Suppressing Syneresis in Poly(N-isopropylacrylamide) Hydrogels by Incorporating Poly(ethylene glycol)
RESEARCH ARTICLE|Updated:2025-06-23
|
Suppressing Syneresis in Poly(N-isopropylacrylamide) Hydrogels by Incorporating Poly(ethylene glycol)
Chinese Journal of Polymer ScienceVol. 43, Pages: 1-8(2025)
Affiliations:
a.State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b.School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Hu, H. D.; Kang, Y.; Tang, J.; Chen, Q. Suppressing syneresis in poly(N-isopropylacrylamide) hydrogels by incorporating poly(ethylene glycol). Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3354-2
Hao-Dong Hu, Yu Kang, Jian Tang, et al. Suppressing Syneresis in Poly(N-isopropylacrylamide) Hydrogels by Incorporating Poly(ethylene glycol)[J/OL]. Chinese journal of polymer science, 2025, 431-8.
Hu, H. D.; Kang, Y.; Tang, J.; Chen, Q. Suppressing syneresis in poly(N-isopropylacrylamide) hydrogels by incorporating poly(ethylene glycol). Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3354-2DOI:
Hao-Dong Hu, Yu Kang, Jian Tang, et al. Suppressing Syneresis in Poly(N-isopropylacrylamide) Hydrogels by Incorporating Poly(ethylene glycol)[J/OL]. Chinese journal of polymer science, 2025, 431-8. DOI: 10.1007/s10118-025-3354-2.
Suppressing Syneresis in Poly(N-isopropylacrylamide) Hydrogels by Incorporating Poly(ethylene glycol)
-isopropylacrylamide) (PNIPAm) often undergo syneresis upon heating
and thus become irrecoverable in shape. To overcome this limitation
we copolymerize tetra-armed PNIPAm precursor with tetra-armed poly(ethylene glycol) (PEG) precursor. After incorporating the hydrophilic PEG components
the hydrogel samples exhibited recoverable swellability during repeated heating-cooling cycles
during which phase segregation occurred
and the water repelled from the PNIPAm-rich phase can be accommodated in the PEG-rich phase. As a result
recoverability relied on the swellability of the PEG-rich phase
which correlated quantitatively with the molar mass and concentration of the precursor solution. This study provides an effective protocol for the molecular design of stimuli-responsive hydrogels with a desired degre
e of shape recoverability.
关键词
Keywords
references
Ding H.; Li, B.; Liu, Z.; Liu, G.; Pu, S.; Feng, Y.; Jia, D.; Zhou Y. Decoupled pH- and thermo-responsive injectable chitosan/PNIPAM hydrogel via thiol-ene click chemistry for potential applications in tissue engineering. Adv. Healthc. Mater. 2020 , 9 , 2000454..
Yan Z.; Shi P.; Ren J.; Qu X. A “sense-and-treat” hydrogel used for treatment of bacterial infection on the solid matrix. Small 2015 , 11 , 5540−5544..
Kim Y. S.; Liu M.; Ishida Y.; Ebina Y.; Osada M.; Sasaki T.; Hikima T.; Takata M.; Aida T. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 2015 , 14 , 1002−1007..
Schild H. G. Poly( N -isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 1992 , 17 , 163−249.
Shibayama M.; Morimoto M.; Nomura S. Phase separation induced mechanical transition of poly( N -isopropylacrylamide)/water isochore gels. Macromolecules 1994 , 27 , 5060−5066..
Hu Y.; Barbier L.; Li Z.; Ji X.; Blay H. L.; Hourdet D.; Sanson N.; Lam J. W. Y.; Marcellan A.; Tang B. Z. Hydrophilicity-hydrophobicity transformation, thermoresponsive morphomechanics, and crack multifurcation revealed by AIEgens in mechanically strong hydrogels. Adv. Mater. 2021 , 33 , 2101500..
Flory P. J. Principles of polymer chemistry; Cornell University Press: Ithaca , 1953 ..
Flory P. J.; Rehner J. Statistical mechanics of cross-linked polymer networks. J. Chem. Phys. 1943 , 11 , 521−526..
Huggins M. K. Thermodynamic properties of solutions of long-chain compounds. Ann. N. Y. Acad. Sci. 1942 , 43 , 1−32..
Rivas-Barbosa R.; Ruiz-Franco J.; Lara-Peña M. A.; Cardellini J.; Licea-Claverie A.; Camerin F.; Zaccarelli E.; Laurati M. Link between morphology, sstructure, and interactions of composite microgels. Macromolecules 2022 , 55 , 1834−1843..
Guo H.; Sanson N.; Hourdet D.; Marcellan A. Thermoresponsive toughening with crack bifurcation in phase-separated hydrogels under isochoric conditions. Adv. Mater. 2016 , 18 , 5857−5864..
Kim S.; Lee K.; Cha C. Refined control of thermoresponsive swelling/deswelling and drug release properties of poly( N -isopropylacrylamide) hydrogels using hydrophilic polymer crosslinkers. J. Biomater. Sci. Polym. Ed. 2016 , 27 , 1698−1711..
Zheng R.; Chen Y.; Zhang L.; Tan J. R-RAFT or Z-RAFT? Well-defined star block copolymer nano-objects prepared by RAFT-mediated polymerization-induced self-assembly. Macromolecules 2020 , 53 , 1557−1566..
Cao M.; Han G.; Duan W.; Zhang W. Synthesis of multi-arm star thermo-responsive polymers and topology effects on phase transition. Polym. Chem. 2018 , 9 , 2625−2633..
Qu Y.; Chang X.; Chen S.; Zhang W. In situ synthesis of thermoresponsive 4-arm star block copolymer nano-assemblies by dispersion RAFT polymerization. Polym. Chem. 2017 , 8 , 3485−3496..
Northrop B. H.; Frayne S. H.;Choudhary U. Thiol–maleimide “click” chemistry: evaluating the influence of solvent, initiator, and thiol on the reaction mechanism, kinetics, and selectivity. Polym. Chem. 2015 , 6 , 3415−3430..
Yoshitake M.; Kamiyama Y.; Nishi K.; Yoshimoto N.; Morita M.; Sakai T.; Fujii K. Defect-free network formation and swelling behavior in ionic liquid-based electrolytes of tetra-arm polymers synthesized using a Michael addition reaction. Phys. Chem. Chem. Phys. 2017 , 19 , 29984−29990..
Zhou S.; Fan S.; Au-yeung S. C. F.; Wu C. Light-scattering studies of poly( N -isopropylacrylamide) in tetrahydrofuran and aqueous solution. Polymer 1995 , 36 , 1341−1346..
Yoshikawa T.; Sakumichi N.; Chung U.; Sakai T. Negative energy elasticity in a rubberlike gel. Phys. Rev. X 2021 , 11 , 011045..
Gonzalez-Tello P.; Camacho F.; Blazquez G. Density and viscosity of concentrated aqueous solutions of polyethylene glycol. J. Chem. Eng. Data 1994 , 39 , 611−614..
Horikawa Y.; Tanaka T. Volume phase transition in a nonionic gel. J. Chem. Phys. 1984 , 81 , 6379−6380..
Wu C.; Zhou S. Laser light scattering study of the phase transition of poly( N -isopropylacrylamide) in water. 1. Single chain. Macromolecules 1995 , 28 , 8381−8387..
Sanzari I.; Buratti E.; Huang R.; Tusan C. G.; Dinelli F.; Evans N. D.; Prodromakis T.; Bertoldo M. Poly( N -isopropylacrylamide) based thin microgel films for use in cell culture applications. Sci. Rep. 2020 , 10 , 6126..
Yin W.; Yang H.; Cheng R . Glass transition of the two distinct single-chain particles of poly( N -isopropylacrylamide). Eur. Phys. J. E 2005 , 17 , 1−5..
Tang J.; Katashima T.; Li X.; Mitsukami Y.; Yokoyama Y.; Chung U.; Shibayama M.; Sakai T. Effect of nonlinear elasticity on the swelling behaviors of highly swollen polyelectrolyte gels. Gels 2021 , 7 , 25..
Orakdogen N.; Boyacı T. Non-Gaussian elasticity and charge density-dependent swelling of strong polyelectrolyte poly( N -isopropylacrylamide- co -sodium acrylate) hydrogels. Soft Matter 2017 , 13 , 9046−9059..
Ghent A. N. A new constitutive relation for rubber. Rubber Chem. Technol. 1996 , 69 , 59−61..
Hoshino K.; Nakajima T.; Matsuda T.; Sakai T.; Gong J. P. Network elasticity of a model hydrogel as a function of swelling ratio: from shrinking to extreme swelling states. Soft Matter 2018 , 14 , 9693−9701..
Saeki S.; Kuwahara N.; Nakata M.; Kaneko M. Upper and lower critical solution temperatures in pol y(ethylene glycol) solutions. Polymer 1976 , 17 , 685−689..
Matsunaga T.; Sakai T.; Akagi Y.; Chung U.; Shibayama M. Structure characterization of tetra-PEG gel by small-angle neutron scattering. Macromolecules 2009 , 42 , 1344−1351..
Tang J.; Hu H.; Colby R. H.; Chen Q. Convenient protocol for preparing hydrogels with temperature-insensitive swellability. Macromolecules 2024 , 57 , 7768−7776..
Akagi Y.; Gong J. P.; Chung U. I.; Sakai T. Transition between phantom and affine network model observed in polymer gels with controlled network structure. Macromolecules 2013 , 46 , 1035−1040..
Zhong M.; Wang R.; Kawamoto K.; Olsen B. D.; Johnson J. A. Quantifying the impact of molecular defects on polymer network elasticity. Science 2016 , 353 , 1264−1268..
Shibayama M.; Norisuye T. Gel Formation analyses by dynamic light scattering. Bull. Chem. Soc. Jpn. 2002 , 75 , 641−659..