FOLLOWUS
a.School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China
b.State Key Laboratory of Advanced Materials for Intelligent Sensing, Ministry of Science and Technology & Key Laboratory of Organic Integrated Circuit, Ministry·of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
yyuan@tju.edu.cn (Y.Y.)
zhiyuan_shi2023@tju.edu.cn (Z.Y.S.)
Received:01 May 2025,
Revised:2025-06-06,
Accepted:15 June 2025,
Published Online:25 September 2025,
Published:2025-07
Scan QR Code
Zhang, J. N.; Ma, Y. R.; Yuan, L. T. Y.; Jia, S.; Yu, X. M.; Yuan, Y.; Shi, Z. Y. A brief review on ultrasound induced drug activation systems. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3398-3
Jia-Ning Zhang, Yu-Ru Ma, Liu-Tian-Yun Yuan, et al. A Brief Review on Ultrasound Induced Drug Activation Systems[J/OL]. Chinese journal of polymer science, 2025, 431-23.
Zhang, J. N.; Ma, Y. R.; Yuan, L. T. Y.; Jia, S.; Yu, X. M.; Yuan, Y.; Shi, Z. Y. A brief review on ultrasound induced drug activation systems. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3398-3 DOI:
Jia-Ning Zhang, Yu-Ru Ma, Liu-Tian-Yun Yuan, et al. A Brief Review on Ultrasound Induced Drug Activation Systems[J/OL]. Chinese journal of polymer science, 2025, 431-23. DOI: 10.1007/s10118-025-3398-3.
Ultrasound (US)
as an efficient and non-invasive trigger
has been extensively explored in drug delivery and has many advantages
such as deep penetration
low invasiveness
and high biochemical precision. These advantages demonstrate the immense clinical potential of ultrasound. This study aimed to provide a comprehensive analysis of ultrasound-induced shear forces that exhibit covalent/non-covalent bond cleavage and reactive oxygen species (ROS)-mediated remote control of nanocarriers. By doing so
we can gain a deeper understanding of the vital role
significant advantages
and untapped potential of ultrasound in molecular-level drug activation. Furthermore
clinical translation faces challenges such as the low drug-loading capacity of polymer chains
frequency compatibility between ultrasound parameters and biological systems
insufficient ROS generation
and biocompatibility of current sonosensitizers. To solve these problems
ultrasound mechanochemistry has emerged as a versatile therapeutic modality to promote the development of medical treatments.
Willis-Fox, N.; Rognin, E.; Aljohani, T. A.; Daly, R. Polymer mechanochemistry: nanufacturing is now a force to be reckoned with. Chem 2018 , 4 , 2499−2537..
Li, J.; Nagamani, C.; Moore, J. S. Polymer mechanochemistry: from destructive to productive. Acc. Chem. Res. 2015 , 48 , 2181−2190..
Kauzmann, W.; Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc. 1940 , 62 , 3113−3125..
Berkowski, K. L.; Potisek, S. L.; Hickenboth, C. R.; Moore, J. S. Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethylene glycol). Macromolecules 2005 , 38 , 8975−8978..
Caruso, M. M.; Davis, D. A.; Shen, Q.; Odom, S. A.; Sottos, N. R.; White, S. R.; Moore, J. S. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 2009 , 109 , 5755−5798..
Davis, D. A.; Hamilton, A.; Yang, J. L.; Cremar, L. D.; Van Gough, D.; Potisek, S. L.; Ong, M. T.; Braun, P. V.; Martínez, T. J.; White, S. R.; Moore, J. S.; Sottos, N. R. Force-indu ced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 2009 , 459 , 68−72..
Robb, M. J.; Kim, T. A.; Halmes, A. J.; White, S. R.; Sottos, N. R.; Moore, J. S. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 2016 , 138 , 12328−12331..
Li, J.; Shiraki, T.; Hu, B.; Wright, R. A. E.; Zhao, B.; Moore, J. S. Mechanophore activation at heterointerfaces. J. Am. Chem. Soc. 2014 , 136 , 15925−15928..
May, P. A.; Moore, J. S. Polymer mechanochemistry: techniques to generate molecular force via elongational flows. Chem. Soc. Rev. 2013 , 42 , 7497−7506..
Li, X.; Lovell, J. F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020 , 17 , 657−674..
Stafford, R. J. The physics of magnetic resonance imaging safety. Magn. Reson. Imag. Clin. N. Am. 2020 , 28 , 517−536..
Li, Y.; Tong, R.; Xia, H.; Zhang, H.; Xuan, J. High intensity focused ultrasound and redox dual responsive polymer micelles. Chem. Commun. 2010 , 46 , 7739−7741..
Huang, H.; Zheng, Y.; Chang, M.; Song, J.; Xia, L.; Wu, C.; Jia, W.; Ren, H.; Feng, W.; Chen, Y. Ultrasound-based micro-/nanosystems for biomedical applications. Chem. Rev. 2024 , 124 , 8307−8472..
Shankar, H.; Pagel, P. S. Potential adverse ultrasound-related biological effects: a critical review. Anesthesiology 2011 , 115 , 1109−1124..
Miller, M. W.; Ziskin, M. C. Biological consequences of hyperthermia. Ultrasound Med. Biol. 1989 , 15 , 707−722.
Kryger, M. J.; Munaretto, A. M.; Moore, J. S. Structure-mechanochemical activity relationships for cyclobutane mechanophores. J. Am. Chem. Soc. 2011 , 133 , 18992−18998..
McFadden, M. E.; Robb, M. J. Force-dependent multicolor mechanochromism from a single mechanophore. J. Am. Chem. Soc. 2019 , 141 , 11388−11392..
Shi, Z.; Wu, J.; Song, Q.; Göstl, R.; Herrmann, A. Toward drug release using polymer mechanochemical disulfide scission. J. Am. Chem. Soc. 2020 , 142 , 14725−14732..
Zou, M.; Zhao, P.; Fan, J.; Göstl, R.; Herrmann, A. Microgels as drug carriers for sonopharmacology. J. Polym. Sci. 2022 , 60 , 1864−1870..
Wang, J.; Kaplan, J. A.; Colson, Y. L.; Grinstaff, M. W. Mechanoresponsive materials for drug delivery: harnessing forces for controlled release. Adv. Drug Deliv. Rev. 2017 , 108 , 68−82..
[Xuan, M. J.; Fan, J. L.; Khiêm, V. N.; Zou, M. C.; Brenske, K. O.; Mourran, A.; Vinokur, R.; Zheng, L. F.; Itskov, M.; Göstl, R.; Herrmann, A. Polymer mechanochemistry in microbubbles. Adv . Mater . 2023 , 35 , 2305130..
Shi, Z.; Song, Q.; Göstl, R.; Herrmann, A. Mechanochemical activation of disulfide-based multifunctional polymers for theranos tic drug release. Chem. Sci. 2021 , 12 , 1668−1674..
Shi, Z.; Song, Q.; Göstl, R.; Herrmann, A. The mechanochemical release of naphthalimide fluorophores from β -carbonate and β -carbamate disulfide-centered polymers. CCS Chemistry 2021 , 3 , 2333−2344..
Diesendruck, C. E.; Steinberg, B. D.; Sugai, N.; Silberstein, M. N.; Sottos, N. R.; White, S. R.; Braun, P. V.; Moore, J. S. Proton-coupled mechanochemical transduction: a mechanogenerated acid. J. Am. Chem. Soc. 2012 , 134 , 12446−12449..
Lin, Y.; Kouznetsova, T. B.; Craig, S. L. A latent mechanoacid for time-stamped mechanochromism and chemical signaling in polymeric materials. J. Am. Chem. Soc. 2020 , 142 , 99−103..
Nagamani, C.; Liu, H.; Moore, J. S. Mechanogeneration of acid from oxime sulfonates. J. Am. Chem. Soc. 2016 , 138 , 2540−2543..
Mitragotri, S. Healing sound: the use of ultrasound in drugdelivery and other therapeutic applications. Nat. Rev. Drug Discovery 2005 , 4 , 255−260..
Phenix, C. P.; Togtema, M.; Pichardo, S.; Zehbe, I.; Curiel, L. High intensity focused ultrasound technology, its scope and applications in therapy and drug delivery. J. Pharm. Pharm. Sci. 2014 , 17 , 136−153..
Fan, J.; Zhang, K.; Xuan, M.; Gao, X.; Vinokur, R.; Göstl, R.; Zheng, L.; Herrmann, A. High-intensity focused ultrasound-induced disulfide mechanophore activation in polymeric nanostructures for molecule release. CCS. Chem. 2024 , 6 , 1895−1907.
Hu, X.; Zeng, T.; Husic, C. C.; Robb, M. J. Mechanically triggered small molecule release from a masked furfuryl carbonate. J. Am. Chem. Soc. 2019 , 141 , 15018−15023..
Husic, C. C.; Hu, X.; Robb, M. J. Incorporation of a tethered alcohol enables efficient mechanically triggered release in aprotic environments. ACS Macro Lett. 2022 , 11 , 948−953..
Vanjari, R.; Eid, E.; Vamisetti, G. B.; Mandal, S.; Brik, A. Highly efficient cyclization approach of propargylated peptides via gold(I)-mediated sequential C–N, C–O, and C–C B ond formation. ACS Cent. Sci. 2021 , 7 , 2021−2028.
[Zeng, T.; Hu, X.; Robb, M. J. 5-Aryloxy substitution enables efficient mechanically triggered release from a synthetically accessible masked 2-furylcarbinol mechanophore. Chem. Commun . 2021 , 57 , 11173-11176..
Tseng, Y.-L.; Zeng, T.; Robb, M. J. Incorporation of a self-immolative spacer enables mechanically triggered dual payload release. Chem. Sci. 2024 , 15 , 1472−1479.
Chen, L.; Nixon, R.; De Bo, G. Force-controlled release of small molecules with a rotaxane actuator. Nature 2024 , 628 , 320−325..
Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T. A.; Nakamoto, Y. Para-bridged symmetrical pillar[5 ] arenes: their lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 2008 , 130 , 5022−5023.
Zhang, M.; De Bo, G. Impact of a mechanical bond on the activation of a mechanophore. J. Am. Chem. Soc. 2018 , 140 , 12724−12727.
Zhang, M.; De Bo, G. Mechanical susceptibility of a rotaxane. J. Am. Chem. Soc. 2019 , 141 , 15879−15883.
Stevenson, R.; De Bo, G. Controlling reactivity by geometry in retro-diels–alder reactions under tension. J. Am. Chem. Soc. 2017 , 139 , 16768−16771..
Yildiz, D.; Göstl, R.; Herrmann, A. Sonopharmacology: controlling pharmacotherapy and diagnosis by ultrasound-induced polymer mechanochemistry. Chem. Sci. 2022 , 13 , 13708−13719..
Percástegui, E. G.; Ronson, T. K.; Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 2020 , 120 , 13480−13544..
Küng, R.; Pausch, T.; Rasch, D.; Göstl, R.; Schmidt, B. M. Mechanochemical release of non-covalently bound guests from a polymer-decorated supramolecular cage. Angew. Chem., Int. Ed. 2021 , 60 , 13626−13630..
Küng, R.; Germann, A.; Krüsm ann, M.; Niggemann, L. P.; Meisner, J.; Karg, M.; Göstl, R.; Schmidt, B. M. Mechanoresponsive metal-organic cage-crosslinked polymer hydrogels. Chem. Eur. J. 2023 , 29 , e202300079..
Wang, Y.; Tang, Q.; Wu, R.; Sun, S.; Zhang, J.; Chen, J.; Gong, M.; Chen, C.; Liang, X. Ultrasound-triggered piezocatalysis for selectively controlled NO gas and chemodrug release to enhance drug penetration in pancreatic cancer. ACS Nano 2023 , 17 , 3557−3573..
Huo, S.; Zhao, P.; Shi, Z.; Zou, M.; Yang, X.; Warszawik, E.; Loznik, M.; Göstl, R.; Herrmann, A. Mechanochemical bond scission for the activation of drugs. Nat. Chem. 2021 , 13 , 131−139..
Zhao, P.; Huo, S.; Fan, J.; Chen, J.; Kiessling, F.; Boersma, A. J.; Göstl, R.; Herrmann, A. Activation of the catalytic activity of thrombin for fibrin formation by ultrasound. Angew. Chem., Int. Ed. 2021 , 60 , 14707−14714..
Huo, S.; Liao, Z.; Zhao, P.; Zhou, Y.; Göstl, R.; Herrmann, A. Mechano-nanoswitches for ultrasound-controlled drug activation. Adv. Sci. 2022 , 9 , 2104696..
Zou, M.; Zhao, P.; Huo, S.; Göstl, R.; Herrmann, A. Activation of antibiotic-grafted polymer brushes by ultrasound. ACS Macro Lett. 2022 , 11 , 15−19..
Fu, X.; Hu, X. Ultrasound-controlled prodrug activation: emerging strategies in polymer mechanochemistry and sonodynamic therapy. ACS Appl. Bio Mater. 2024 , 7 , 8040−8058..
Wang, C.; Tao, R.; Wu, J.; Jiang, H.; Hu, Z.; Wang, B.; Yang, Y. Sonochemistry: materials science and engineering applications. Coord. Chem. Rev. 2025 , 526 , 216373..
Wu, R.; Yao, Z.; Chen, Z.; Ge, X.; Su, L.; Wang, S.; Wu, Y.; Song, J. Ultrasound-activated NIR chemiluminescence for deep tissue and tumor foci imaging. Anal. Chem. 2023 , 95 , 11219−11226..
Li, Y.; Lin, L.; Xie, J.; Wei, L.; Xiong, S.; Yu, K.; Zhang, B.; Wang, S.; Li, Z.; Tang, Y.; Chen, G.; Li, Z. ROS-triggered self-assembled nanoparticles based on a chemo-sonodynamic combinational therapy strategy for the noninvasive elimination of hypoxic tumors. ACS Appl. Mater. Interfaces 2023 , 15 , 15893−15906..
Liu, B.; Thayumanavan, S. Mechanistic investigation on oxidative degradation of ROS-Responsive thioacetal/thioketal moieties and their implications. Cell Rep. Phy. Sci. 2020 , 1 , 100271..
Xu, J.; Hadjichristidis, N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog. Polym. Sci. 2023 , 139 , 101656..
Wu, P.; Dong, W.; Guo, X.; Qiao, X.; Guo, S.; Zhang, L.; Wan, M.; Zong, Y. ROS-responsive blended nanoparticles: cascade-amplifying synergistic effects of sonochemotherapy with on-demand boosted drug release during SDT process. Adv. Healthc. Mater. 2019 , 8 , 1900720..
Li, J.; Luo, Y.; Zeng, Z.; Cui, D.; Huang, J.; Xu, C.; Li, L.; Pu, K.; Zhang, R. Precision cancer sono-immunotherapy using deep-tissue activatable semiconducting polymer immunomodulatory nanoparticles. Nat. Commun. 2022 , 13 , 4032.
Freihammer, M.; Jayalath, P.; Shi, Z.; Schitz, J.; Kern, V.; Schwandt, M.; Braun, T.; Käsgen, O.; Heger, J. M.; Borchmann, S. Multi-effector immune cell retargeting using a bispecific single-chain variable fragment library in aggressive B cell lymphomas. HemaSphere 2023 , 7 , 1384..
Zeng, Z.; Zhang, C.; He, S.; Li, J.; Pu, K. Activatable cancer sono-immunotherapy using semiconducting polymer nanobodies. Adv. Mater. 2022 , 34 , 2203246.
Zhang, C.; Huang, J.; Zeng, Z.; He, S.; Cheng, P.; Li, J.; Pu, K. Catalytical nano-immunocomplexes for remote-controlled sono-metabolic checkpoint trimodal cancer therapy. Nat. Commun. 2022 , 13 , 3468.
Ding, M.; Zhang, Y.; Yu, N.; Zhou, J.; Zhu, L.; Wang, X.; Li, J. Augmenting immunogenic cell death and alleviating myeloid-derived suppressor cells by sono-activatable semiconducting polymer nanopartners for immunotherapy. Adv. Mater. 2023 , 35 , 2302508..
Liu, Y.; Wang, H.; Ding, M.; Yao, W.; Wang, K.; Ullah, I.; Bulatov, E.; Yuan, Y. Ultrasound-activated protac prodrugs overcome immunosuppression to actuate efficient deep-tissue sono-immunotherapy in orthotopic pancreatic tumor mouse models. Nano Lett. 2024 , 24 , 8741−8751..
Deng, C.; Zheng, M.; Han, S.; Wang, Y.; Xin, J.; Aras, O.; Cheng, L.; An, F. GSH-activated porphyrin sonosens itizer prodrug for fluorescence imaging-guided cancer sonodynamic therapy. Adv. Funct. Mater. 2023 , 33 , 2300348..
Liu, L.; Zhang, J.; An, R.; Xue, Q.; Cheng, X.; Hu, Y.; Huang, Z.; Wu, L.; Zeng, W.; Miao, Y.; et al. Smart nanosensitizers for activatable sono-photodynamic immunotherapy of tumors by redox-controlled disassembly. Angew. Chem., Int. Ed. 2023 , 62 , e202217055..
Liu, G. Y.; Zhang, Y. C.; Yao, H. Z.; Deng, Z. Q.; Chen, S.; Wang, Y.; Peng, W.; Sun, G. H.; Tse, M. K.; Chen, X. F.; Yue, J. B.; Peng, Y. K.; Wang, L. D.; Zhu, G. Y. An ultrasound-activatable platinum prodrug for sono-sensitized chemotherapy. Sci. Adv. 2023 , 9 , eadg5964..
Liang, G.; Sadhukhan, T.; Banerjee, S.; Tang, D.; Zhang, H.; Cui, M.; Montesdeoca, N.; Karges, J.; Xiao, H. Reduction of platinum(IV) prodrug hemoglobin nanoparticles with deeply penetrating ultrasound radiation for tumor-targeted therapeutically enhanced anticancer therapy. Angew. Chem., Int. Ed. 2023 , 62 , e202301074..
Zheng, J.; Ge, H.; Zhou, D.; Yao, Q.; Long, S.; Sun, W.; Fan, J.; Du, J.; Peng, X. An activatable prodrug nanosystem for ultrasound-driven multimodal tumor therapy and metastasis inhibition. Adv. Mater. 2023 , 35 , 2308205..
Deng, C.; Zhang, J.; Hu, F.; Han, S.; Zheng, M.; An, F.; Wang, F. A GSH-responsive prodrug with simultaneous triple-activation capacity for photodynamic/sonodynamic combination therapy with inhibited skin phototoxicity. Small 2024 , 20 , 2400667..
Jiang, Y.; Chen, H.; Lin, T.; Zhang, C.; Shen, J.; Chen, J.; Zhao, Y.; Xu, W.; Wang, G.; Huang, P. Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects. J. Nanobiotechnol. 2024 , 22 , 2..
Bigos, K. J. A.; Quiles, C. G.; Lunj, S.; Smith, D. J.; Krause, M.; Troost, E. G. C.; West, C. M.; Hoskin, P.; Choudhury, A. Tumour response to hypoxia: understanding the hypoxic tumour microenvironment to improve treatment outcome in solid tumours. Front. Oncol. 2024 , 14 , 1331355..
Zheng, M.; Liu, Z.; Xu, H.; Ye, D.; Cui, L.; Yang, C.; Ma, L.; Wang, K.; Sakurai, K.; Tang, Z. Synergistic enhancement of ultrasound therapy for tumors using hypoxia-activated 6-diazo-5-oxo-L-norleucine (DON) prodrug nanoparticles. Nano Res. 2024 , 17 , 6323−6331..
Tong, Y.; Li, M.; Huang, H.; Long, S.; Sun, W.; Du, J.; Fan, J.; Wang, L.; Liu, B.; Peng, X. Urea-bond scission induced by therapeutic ultrasound for biofunctional molecule release. J. Am. Chem. Soc. 2022 , 144 , 16799−16807..
Wang, F.; Wu, Z.; Zhang, Y.; Li, M.; Wei, P.; Yi, T.; Li, J. Semiconducting polymer nanoprodrugs enable tumor-specific therapy via sono-activatable ferroptosis. Biomaterials 2025 , 312 , 122722..
Feng, Q.; Li, Y.; Yang, X.; Zhang, W.; Hao, Y.; Zhang, H.; Hou, L.; Zhang, Z. Hypoxia-specific therapeutic agents delivery nanotheranostics: a sequential strategy for ultrasound mediated on-demand tritherapies and imaging of cancer. J. Control. Release 2018 , 275 , 192−200..
Yao, Y. X.; McFadden, M. E.; Luo, S. M.; Barber, R. W.; Kang, E. L.; Bar-Zion, A.; Smith, C. A. B.; Jin, Z. Y.; Legendre, M.; Ling, B.; Malounda, D.; Torres, A.; Hamza, T.; Edwards, C. E. R.; Shapiro, M. G.; Robb, M. J. Remote control of mechanochemical reactions under physiological conditions using biocompatible focused ultrasound. Proc. Natl. Acad. Sci. 2023 , 120 , e2309822120..
Kim, G.; Lau, V. M.; Halmes, A. J.; Oelze, M. L.; Moore, J. S.; Li, K. C. High-intensity focused ultrasound-induced mechanochemical transduction in synthetic elastomers. Proc. Natl. Acad. Sci. 2019 , 116 , 10214−10222..
Kim, G.; Wu, Q.; Chu, J. L.; Smith, E. J.; Oelze, M. L.; Moore, J. S.; Li, K. C. Ultrasound controlled mechanophore activation in hydrogels for cancer therapy. Proc. Natl. Acad. Sci. 2022 , 119 , e2109791119..
Xia, L.; Chen, M.; Dong, C.; Liu, F.; Huang, H.; Feng, W.; Chen, Y. Spatiotemporal ultrasound-driven bioorthogonal catalytic therapy. Adv. Mater. 2023 , 35 , 2209179..
Versaw, B. A.; Zeng, T.; Hu, X.; Robb, M. J. Harnessing the power of force: development of mechanophores for molecular release. J. Am. Chem. Soc. 2021 , 143 , 21461−21473..
Suslick, K. S. Sonochemistry. Science 1990 , 247 , 1439−1445..
Tong, R.; Lu, X.; Xia, H. A facile mechanophore functionalization of an amphiphilic block copolymer towards remote ultrasound and redox dual stimulus responsiveness. Chem. Commun. 2014 , 50 , 3575−3578..
Deepagan, V. G.; You, D. G.; Um, W.; Ko, H.; Kwon, S.; Choi, K. Y.; Yi, G. R.; Lee, J. Y.; Lee, D. S.; Kim, K.; Kwon, I. C.; Park, J. H. Long-circulating Au-TiO 2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano Lett. 2016 , 16 , 6257−6264..
Wang, X.; Wang, W.; Yu, L.; Tang, Y.; Cao, J.; Chen, Y. Site-specific sonocatalytic tumor suppression by chemically engineered single-crystalline mesoporous titanium dioxide sonosensitizers. J. Mater. Chem. B 2017 , 5 , 4579−4586..
Pan, X.; Bai, L.; Wang, H.; Wu, Q.; Wang, H.; Liu, S.; Xu, B.; Shi, X.; Liu, H. Metal–organic-framework-derived carbon nanostructure augmented sonodynamic cancer therapy. Adv. Mater. 2018 , 30 , 1800180..
Tu, L.; Liao, Z.; Luo, Z.; Wu, Y. L.; Herrmann, A.; Huo, S. Ultrasound-controlled drug release and drug activation for cancer therapy. Exploration 2021 , 1 , 20210023..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution