FOLLOWUS
a.Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics, Nankai University, Tianjin 300071, China
b.State Key Laboratory of Advanced Fiber Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
pfzhangphy@dhu.edu.cn (P.F.Z.)
baohui@nankai.edu.cn (B.H.L.)
Received:30 April 2025,
Revised:14 June 2025,
Accepted:18 June 2025,
Published Online:02 September 2025,
Published:2025-07
Scan QR Code
Wang, Z. Y.; Li, X. Y.; Wang, Z.; Yin, Y. H.; Jiang, R.; Zhang, P. F.; Li, B. H. Influence of pressure on the co-nonsolvency effect of homopolymer in solutions: a molecular dynamics simulation study. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3400-0
Zhi-Yuan Wang, Xing-Ye Li, Zheng Wang, et al. Influence of Pressure on the Co-nonsolvency Effect of Homopolymer in Solutions: A Molecular Dynamics Simulation Study[J/OL]. Chinese journal of polymer science, 2025, 431-10.
Wang, Z. Y.; Li, X. Y.; Wang, Z.; Yin, Y. H.; Jiang, R.; Zhang, P. F.; Li, B. H. Influence of pressure on the co-nonsolvency effect of homopolymer in solutions: a molecular dynamics simulation study. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3400-0 DOI:
Zhi-Yuan Wang, Xing-Ye Li, Zheng Wang, et al. Influence of Pressure on the Co-nonsolvency Effect of Homopolymer in Solutions: A Molecular Dynamics Simulation Study[J/OL]. Chinese journal of polymer science, 2025, 431-10. DOI: 10.1007/s10118-025-3400-0.
Stimuli-responsiv
e polymers capable of rapidly altering their chain conformation in response to external stimuli exhibit broad application prospects. Experiments have shown that pressure plays a pivotal role in regulating the microscopic chain conformation of polymers in mixed solvents
and one notable finding is that increasing the pressure can lead to the vanishing of the co-nonsolvency effect. However
the mechanisms underlying this phenomenon remain unclear. In this study
we systematically investigated the influence of pressure on the co-nonsolvency effect of single-chain and multi-chain homopolymers in binary mixed good-solvent systems using molecular dynamics simulations. Our results show that the co-nonsolvency-induced chain conformation transition and aggregation behavior significantly depend on pressure in all single-chain and multi-chain systems. In single-chain systems
at low pressures
the polymer chain maintains a collapsed state over a wide range of co-solvent fractions (
x
-range) owing to the co-nonsolvency effect. As the pressure increases
the
x
-range of the collapsed state gradually narrows
accompanied by a progressive expansion of the chain. In multichain systems
polymer chains assemble into approximately spherical aggregates over a broad
x
-range at low pressures owing to the co-nonsolvency effect. Increasing the pressure reduces the
x
-range for forming aggregates and leads to the formation of loose aggregates or even to a state of dispersed chains at some
x
-range. These findings indicate that increasing the pressure can weaken or even offset the co-nonsolvency effect in some
x
-range
which is in good agreement with the experimental observations. Quantitative analysis of the radial density distributions and radial distribution functions reveals that
with increasing pressure
(1) the densities of both polymers and co-solvent molecules within aggregates decrease
while that of the solvent molecule increases;
and (2) the effective interactions between the polymer and the co-solvent weaken
whereas those between the polymer and solvent strengthen. This enhances the incorporation of solvent molecules within the chains
thereby weakening or even suppressing the chain aggregation. Our study not only elucidates the regulatory mechanism of pressure on the microscopic chain conformations and aggregation behaviors of polymers
but also may provide theoretical guidance for designing smart polymeric materials based on mixed solvents.
Doberenz, F.; Zeng, K.; Willems, C.; Zhang, K.; Groth, T. Thermoresponsive polymers and their biomedical application in tissue engineering—a review. J. Mater. Chem. B 2020 , 8 , 607−628..
Zhao, J.; Lee, V. E.; Liu, R.; Priestley, R. D. Responsive polymers as smart nanomaterials enable diverse applications. Annu. Rev. Chem. Biomol. Eng. 2019 , 10 , 361−382..
Hu, L.; Zhang, Q.; Li, X.; Serpe, M. J. Stimuli-responsive polymers for sensing and actuation. Mater. Horiz. 2019 , 6 , 1774−1793..
Otake, K.; Karaki, R.; Ebina, T.; Yokoyama, C.; Takahashi, S. Pressure effects on the aggregation of poly( N -isopropylacrylamide) and poly( N -isopropylacrylamide-co-acrylic acid) in aqueous solutions. Macromolecules 1993 , 26 , 2194−2197..
Kunugi, S.; Takano, K.; Tanaka, N.; Suwa, K.; Akashi, M. Effects of pressure on the behavior of the thermoresponsive polymer poly( N -vinylisobutyramide) (PNVIBA). Macromolecules 1997 , 30 , 4499−4501..
Rebelo, L. P. N.; Visak, Z. P.; De Sousa, H. C.; Szydlowski, J.; Gomes De Azevedo, R.; Ramos, A. M.; Najdanovic-Visak, V.; Nunes Da Ponte, M.; Klein, J. Double critical phenomena in (water + polyacrylamides) solutions. Macromolecules 2002 , 35 , 1887−1895..
Shibayama, M.; Isono, K.; Okabe, S.; Karino, T.; Nagao, M. SANS study on pressure-induced phase separation of poly( N -isopropylacrylamide) aqueous solutions and gels. Macromolecules 2004 , 37 , 2909−2918..
Nasimova, I.; Karino, T.; Okabe, S.; Nagao, M.; Shibayama, M. Small-angle neutron scattering investigation of pressure influence on the structure of weakly charged poly( N -isopropylacrylamide) solutions and gels. Macromolecules 2004 , 37 , 8721−8729..
Meersman, F.; Wang, J.; Wu, Y.; Heremans, K. Pressure effect on the hydration properties of poly( N -isopropylacrylamide) in aqueous solution studied by FTIR spectroscopy. Macromolecules 2005 , 38 , 8923−8928..
Osaka, N.; Shibayama, M.; Kikuchi, T.; Yamamuro, O. Quasi-elastic neutron scattering study on water and polymerdynamics in thermo/pressure sensitive polymer solutions. J. Phys. Chem. B 2009 , 113 , 12870−12876..
Niebuur, B. J.; Claude, K. L.; Pinzek, S.; Cariker, C.; Raftopoulos, K. N.; Pipich, V.; Appavou, M. S.; Schulte, A.; Papadakis, C. M. Pressure-dependence of poly( N -isopropylacrylamide) mesoglobule formation in aqueous solution. ACS Macro Lett. 2017 , 6 , 1180−1185..
Niebuur, B. J.; Chiappisi, L.;Zhang, X.; Jung, F.; Schulte, A.; Papadakis, C. M. Formation and growth of mesoglobules in aqueous poly( N -isopropylacrylamide) solutions revealed with kinetic small-angle neutron scattering and fast pressure jumps. ACS Macro Lett. 2018 , 7 , 1155−1160..
Niebuur, B. J.; Chiappisi, L.; Jung, F.; Zhang, X.; Schulte, A.; Papadakis, C. M. Kinetics of mesoglob ule formation and growth in aqueous poly( N -isopropylacrylamide) solutions: pressure jumps at low and at high pressure. Macromolecules 2019 , 52 , 6416−6427..
Niebuur, B. J.; Chiappisi, L.; Jung, F. A.; Zhang, X.; Schulte, A.; Papadakis, C. M. Nanoscale disintegration kinetics of mesoglobules in aqueous poly( N -isopropylacrylamide) solutions revealed by small-angle neutron scattering and pressure jumps. Nanoscale 2021 , 13 , 13421−13426..
Niebuur, B. J.; Pipich, V.; Appavou, M. S.; Mullapudi, D.; Nieth, A.; Rende, E.; Schulte, A.; Papadakis, C. M. PNIPAM mesoglobules in dependence on pressure. Langmuir 2024 , 40 , 22314−22323..
Papadakis, C. M.;Niebuur, B. J.; Schulte, A. Thermoresponsive polymers under pressure with a focus on poly( N -isopropylacrylamide) (PNIPAM). Langmuir 2024 , 40 , 1−20..
Mukherji, D.; Marques, C. M.; Kremer, K. Smart responsive polymers: Fundamentals and design principles. Annu. Rev. Condens. Matter Phys. 2020 , 11 , 271−299..
Bharadwaj, S.; Niebuur, B. J.; Nothdurft, K.; Richtering, W.; van der Vegt, N. F. A.; Papadakis, C. M. Cononsolvency of thermoresponsive polymers: where we are now and where we are going. Soft Matter 2022 , 18 , 2884−2909..
Scherzinger, C.; Schwarz, A.; Bardow, A.; Leonhard, K.; Richtering, W. Cononsolvency of poly- N -isopropyl acrylamide (PNIPAM): microgels versus linear chains and macrogels. Curr. Opin. Colloid Interface Sci. 2014 , 19 , 84−94..
Tanaka, F.; Koga, T.; Winnik, F. M. Temperature-responsive polymers in mixed solvents: Competitive hydrogen bonds cause cononsolvency. Phys. Rev. Lett. 2008 , 101 , 028302..
Hao, J.; Cheng, H.; Butler, P.; Zhang, L.; Han, C. C. Origin of cononsolvency, based on the structure of tetrahydrofuran-water mixture. J. Chem. Phys. 2010 , 132 , 154902..
Jia, D.; Zuo, T.; Rogers, S.; Cheng, H.; Hammouda, B.; Han, C. C. Re-entrance of poly( N,N -diethylacrylamide) in D 2 O/d-ethanol mixture at 27 °C. Macromolecules 2016 , 49 , 5152−5159..
Zhang, Y. Y.; Jia, X. M.; Shi, R.; Li, S. J.; Zhao, H.; Qian, H. J.; Lu, Z. Y. Synthesis of polymer single-chain nanoparticle with high compactness in cosolvent condition: a computer simulation study. Macromol. Rapid Commun. 2020 , 41 , 1900655..
Winnik, F. M.; Ottaviani, M. F.; Bossmann, S. H.; Garcia-Garibay, M.; Turro, N. J. Consolvency of poly( N -isopropylacrylamide) in mixed water-methanol solutions: a look at spin-labeled polymers. Macromolecules 1992 , 25 , 6007−6017..
Walter, J.; Sehrt, J.; Vrabec, J.; Hasse, H. Molecular dynamics and experimental study of conformation change of poly( N -isopropylacrylamide) hydrogels in mixtures of water and methanol. J. Phys. Chem. B 2012 , 116 , 5251−5259..
Chen, J. H.; Chen, H. H.; Chang, Y. X.; Chuang, P. Y.; Hong, P. D. Effects of cononsolvency on preferential adsorption phenomenon in poly( N -isopropylacrylamide) ternary solutions. J. Appl. Polym. Sci. 2008 , 107 , 2732−2742..
Mukherji, D.; Marques, C. M.; Kremer, K. Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat. Commun. 2014 , 5 , 4882..
Zhang, G.; Wu, C. Reentrant coil-to-globule-to-coil transition of a single linear homopolymer chain in a water/methanol mixture. Phys. Rev. Lett. 2001 , 86 , 822−825..
Zuo, T.; Ma, C.; Jiao, G.; Han, Z.; Xiao, S.; Liang, H.; Hong, L.; Bowron, D.; Soper, A.; Han, C. C.; Cheng, H. Water/cosolvent attraction induced phase separation: a molecular picture of cononsolvency. Macromolecules 2019 , 52 , 457−464..
Bharadwaj, S.; Nayar, D.; Dalgicdir, C.; van der Vegt, N. F. A. A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents. Commun. Chem. 2020 , 3 , 1−7..
Bharadwaj, S.; Nayar, D.; Dalgicdir, C.; van der Vegt, N. F. A. An interplay of excluded-volume and polymer-(co)solvent attractive interactions regulates polymer collapse in mixed solvents. J. Chem. Phys. 2021 , 154 , 134903..
Osaka, N.; Shibayama, M. Pressure effects on cononsolvency behavior of poly( N -isopropylacrylamide) in water/DMSO mixed solvents. Macromolecules 2012 , 45 , 2171−2174..
Ebeling, B.; Eggers, S.; Hendrich, M.; Nitschke, A.; Vana, P. Flipping the pressure- and temperature-dependent cloud-point behavior in the cononsolvency system of poly( N -isopropylacrylamide) in water and ethanol. Macromolecules 2014 , 47 , 1462−1469..
Pica, A.; Graziano, G. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions. Biophys. Chem. 2017 , 231 , 34−38..
Budkov, Y. A.; Kolesnikov, A. L. Statistical description of co-nonsolvency suppression at high pressures. Soft Matter 2017 , 13 , 8362−8367..
De Oliveira, T. E.; Netz, P. A.; Mukherji, D.; Kremer,K. Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol. Soft Matter 2015 , 11 , 8599−8604..
Hofmann, C. H.; Grobelny, S.; Erlkamp, M.; Winter, R.; Richtering, W. Influence of high-pressure on cononsolvency of poly( N -isopropylacrylamide) nanogels in water/methanol mixtures. Polymer 2014 , 55 , 2000−2007..
Yong, H.; Merlitz, H.; Fery, A.; Sommer, J. U. Polymer brushes and gels in competing solvents: the role of different interactions and quantitative predictions for poly( N -isopropylacrylamide) in alcohol–water mixtures. Macromolecules 2020 , 53 , 2323−2335..
Budkov, Yu. A.; Kolesnikov, A. L.; Georgi, N.; Kiselev, M. G. A flexible polymer chain in a critical solvent: coil or globule. EPL Europhys. Lett. 2015 , 109 , 36005..
Li, X. Y.; Wang, Z. Y.; Wang, Z.; Yin, Y. H.; Jiang, R.; Zhang, P. F.; Li, B. H. A novel microscopic origin of co-nonsolvency. Soft Matter 2025 , 21 , 4858−4868..
[Wang, Z. Y.; Li, X. Y.; Wang, Z.; Yin,Y. H.; Jiang, R.; Zhang, P. F.; Li, B. H. Conformation and aggregation behavior of homopolymers in binary mixed solvents: coarse-grained molecular dynamics simulations. Acta Polymerica Sinica (in Chinese) 2025 , 10.11777/j.issn1000-3304.2025.25056..
Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: A molecula r-dynamics simulation. J. Chem. Phys. 1990 , 92 , 5057−5086..
Mukherji, D.; Marques, C. M.; Stuehn, T.; Kremer, K. Co-non-solvency: mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents. J. Chem. Phys. 2015 , 142 , 114903..
Thompson, A. P.; Aktulga, H. M.; Berger, R.; Bolintineanu, D. S.; Brown, W. M.; Crozier, P. S.; in ’t Veld, P. J.; Kohlmeyer, A.; Moore, S. G.; Nguyen, T. D.; Shan, R.; Stevens, M. J.; Tranchida, J.; Trott, C.; Plimpton, S. J. LAMMPS―a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022 , 271 , 108171..
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 2009 , 18 , 015012..
Zhang, P.; Wang, Z.; Wang, Z. G. Conformation transition of a homopolymer chain in binary mixed solvents. Macromolecules 2023 , 56 , 153−165..
Wang, F.; Shi, Y .; Luo, S.; Chen, Y.; Zhao, J. Conformational transition of poly( N -isopropylacrylamide) single chains in its cononsolvency process: a study by fluorescence correlation spectroscopy and scaling analysis. Macromolecules 2012 , 45 , 9196−9204..
Dudowicz, J.; Freed, K. F.; Douglas, J. F. Communication: Cosolvency and cononsolvency explained in terms of a flory-huggins type theory. J. Chem. Phys. 2015 , 143 , 131101..
Rodríguez-Ropero, F. Hajari, T. van der Vegt, N. F. A. Mechanism of polymer collapse in miscible good solvents. J. Phys. Chem. B 2015 , 119 , 15780−15788..
Bharadwaj, S.; van der Vegt, N. F. A. Does preferential adsorption drive cononsolvency. Macromolecules 2019 , 52 , 4131−4138..
Zhang, X.; Zong, J.; Meng, D. A unified understanding of the cononsolvency of polymers in binary solvent mixtures. Soft Matter 2020 , 16 , 7789−7796..
Sommer, J. U. Adsorption–attraction model for co-nonsolvency in polymer brushes. Macromolecules 2017 , 50 , 2219−2228..
Niebuur, B. J.; Lohstroh, W.; Ko, C. H.; Appavou, M. S.; Schulte, A.; Papadakis, C. M. Pressure dependence of water dynamics in concentrated aqueous poly( N -isopropylacrylamide) solutions with a methanol cosolvent. Macromolecules 2021 , 54 , 4387−4400..
Mukherji, D.; Marques, C. M.; Stuehn, T.; Kremer, K. Depleted depletion drives polymer swelling in poor solvent mixtures. Nat. Commun. 2017 , 8 , 1374..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution