FOLLOWUS
National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
mehuangzx@scut.edu.cn
Received:22 February 2025,
Revised:13 March 2025,
Accepted:12 May 2025,
Published Online:10 October 2025,
Published:2025-06
Scan QR Code
Rao, W. X.; Li, L. W.; Zhang, S. H.; Huang, G. M.; Zheng, J. C.; Yuan, C. H.; Huang, Z. X.; Qu, J. P. Simultaneous improvement of strength and toughness of poly(lactic acid) via multiple dynamic pressure. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3379-6
Wen-Xu Rao, Lan-Wei Li, Sen-Hao Zhang, et al. Simultaneous Improvement of Strength and Toughness of Poly(lactic acid)
Rao, W. X.; Li, L. W.; Zhang, S. H.; Huang, G. M.; Zheng, J. C.; Yuan, C. H.; Huang, Z. X.; Qu, J. P. Simultaneous improvement of strength and toughness of poly(lactic acid) via multiple dynamic pressure. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3379-6 DOI:
Wen-Xu Rao, Lan-Wei Li, Sen-Hao Zhang, et al. Simultaneous Improvement of Strength and Toughness of Poly(lactic acid)
To retain its inherent biodegradability
simultaneou
sly improving the strength and toughness of poly(lactic acid) (PLA) is a significant challenge. In this study
we propose an innovative multiple dynamic pressure (MDP) process that can produce pure PLA with excellent mechanical properties. The MDP process generates a dynamic stretching effect by regulating the application and release of pressure
prompting disordered molecular chains to be arranged regularly along the direction of the dynamic force field. This promoted the formation of more ordered crystal forms (
α
-form) and strengthened the connection between the crystalline and amorphous regions. Results show that after MDP treatment
the tensile strength and strain at break of MDP-PLA are significantly improved
reaching 91.6 MPa and 80.1% respectively
which are 49.4% higher and 10 times higher than those of the samples before treatment. The mechanical properties of MDP-PLA can be regulated as needed by adjusting the cycle times and peak pressure. In addition
through a systematic study of the structural evolution of MDP-PLA
the performance regulation mechanism of the MDP process was thoroughly investigated
and the internal relationship among the process-structure-performance was clarified. This research not only opens a new technical path for the preparation of high-performance pure PLA but also provides important guidance for the high-performance modification of other semi-crystalline polymers
thus possessing significant scientific and engineering value.
Ramakrishnan, R. K.; Palanisamy, S.; Sumitha, N. S.; K Padinjareveetil, A. K.; S, S.; Wacławek, S.; Uyar, T.; Černík, M.; Varma, R. S.; Cheong, J. Y.; Vellora Thekkae Padil, V. Regenerable and ultraflexible sustainable film derived from tree gum konda gogu for high-performance electromagnetic interference shielding. ACS Sustain. Chem. Eng. 2023 , 11 , 7344−7356..
Altman, R. The myth of historical bio-based plastics. Science 2021 , 373 , 47−49..
Song, X. Y.; He, X. J.; Tang, M. K.; Wang, C. M.; Zhang, Y. F.; Li, X.; Li, T.; Ke, L.; Li, X. Y.; Zhang, M. M.; Zhang, S. H.; Xu, H. Multi-protection from microbial and PM pollutants by humidity-resistant, breathable and self-charging nanofibrous membranes. ACS Sustain. Chem. Eng. 2024 , 12 , 12216−12225..
Naser, A. Z.; Deiab, I.; Darras, B. M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv. 2021 , 11 , 17151−17196..
Andrzejewski, J.; Cheng, J.; Anstey, A.; Mohanty, A. K.; Misra, M. Development of Toughened blends of poly(lactic acid) and poly(butylene adipate- co -terephthalate) for 3D printing applications: compatibilization methods and material performance evaluation. ACS Sustain. Chem. Eng. 2020 , 8 , 6576−6589..
Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P.An overview of the recent developments in polylactide (PLA) research. Bioresour. Technol. 2010 , 101 , 8493−8501..
Hamad, K.; Kaseem, M.; Ayyoob, M.; Joo, J.; Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018 , 85 , 83−127..
Zhao, X. P.; Liu, J. C.; Li, J. C.; Liang, X. Y.; Zhou, W. Y.; Peng, S. X. Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials. Int. J. Biol. Macromol. 2022 , 218 , 115−134..
Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 2016 , 4 , 2899−2916..
Song, X. Y.; Tang, M. K.; Wang, C. M.; Li, X. Y.; Zhu, J. T.; Shao, J.; Huang, S.; Wang, B.; Li, X. P.; Li, H. G.; Xu, H. Stereo complexation-enhanced electroactivity of poly(lactic acid) nanofibrous membranes for long-term PM capturing and remote respiratory monitoring. ACS Sustain. Chem. Eng. 2024 , 12 , 3554−3564..
Wang, C. M.; Zhang, L.; He, X. J.; Zhu, G. Y.; Li, X. Y.; Zhang, Y. F.; Zhu, X. J.; Li, H. G.; Zhang, M. M.; Gao, J. F.; Xu, H. Self-crystal electret poly(lactic acid) nanofibers for high-flow air purification and AI-assisted respiratory diagnosis. J. Hazard. Mater. 2025 , 485 , 136932..
Chen, Y. J.; Han, L. J.; Zhang, H. L.; Dong, L. S. Improvement of the strength and toughness of biodegradable polylactide/silica nanocomposites by uniaxial pre-stretching. Int. J. Biol. Macromol. 2021 , 190 , 198−205..
Xu, S. S.; Sun, C. X.; Yuan, W. H.; Zhou, J.; Xu, W. Q.; Zheng, Y.; Yu, C. T.; Pan, P. J. Evolution of thermal behavior, mechanical properties, and microstructure in stereo complexable poly(lactic acid) during physical ageing. Polymer 2022 , 249 , 124840..
Wang, C. M.; He, X. J.; Zhu, G. Y.; Li, X.; Zhu, X. J.; Chen, R. Z.; Tian, S. X.; Li, X. Y.; Zhu, J. T.; Shao, J.; Gao, J. F.; Zhong, G. J.; Xu, H. Extreme orientation of stereo complexed Poly(lactic acid) induced ultrafine electroactive nanofibers for respiratory healthcare and intelligent diagnosis. ACS Sustain. Chem. Eng. 2024 , 12 , 9290−9300..
Tang, D. F.; Qin, Z. D.; Luo, X. F.; Yang, H.; Liao, Y. H.; Liu, K.; Ding, H. R.; Tang, W. F. Highly flame retardancy, barrier, mechanical and persistent antibacterial polylactic acid film with high-parallel interconnected thousand layered cake architecture. Int. J. Biol. Macromol. 2024 , 273 , 132777..
Pei, C. Y.; Zhang, H. J.; Li, Y. W.; Gu, Z. P.; Chen, X. C.; Kuang, T. R. Robust and durable biodegradable polymer-based triboelectric nanogenerators enabled by trace amounts of melanin-like nanoparticles. Nano Energy 2025 , 135 , 110643..
Han, Y.; Ning, N. Y.; Wang, Z.; Zhang, L. Q. A new strategy for the preparation of fully biobased and biodegradable polylactic acid with both high rigidity and flexibility. Macromolecules 2024 , 57 , 9216−9229..
Zhou, X. W.; Huang, J.; Zhang, X.H.; Li, T.; Wang, Y.; Wang, S. B.; Xia, B. H.; Dong, W. F. Design of tough, yet strong, heat-resistant PLA/PBAT blends with reconfigurable shape memory behavior by engineering exchangeable covalent crosslinks. Chinese J. Polym. Sci. 2023 , 41 , 1868−1878..
Aversa, C.; Barletta, M. Addition of thermoplastic starch (TPS) to binary blends of poly(lac tic acid) (PLA) with poly(butylene adipate- co -terephthalate) (PBAT): extrusion compounding, cast extrusion and thermoforming of home compostable materials. Chinese J. Polym. Sci. 2022 , 40 , 1269−1286..
Pan, H. W.; Wang, Y.; Jia, S. L.; Zhao, Y.; Bian, J. J.; Yang, H. L.; Hao, Y. P.; Han, L. J.; Zhang, H. L. biodegradable poly(butylene adipate- co -terephthalate)/poly(glycolic acid) films: effect of Poly(glycolic acid) crystal on mechanical and barrier properties. Chinese J. Polym. Sci . 2023 , 41 , 1123−1132..
Hou, B. Y.; Wang, Y. N.; Liu, S.; Li, B. J.; Huang, L. P.; Li, J. C. An eco-sustainable, lactic acid-based phosphaphenanthren-containing flame-retardant plasticizer: synthesis, properties, and mechanism. Chem. Eng. J. 2023 , 467 , 143196..
Yeo, J. C. C.; Muiruri, J. K.; Koh, J. J.; Thitsartarn, W.; Zhang, X. K.; Kong, J. H.; Lin, T. T.; Li, Z. B.; He, C. B. Bend, twist, and turn: First bendable and malleable toughened PLA green composites. Adv. Funct. Mater. 2020 , 30 , 2001565..
Lu, J.; Yi, L. X.; Zhao, Y. H.; Meng, Y.; Yu, P. X.; Su, J. J.; Han, J. Mechanically robust polylactide fibers with super heat resistance via constructing in situ nanofibrils. Chinese J. Polym. Sci. 2023 , 41 , 962−971..
Yang, W. J.; Weng, Y. X.; Puglia, D.; Qi, G. C.; Dong, W. F.; Kenny, J. M.; Ma, P. M. Poly(lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int. J. Biol. Macromol. 2020 , 144 , 102−110..
Yang, Y.; Xiong, Z.; Zhang, L. S.; Tang, Z. B.; Zhang, R. Y.; Zhu, J. Isosorbide dioctoate as a “green” plasticizer for poly(lactic acid). Mater. Des. 2016 , 91 , 262−268..
Hong, S. J.; Kim, G. R.; Kim, N. K.; Shin, J.; Kim, Y. W. Poly(amide11)-incorporated block copolymers as compatibilizers to toughen a poly(lactide)/polyamide 11 blend. ACS Appl. Polym. Mater. 2024 , 6 , 1224−1235..
Chen, J. L.; Rong, C. Y.; Lin, T. T.; Chen, Y. H.; Wu, J. L.; You, J. C.; Wang, H. T.; Li, Y. J. Stable co-continuous PLA/PBAT blends compatibilized by interfacial stereo complex crystallites: Toward full biodegradable polymer blends with simultaneously enhanced mechanical properties and crystallization rates. Macromolecules 2021 , 54 , 2852−2861..
Ye, H. S.; Li, A. Z.; Li, G. Q.; Li, K.; Zhang, J.; Wang, D.; Ray, S. S.; Wang, H. T.; Li, Y. J. Construction of elastomeric nanobelts in a glassy polymer matrix: toward supertoughened nanoalloys with significantly depressed yielding behaviors. Macromolecules 2024 , 57 , 9999−10015..
Cai, K.;, Wang, Q. D.; Liu, X.;, Tu, S. H.;, Wang, J. S.; Feng, J. PLA/PBAT/CaCO 3 composites with balanced super-toughness and stiffness through dynamic vulcanization and double interfacial compatibilization. ACS Appl. Polym. Mater. 2024 , 6 , 13378−13388..
Saeidlou, S.; Huneault, M. A.; Li, H. B.; Park, C. B. Poly(lactic acid) crystallization. Prog. Polym. Sci. 2012 , 37 , 1657−1677..
Hu, D. P.; Chen, M.; Lu, S. Y.; Li, H. Y. Polymorphism texture induced by fractional precipitation of poly(l-lactic acid). Macromolecules 2022 , 55 , 8195−8202..
Lu, S. Y.; Chen, M.; Li, H. Y. Nucleation site memory in the spherulite films of polydisperse poly(l-lactic acid). Macromolecules 2024 , 57 , 10219−10226..
Beauson, J.; Schillani, G.; Van der Schueren, L.; Goutianos, S. The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites. Compos. Part A Appl. Sci. Manuf. 2022 , 152 , 106668..
Chen, X. D.; Xu, R. J.; Xie, J. Y.; Lin, Y. F.; Lei, C. H.; Li, L. B. The study of room-temperature stretching of annealed polypropylene cast film with row-nucleated crystalline structure. Polymer 2016 , 94 , 31−42..
Girard, M.; Combeaud, C.; Billon, N. Effects of annealing prior to stretching on strain induced crystallization of polyethylene terephthalate. Polymer 2021 , 230 , 124078..
Zeng, B. B.; Ai, J. X.; Xia, M. X.; Pang, Y. C.; Zheng, Y.; Shen, J. B.; Guo, S. Y. Deep insight into the effect of microstructure evolution on film-forming properties of polylactide during uniaxial hot-stretching process. Macromolecules 2024 , 57 , 4937−4946..
Liu, B.; Xu, P. W.; Niu, D. Y.; Gobius du Sart, G.; Shi, Y. Q.; Joziasse, K.; Zhou, Y. X.; Ma, Y.; Yang, W. J.; Zhang, X.; Liu, T. X.; Ma, P. M. Superior ductile and barrier PLA/PGA films by in situ constructing a transversely isotropic network and well-ordered crystalline nanolayers. Macromolecules 2025 , 58 , 1717−1727..
Zheng, G. F.; Han, L. J.; Zheng, B. H.; Bian, J. J.; Zhao, Y.; Pan, H. W.; Wang, M. Y.; Zhang, H. L. Enhanced strength, toughness and heat resistance of poly(lactic acid) with good transparency and biodegradability by uniaxial pre-stretching. Int. J. Biol. Macromol. 2024 , 278 , 135222..
Li, Y. P.; Shen, H. R.; Wang, S. J.; Zhang, H.; Hu, J.; Xin, R.; Sun, X. L.; Yan, S. K. Impact of annealing on the melt recrystallization of a-PDLA/α-PLLA double-layered films. Chinese J. Polym. Sci. 2024 , 42 , 230−238..
Lin, H.; Chen, Y.; Gao, X. R.; Xu, L.; Lei, J.; Zhong, G. J.; Li, Z. M. Transparent, heat-resistant, ductile, and self-reinforced polylactide through simultaneous formation of nanocrystals and an oriented amorphous phase. Macromolecules 2023 , 56 , 2454−2464..
Mulligan, J.; Cakmak, M. Nonlinear mechanooptical behavior of uniaxially stretched poly(lactic acid): dynamic phase behavior. Macromolecules 2005 , 38 , 2333−2344..
Zhang, X. Q.; Schneider, K.; Liu, G. M.; Chen, J. H.; Brüning, K.; Wang, D. J.; Stamm, M. Structure variation of tensile-deformed amorphous poly(l-lactic acid): effects of deformation rate and strain. Polymer 2011 , 52 , 4141−4149..
Qin, S.; Lu, X.; Lv, S. Y.; Xu, W. H.; Zhang, H. H.; Tan, L. C.; Qu, J. P. Simultaneously toughening and reinforcing high-density polyethylene via an industrial volume-pulsatile injection molding machine and poly(ethylene terephthalate). Compos. Part B Eng. 2020 , 198 , 108243..
Kong, W. Y.; Li, R. G.; Zhao, X. W.; Ye, L. Construction of a highly oriented poly(lactic acid)-based block polymer foam and its self-reinforcing mechanism. ACS Sustain. Chem. Eng. 2023 , 11 , 1133−1145..
Gonzalez-Leon, J. A.; Acar, M. H.; Ryu, S. W.; Ruzette, A. G.; Mayes, A. M. Low-temperature processing of ‘baroplastics’ by pressure-induced flow. Nature 2003 , 426 , 424−428..
Huan, Q.; Zhu, S.; Ma, Y.; Zhang, J. J.; Zhang, S.; Feng, X. L.; Han, K. Q.; Yu, M. H. Markedly improving mechanical properties for isotactic polypropylene with large-size spherulites by pressure-induced flow processi ng. Polymer 2013 , 54 , 1177−1183..
Zhang, S.; Feng, X. L.; Zhu, S.; Huan, Q.; Han, K. Q.; Ma, Y.; Yu, M. H. Novel toughening mechanism for polylactic acid (PLA)/starch blends with layer-like microstructure via pressure-induced flow (PIF) processing. Mater. Lett. 2013 , 98 , 238−241..
Wang, Z.; Liu, T.; Yang, J. T.; Chen, F.; Fei, Y. P.; Zhong, M. Q.; Kuang, T. R. Biomimetically structured poly(lactic acid)/poly(butylene-adipate- co -terephthalate) blends with ultrahigh strength and toughness for structural application. ACS Appl. Polym. Mater. 2022 , 4 , 9351−9359..
Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications: A comprehensive review. Adv. Drug Deliv. Rev. 2016 , 107 , 367−392..
Yang, S. L.; Wu, Z. H.; Yang, W.; Yang, M. B. Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polym. Test. 2008 , 27 , 957−963..
Zhang, Z.; Cui, S. L.; Ma, R. X.; Ye, Q. Y.; Sun, J. H.; Wang, Y. M.; Liu, C. T.; Wang, Z. Melt stretching and quenching produce low-crystalline biodegradable poly(lactic acid) filled with β-form shish for highly improved mechanical toughness. Int. J. Biol. Macromol. 2023 , 251 , 126220..
Sadeghi Ghari, H.; Nazockdast, H. Morphology development and mechanical properties of PLA/differently plasticized starch (TPS) binary blends in comparison with PLA/dynamically crosslinked “TPS+EVA” ternary blends. Polymer 2022 , 245 , 124729..
Fang, Y. G.; Lin, J. Y.; Zhang, Y. C.; Qiu, Q. W.; Zeng, Y.; Li, W. X.; Wang, Z. Y. A reactive compatibilization with the compound containing four epoxy groups for polylactic acid/poly(butylene adipate-co-terephthalate)/thermoplastic starch ternary bio-composites. Int. J. Biol. Macromol. 2024 , 262 , 129998..
Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Supertoughened renewable PLA reactive multiphase blends system: Phase morphology and performance. ACS Appl. Mater. Interfaces 2014 , 6 , 12436−12448..
Li, Z. W.; Shang, J.; Abdurexit, A.; Jamal, R.; Abdiryim, T.; Su, E. M.; Wei, J. Improving the performance of polylactic acid/polypropylene/cotton stalk fiber composites with epoxidized soybean oil as a high efficiency plasticizer. Int. J. Biol. Macromol. 2024 , 283 , 137814..
Lee, W.; Lee, J.; Chung, J. W.; Kwak, S. Y. Enhancement of tensile toughness of poly(lactic acid) (PLA) through blending of a polydecalactone-grafted cellulose copolymer: the effect of mesophase transition on mechanical properties. Int. J. Biol. Macromol. 2021 , 193 , 1103−1113..
Xu, H.; Ke, L.; Tang, M. K.; Shang, H.; Zhang, Z. L.; Xu, W. X.; Fu, Y. N.; Wang, Y. Q.; Tang, D. Y.; Huang, D. H.; Zhang, S. H.; Yang, H. R.; He, X. J.; Gao, J. F. Pea pod-mimicking hydroxyapatite nanowhisker-reinforced poly(lactic acid) composites with bone-like strength. Int. J. Biol. Macromol. 2022 , 216 , 114−123..
Xin, K.; Wei, Y.; Xiong, J. X.; Ni, Y. P.; Wang, X. F.; Xu, Y. J. Simultaneous strengthening and toughening of PLA with full recyclability enabled by resin-microsphere-modified L-lactide oligomers. Chem. Eng. J. 2024 , 500 , 156743..
Wang, W. Y.; Wang, X. H.; Wang, Z. G. Ultrahigh strength and toughness of polylactide added with EGMA elastomer of a small amount processed via pressure-induced flow above the glass transition temperature. Appl. Surf. Sci. 2024 , 665 , 160389..
Zhang, J. W.; Li, P.; Li, Y. J.; Luo, M. N.; Yan, Z.; Wang, T.; Fu, Q.; Gao, X. Q.; Zhang, J. Preparation of PLA/PBAT blends with high performance via the synergistic effect of high mold temperature and strong shear field. Polymer 2024 , 296 , 126795..
Cai, Y.; Liu, S.; Fang, C.; Liu, Z. H.; He, Y.; Qu, J. P. Strengthening-toughening pure poly(lactic acid) with ultra-transparency through increasing mesophase promoted by elongational flow field. Int. J. Biol. Macromol. 2023 , 242 , 125091..
Wei, Q. Y.; Huang, J. Z.; Jia, D. Z.; Lei, J.; Huang, H. D.; Lin, H.; Xu, J. Z.; Zhong, G. J.; Li, Z. M. Integration of stiffness, ductility, heat resistance, and transparency for polylactide films by manipulation of amorphous chain networks and oriented nanocrystals. Macromolecules 2024 , 57 , 3706−3718..
Peter In Pyo Park, Jonnalagadda, S. Predictors of glass transition in the biodegradable poly-lactide and poly-lactide- co -glycolide polymers. J. Appl. Polym. Sci. 2006 , 100 , 1983−1987..
Zhang, R.; Jariyavidyanont, K.; Zhuravlev, E.; Schick, C.; Androsch, R. Physical aging and glass transition dynamics of semicrystalline poly(lactic acid) for 3D-printing applications investigated by fast scanning calorimetry. Macromolecules , 2024 , 57 , 32−41..
Sattler, R.; Zhang, R.; Gupta, G.; Du, M. X.; Runge, P. M.; Altenbach, H.; Androsch, R.; Beiner, M. Influence of crystallization kinetics and flow behavior on structural inhomogeneities in 3D-printed parts made from semi-crystalline polymers. Macromolecules 2024 , 57 , 3066−3080..
Ouchiar, S.; Stoclet, G.; Cabaret, C.; Gloaguen, V. Influence of the filler nature on the crystalline structure of polylactide-based nanocomposites: new insights into the nucleating effect. Macromolecules 2016 , 49 , 2782−2790..
Giełdowska, M.; Puchalski, M.; Sztajnowski, S.; Krucińska, I. Evolution of the molecular and supramolecular structures of PLA during the thermally supported hydrolytic degradation of wet spinning fibers. Macromolecules 2022 , 55 , 10100−10112..
Tang, H.; Chen, J. B.; Wang, Y.; Xu, J. Z.; Hsiao, B. S.; Zhong, G. J.; Li, Z. M. Shear flow and carbon nanotubes synergi stically induced nonisothermal crystallization of poly(lactic acid) and its application in injection molding. Biomacromolecules 2012 , 13 , 3858−3867..
Brizzolara, D.; Cantow, H. J.; Diederichs, K.; Keller, E.; Domb, A. J. Mechanism of the Stereo complex Formation between Enantiomeric Poly(lactide)s. Macromolecules 1996 , 29 , 191−197..
Cocca, M.; Di Lorenzo, M. L.; Malinconico, M.; Frezza, V. Influence of crystal polymorphism on mechanical and barrier properties of poly(L-lactic acid). Eur. Polym. J. 2011 , 47 , 1073−1080..
Xiao, W. H.; Wu, J. B.; Liu, X. H.; Xie, J. Y.; Xu, R. J.; Lei, C. H. Developing an efficient biobased nucleating agent with antimicrobial properties by controlling the conformation of poly(lactic acid) based on intermolecular forces. Macromolecules 2024 , 57 , 7398−7408..
Pyda, M.; Wunderlich, B. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC. Macromolecules 2005 , 38 , 10472−10479..
Stoclet, G.; Seguel a, R.; Lefebvre, J. M.; Rochas, C. New insights on the strain-induced mesophase of poly(d, l-lactide): in situ WAXS and DSC study of the thermo-mechanical stability. Macromolecules 2010 , 43 , 7228−7237..
Na, B.; Lv, R. H.; Zou, S. F.; Li, Z. J.; Tian, N. N.; Fu, Q. Spectroscopic evidence of melting of ordered structures in the aged glassy poly(l-lactide). Macromolecules 2010 , 43 , 1702−1705..
Yan, J. Y.; Zheng, Y.; Zhou, Y. Q.; Liu, Y.; Tan, H.; Fu, Q.; Ding, M. M. Application of infrared spectroscopy in the multiscale structure characterization of poly(l-lactic acid). Polymer 2023 , 278 , 125985..
Wasanasuk, K.; Tashiro, K. Structural regularization in the crystallization process from the glass or melt of poly(L-lactic acid) viewed from the temperature-dependent and time-resolved measurements of FTIR and wide-angle/small-angle X-ray scatterings. Macromolecules 2011 , 44 , 9650−9660..
Liu, L. Y.; Yang, R. J.; Zhang, J.; Gong, G. M.; Yang, Y. R. Recent progress in two-dimensional correlation spectroscopy for the environmental detection and analysis. J. Mol. Struct. 2020 , 1214 , 128263..
Noda, I. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl. Spectrosc. 1993 , 47 , 1329−1336..
Noda, I. Projection two-dimensional correlation analysis. J. Mol. Struct. 2010 , 974 , 116−126..
Principle of Two-Dimensional Correlation Spectroscopy. In Two-Dimensional Correlation Spectroscopy – Applications in Vibrational and Optical Spectroscopy , 2004 ; pp 15−38..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution