1730..
Wu, S.; Kondo, Y.; Kakimoto, M. A.; Yang, B.; Yamada, H.; Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J.; Schick, C.; Morikawa, J.; Yoshida, R. Machine-learning-assisted discovery of polymers with high ther mal conductivity using a molecular design algorithm. NPJ Comput. Mater . 2019 , 5 , 66..
Gurnani, R.; Kuenneth, C.; Toland, A.; Ramprasad, R. Polymer informatics at scale with multitask graph neural networks. Chem. Mater. 2023 , 35 , 1560−1567..
Kuenneth, C.; Rajan, A. C.; Tran, H.; Chen, L.; Kim, C.; Ramprasad, R. Polymer informatics with multi-task learning. Patterns 2021 , 2 , 100238..
Aoki, Y.; Wu, S.; Tsurimoto, T.; Hayashi, Y.; Minami, S.; Tadamichi, O.; Shiratori, K.; Yoshida, R. Multitask machine learning to predict polymer-solvent miscibility using Flory-Huggins interaction parameters. Macromolecules 2023 , 56 , 5446−5456..
Queen, O.; McCarver, G. A.; Thatigotla, S.; Abolins, B. P.; Brown, C. L.; Maroulas, V.; Vogiatzis, K. D. Polymer graph neural networks for multitask property learning. NPJ Comput. Mater. 2023 , 9 , 90..
Yue, T.; He, J.; Tao, L.; Li, Y. High-throughput screening and prediction of high modulus of resilience polymers using explainable machine learning. J. Chem. Theory Comput. 2023 , 19 , 4641−4653..
Xu, X.; Zhao, W.; Hu, Y.; Wang, L.; Lin, J.; Qi, H.; Du, L. Discovery of thermosetting polymers with low hygroscopicity, low thermal expansivity, and high modulus by machine learning. J. Mater. Chem. A 2023 , 11 , 12918−12927..
Xu, B.; Hu, X.; Lan, H.; Wang, T.; Xu, X.; Zhang, C.; Wang, L.; Du, L. Phthalonitrile melting point prediction enabled by multi-fidelity learning. J. Mater. Inf. 2024 , 4 , 21..
[Kuenneth, C.; Ramprasad, R. polyBERT: a chemical language model to enable fully machine-driven ultrafast polymer informatics. Nat. Commun . 2023, 14 , 4099..
Xu, C.; Wang, Y.; Farimani, A. B. TransPolymer: a Transformer-based language model for polymer property predictions. NPJ Comput. Mater. 2023 , 9 , 64..
Lu, R.; Han, Y.; Hu, J.; Xu, D.; Zhong, Z.; Zhou, H.; Zhao, T.; Jiang, J. Deep learning model for precise prediction and design of low-melting point phthalonitrile monomers. Chem. Eng. J. 2024 , 497 , 154815..
Wang, M.; Jiang, J. Accelerating discovery of polyimides with intrinsic microporosity for membrane-based gas separation: synergizing physics-informed performance metrics and active learning. Adv. Funct. Mater. 2024 , 34 , 2314683..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution