Monitoring the Interfacial Polymerization and Membrane Fouling of Selective Layer with Boronate Ester Linkages via Aggregation-induced Emission
RESEARCH ARTICLE|Updated:2025-08-25
|
Monitoring the Interfacial Polymerization and Membrane Fouling of Selective Layer with Boronate Ester Linkages via Aggregation-induced Emission
Chinese Journal of Polymer ScienceVol. 43, Issue 9, Pages: 1505-1515(2025)
Affiliations:
a.Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
b.Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Zhao, M. Y.; Luo, X. Z.; Li, D.; Dong, Y. Q.; Wang, Q.; Xu, X. L.; Zhang, Q. Monitoring the interfacial polymerization and membrane fouling of selective layer with boronate ester linkages via aggregation-induced emission. Chinese J. Polym. Sci. 2025, 43, 1505–1515
Meng-Yao Zhao, Xin-Zhao Luo, Die Li, et al. Monitoring the Interfacial Polymerization and Membrane Fouling of Selective Layer with Boronate Ester Linkages via Aggregation-induced Emission[J]. Chinese journal of polymer science, 2025, 43(9): 1505-1515.
Zhao, M. Y.; Luo, X. Z.; Li, D.; Dong, Y. Q.; Wang, Q.; Xu, X. L.; Zhang, Q. Monitoring the interfacial polymerization and membrane fouling of selective layer with boronate ester linkages via aggregation-induced emission. Chinese J. Polym. Sci. 2025, 43, 1505–1515 DOI: 10.1007/s10118-025-3352-4.
Meng-Yao Zhao, Xin-Zhao Luo, Die Li, et al. Monitoring the Interfacial Polymerization and Membrane Fouling of Selective Layer with Boronate Ester Linkages via Aggregation-induced Emission[J]. Chinese journal of polymer science, 2025, 43(9): 1505-1515. DOI: 10.1007/s10118-025-3352-4.
Monitoring the Interfacial Polymerization and Membrane Fouling of Selective Layer with Boronate Ester Linkages via Aggregation-induced Emission
An aggregation-induced emission (AIE)-active polymer membrane was prepared by the interfacial polymerization of a cyclodextrin-based glycocluster (CD@Glucose) and a tetraphenylethylene derivative modified with boronic acid groups (TPEDB) on the surface of a polyacrylonitrile (PAN) ultrafiltration membrane used for real-time monitoring of interfacial polymerization as well as membrane fouling.
Abstract
It is important to understand the evolution of the matter on the polymer membrane surface. The
in situ
and real-time monitoring of the membrane surface will not only favor the investigation of selective layer formation but can also track the fouling process during operation. Herein
an aggregation-induced emission (AIE)-active polymer membrane was prepared by the interfacial polymerization of a cyclodextrin-based glycocluster (CD@Glucose) and a tetraphenylethylene derivative modified with boronic acid groups (TPEDB) on the surface of a polyacrylonitrile (PAN) ultrafiltration membrane. This interfacial polymerization method can be stacked layer-by-layer to regulate the hydrophilicity and pore structure of the membrane. With the increase in the number of polymer layers
the separation and antifouling properties of the membrane gradually improved. Owing to the AIE property of the crosslinking agent TPEDB
the occurrence of interfacial polymerization and the degree of fouling during membrane operation can be monitored by the fluorescence distribution and intensity. With the aggravation of membrane fouling
the fluorescence decreased gradually
but recovered after cleaning. Therefore
this AIE effect can be used for real-time monitoring of interfacial polymerization as well as membrane fouling.
关键词
Keywords
references
Usman, M.; Ahmed, A.; Yu, B.; Peng, Q.; Shen, Y.; Cong, H. A review of different synthetic approaches of amorphous intrinsic microporous polymers and their potential applications in membrane-based gases separation. Eur. Polym. J. 2019 , 120 , 109262..
Dumbrava, O.; Filimon, A.; Marin, L. Tailoring properties and applications of polysulfone membranes by chemical modification: structure-properties-applications relationship. Eur. Polym. J. 2023 , 196 , 112316..
Tung, K. L.; Damodar, H. R.; Damodar, R. A.; Tsai, J. H.; Chen, C. H.; You, S. J.; Huang, M. S. Imaging the effect of aeration on particle fouling mitigation in a submerged membrane filtration using a photointerrupt sensor array. Sep. Sci. Technol. 2017 , 52 , 228−239..
Qian, X.; Ostwal, M.; Asatekin, A.; Geise, G. M.; Smith, Z. P.; Phillip, W. A.; Lively, R. P.; McCutcheon, J. R. A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology. J. Membr. Sci. 2022 , 645 , 120041..
Xie, K.; Fu, Q.; Qiao, G. G.; Webley, P. A. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO 2 capture. J. Membr. Sci. 2019 , 572 , 38−60..
Jin, Y.; Chen, H.; Wen, G.; Zhou, J.; Wang, Z.; Zhang, F.; Cui, Z. Fabrication of alkali-resistant PVDF membranes via atom transfer radical polymerization. Eur. Polym. J. 2024 , 207 , 112816..
Biswas, R.; Lee, Y.; Lee, H. I. Host-appended reusable polymeric films for the quantitative separation of pyridine from azeotropic pyridine/toluene/benzene mixture. Eur. Polym. J. 2025 , 225 , 113724..
Wang, Y.; Kumar, V.; Elahi, F.; Ghanem, B.; Balcik, M.; Shen, J.; Han, Y.; Pinnau, I. Amidoxime-functionalized tetraphenylethylene ladder polymer for efficient membrane-based gas separations. Eur. Polym. J. 2024 , 209 , 112896..
Marvaniya, K.; Maurya, A.; Dobariya, P.; Kaushik, A.; Prakash, P.; Bhargava, J.; Vanamudan, A.; Patel, K.; Kushwaha, S. Polymeric nano-films with spatially arranged compartments for uranium recovery from seawater. Eur. Polym. J. 2022 , 178 , 111507..
Wang, Z.; Zhang, R.; Zhang, S.; Li, W.; Zhi, K.; Su, Y.; Jiang, Z. Polyurea nanofiltration membranes with extreme-pH stability and high separation performance. J. Membr. Sci. 2024 , 692 , 122286..
Jiang, Z.; Nguyen, B. T. D.; Seo, J.; Hong, C.; Kim, D.; Ryu, S.; Lee, S.; Lee, G.; Cho, Y. H.; Kim, J. F.; Lee, K. Superhydrophobic polydimethylsiloxane dip-coated polycaprolactone electrospun membrane for extracorporeal membrane oxygenation. J. Membr. Sci. 2023 , 679 , 121715..
[Jia, M. M.; Feng, J. H.; Shao, W.; Chen, Z.; Yu, J. R.; Sun, J. J.; Wu, Q. Y.; Li, Y.; Xue, M.; Chen, X. M. In-situ interfacial synthesis of metal-organic framework/polyamide thin-film nanocomposite membranes with elevated nanofiltration performances. J. Membr. Sci . 2024 , 694 , 122418..
Jin, Y. H.; Li, M. H.; Yang, Y. W. Covalent organic frameworks for membrane separation. Adv.Sci. 2024 , 12 , 2412600..
Rahman, M.; Kabir, M.; Chen, S.; Wu, S. Developments, applications, and challenges of me tal–organic frameworks@textile composites: a state-of-art review. Eur. Polym. J. 2023 , 199 , 112480..
Zhang, F.; Fan, J. B.; Wang, S. Interfacial polymerization: from chemistry to functional materials. Angew. Chem. Int. Ed. 2020 , 59 , 21840−21856..
Qu, Y.; Zha, Y.; Jia, H.; Zang, Y.; Liu, Y.; Gu, T.; Du, X. Metal ion-catalyzed interfacial polymerization of functionalized covalent organic framework films for efficient separation. Eur. Polym. J. 2023 , 188 , 111939..
[Wang, H.; Zhao, J.; Li, Y.; Cao, Y.; Zhu, Z.; Wang, M.; Zhang, R.; Pan, F.; Jiang, Z. Aqueous two-phase interfacial assembly of COF membranes for water desalination. Nano-Micro Lett . 2022 , 14 , 216..
Tena, A.; Marcos-Fernández, Á.; de la Viuda, M.; Palacio, L.; Prádanos, P.; Lozano, Á.E.; de Abajo, J.; Hernández, A. Advances in the design of co-poly(ether-imide) membranes for CO 2 separations. influence of aromatic rigidity on crystallinity, phase segregation and gas transport. Eur. Polym. J. 2015 , 62 , 130−138..
Hofmann, M.; Puskas, J. E.; Weiss, K. Real-time mid-IR monitoring of metathesis reactions by fiber optic FTIR spectroscopy. Eur. Polym. J. 2002 , 38 , 19−24..
Ren, D.; Yeo, J. I. N.; Liu, T. Y.; Wang, X. Time-dependent FTIR microscopy for mechanism investigations and kinetic measurements in interfacial polymerisation: a microporous polymer film study. Polym. Chem. 2019 , 10 , 2769−2773..
Matthews, T.D.; Yan, H.; Cahill, D.G.; Coronell, O.; Mariñas, B.J. Growth dynamics of interfacially polymerized polyamide layers by diffuse reflectance spectroscopy and Rutherford backscattering spectrometry. J. Membr. Sci. 2013 , 429 , 71−80..
Nulens, I.; Caspers, S.; Verbeke, R.; Kubarev, A.; McMillan, A. H.; Vankelecom, I. F. J. Expanding the toolbox for microfluidic-based in situ membrane characterizationvia microscopy. J. Membr. Sci. 2023 , 685 , 121897..
Yuan, X. S.; Guo, Z. Y.; Geng, H. Z.; Rhen, D.S.; Wang, L.; Yuan, X. T.; Li, J. Enhanced performance of conductive polysulfone/MWCNT/PANI ultrafiltration membrane in an online fouling monitoring application. J. Membr. Sci. 2019 , 575 , 160−169..
Dai, J.; Wang, S.; Chen, P.; Tong, X.; Zhao, X.; Chen, C.; Zhou, H. Fabrication of ultrafiltration membranes with improved antifouling and antibacterial capability by surface modification of quaternary ammonium. Eur. Polym. J. 2023 , 193 , 112083..
Ohlemüller, P.; Konradi, R. Photoactivatable poly(2-oxazoline)s enable antifouling hydrogel membrane coatings. Eur. Polym. J. 2024 , 213 , 113097..
Tripathi, B. P.; Das, P.; Simon, F.; Stamm, M. Ultralow fouling membranes by surface modification with functional polydopamine. Eur. Polym. J. 2018 , 99 , 80−89..
[Ibrar, I.; Naji, O.; Sharif, A.; Malekizadeh, A.; Alhawari, A.; Alanezi, A.A.; Altaee, A. A review of fouling mechanisms, control strategies and real-time fouling monitoring techniques in forward osmosis. Water . 2019 , 11(4), 695..
Lutchmiah, K.; Verliefde, A. R. D.; Roest, K.; Rietveld, L.C.; Cornelissen, E.R. Forward osmosis for application in wastewater treatment: A review. Water Res. 2014 , 58 , 179−197..
Fontanos, P.M.; Yamamoto, K.; Nakajima, F.; Fukushi, K. Identification and quantification of the bacterial community on the surface of polymeric membranes at various stages of biofouling using fluorescence in situ hybridization. Sep. Sci. Technol. 2010 , 45 , 904−910..
Flemming, H. C.; Griebe, T.; Schaule, G. Antifouling strategies in technical systems—a short review. Water Sci. Technol. 1996 , 34 , 517−524..
Flemming, H. C.; Tamachkiarowa, A.; Klahre, J.; Schmitt, J. Monitoring of fouling and biofouling in technical systems. Water Sci. Technol. 1998 , 38 , 291−298..
Chen, W. H.; Hsieh, Y. H.; Tung, K. L.; Li, Y. L.; Lai, S. C.; Lin, N. J. An integrated fouling monitoring technique for a water treatment microfiltration process. Chem. Eng. Technol. 2010 , 33 , 1269−1275..
Tung, K. L.; Li, Y. L.; Hwang, K.-J.; Lu, W. M. Analysis and prediction of fouling layer structure in microfiltration. Desalination 2008 , 234 , 99− 106..
Smitha, B.; Suhanya, D.; Sridhar, S.; Ramakrishna, M. Separation of organic–organic mixtures by pervaporation—a review. J. Membr. Sci. 2004 , 241 , 1−21..
Chen, J.C.; Li, Q.; Elimelech, M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration. Adv. Colloid Interface Sci. 2004 , 107 , 83−108..
Tang, B.Z.; Zhan, X.; Yu, G.; Sze Lee, P.P.; Liu, Y.; Zhu, D. Efficient blue emission from siloles. J. Mater. Chem. 2001 , 11 , 2974−2978..
Park, S.; Kim, S.; Park, J.; Cho, K. H. Real-time monitoring the spatial distribution of organic fouling using fluorescence imaging technique. J. Membr. Sci. 2020 , 597 , 117778..
Guo, B. B.; Liu, C.; Xin, J. H.; Zhu, C. Y.; Xu, Z. K. Visualizing and monitoring interfacial polymerization by aggregation-induced emission. Polym. Chem. 2021 , 12 , 4332−4336..
Wang, C.; Guo, Z.; Wang, C.; Liu, W.; Yang, X.; Huo, H.; Cai, Y.; Geng, Z.; Su, Z. High-performance self-healing composite ultrafiltration membrane based on multiple molecular dynamic interactions. J. Membr. Sci. 2023 , 671 , 121395..
Duan, K.; Wang, J.; Zhang, Y.; Liu, J. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO 2 /N 2 separation. J. Membr. Sci. 2019 , 572 , 588−595..
Shan, M.;Geng, X.; Imaz, I.; Broto-Ribas, A.; Ortín-Rubio, B.; Maspoch, D.; Ansaloni, L.; Peters, T. A.; Tena, A.; Boerrigter, M. E.; Vermaas, D. A. Metal- and covalent-organic framework mixed matrix membranes for CO 2 separation: A perspective on stability and scalability. J. Membr. Sci. 2024 , 691 , 122258..
Li, D.; Chen, J.; Xu, X.; Bao, C.; Zhang, Q. Supramolecular assemblies of glycoclusters with aggregation-induced emission for sensitive phenol detection. Chem. Commun. 2020 , 56 , 13385−13388..
Zou, H.; Jin, Y.; Yang, J.; Dai, H.; Yu, X.; Xu, J. Synthesis and characterization of thin film composite reverse osmosis membranes via novel interfacial polymerization approach. Sep. Purif. Technol. 2010 , 72 , 256−262..
Seman, M. N. A.; Khayet, M.; Hilal, N. Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization. J. Membr. Sci. 2010 , 348 , 109−116..
Wang, Y.; Zhang, J.; Bao, C.; Xu, X.; Li, D.; Chen, J.; Hong, M.; Peng, B.; Zhang, Q. Self-cleaning catalytic membrane for water treatment via an integration of heterogeneous Fenton and membrane process. J. Membr. Sci. 2021 , 624 , 119121..
Luo, X.; Liu, X.; Dong, Y.; Fan, L.; Wang, T.; Zhang, Q. Dehydration-induced stable boroxine network as selective layer of anti-dye-deposition membranes. J. Membr. Sci. 2023 , 687 , 122082..
Yin, C.; Fang, S.; Shi, X.; Zhang, Z.; Wang, Y. Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration. J. Membr. Sci. 2021 , 618 , 118727..
Yue, R.; Sun, X. A self-cleaning, catalytic titanium carbide (MXene) membrane for efficient tetracycline degradation through p eroxymonosulfate activation: performance evaluation and mechanism study. Sep. Purif. Technol. 2021 , 279 , 119796..
[Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A Review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes 2020 , 10, 34..
Blandin, G.; Gautier, C.; Sauchelli Toran, M.; Monclús, H.; Rodriguez-Roda, I.; Comas, J. Retrofitting membrane bioreactor (MBR) into osmotic membrane bioreactor (OMBR): apilot scale study. Chem. Eng. J. 2018 , 339 , 268−277..
Mutamim, N. S. A.; Noor, Z. Z.; Hassan, M. A. A.; Olsson, G. Application of membrane bioreactor technology in treating high strength industrial wastewater: a performance review. Desalination 2012 , 305 , 1−11..
Ozgun, H.; Dereli, R. K.; Ersahin, M. E.; Kinaci, C.; Spanjers, H.; van Lier, J. B. A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep. Purif. Technol. 2013 , 118 , 89−104..
Multicomponent Polymerization of Diacetylarenes, Dialkynones, and NH4OAc for In situ Construction of Functional Conjugated Poly(triarylpyridine)s
Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions
Surface and Interface Engineering for Advanced Nanofiltration Membranes
Green Monomer of CO2 and Alkyne-based Four-component Tandem Polymerization toward Regio- and Stereoregular Poly(aminoacrylate)s
Related Author
Hong-Kun Li
Meng-Chao Zhang
Lu Wang
Shi-Han Yu
Yu-Jie Shang
Bian-Bian Guo
Hao-Nan Li
Yong-Jin Li
Related Institution
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University
Ministry of Education, Key Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University
Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology