Luo, E. T.; Jing, L.; Kong, L. M.; Peng, Y.; Luo, H.; Zhao, L. J.; Xie, Z. T.; Wu, J. R. Revealing the effect of non-rubber components of natural rubber on its radiation resistance performance. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3330-x
En-Tao Luo, Liang Jing, Ling-Min Kong, et al. Revealing the Effect of Non-rubber Components of Natural Rubber on Its Radiation Resistance Performance[J/OL]. Chinese journal of polymer science, 2025, 431-10.
Luo, E. T.; Jing, L.; Kong, L. M.; Peng, Y.; Luo, H.; Zhao, L. J.; Xie, Z. T.; Wu, J. R. Revealing the effect of non-rubber components of natural rubber on its radiation resistance performance. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3330-xDOI:
En-Tao Luo, Liang Jing, Ling-Min Kong, et al. Revealing the Effect of Non-rubber Components of Natural Rubber on Its Radiation Resistance Performance[J/OL]. Chinese journal of polymer science, 2025, 431-10. DOI: 10.1007/s10118-025-3330-x.
Revealing the Effect of Non-rubber Components of Natural Rubber on Its Radiation Resistance Performance
Natural rubber (NR) is a crucial elastic material used for damping and sealing applications in the nuclear industry
but its mechanical stability under radiation remains inadequate. Current efforts to improve radiation resistance rely on the addition of antiradiation agents
however
the effects of the components and microstructures of NR itself on radiation resistance remain unclear. In this study
we compared the composition and structure differences of four typical commercially used NR materials and investigated their effects on gamma radiation resistance. Furthermore
we examined the impact of non-rubber components (NRC) in NR on radiation resistance using deproteinized and dephosphorylated NR model samples. Our results revealed that NRC
such as proteins and phospholipids can enhance the strength of natural rubber before radiation exposure. However
after the removal of NRC
the samples exhibited improved mechanical stability under irradiation. Additionally
the ash content in NR could also influence the radiation resistance
as metal ions may react with the active centers produced by radiation
thereby enhancing the radiation resistance of the rubber. This work identifies the effect of non-rubber components in NR on radiation resistance and may serve as a reference for screening and developing radiation-resistant NR materials.
Nguyen, L. H.; Nguyen, H. D.; Tran, P. T.; Nghiem, T. T.; Nguyen, T. T.; Dao, V. L.; Fukuda, M. Biodegradation of natural rubber and deproteinized natural rubber by enrichment bacterial consortia. Biodegradation 2020 , 31 , 303−317..
Nun-Anan, P.; Suchat, S.; Mahathaninwong, N.; Chueangchayaphan, N.; Karrila, S.; Limhengha, S. Study of aquilaria crassna wood as an antifungal additive to improve the properties of natural rubber as air-dried sheets. Polymers 2021 , 13 , 4178..
Moustafa, A. B.; Mounir, R.; El Miligy, A. A.; Mohamed, M. A. Effect of gamma radiation on the properties of natural rubber/styrene butadiene rubber blends. Arabian J. Chem. 2016 , 9 , S124−S129..
Luo, R.; Kang, D.; Huang, C.; Yan, T.; Li, P.; Ren, H.; Zhang, Z. Mechanical properties, radiation resistance performances, and mechanism insights of nitrile butadiene rubber irradiated with high-dose gamma rays. Polymers 2023 , 15 , 3723..
Nambiar, S.; Yeow, J. T. Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 2012 , 4 , 5717−5726..
Akhtar, S.; De, P. P.; De, S. K. Tensile failure of γ -ray irradiated blends of high-density polyethylene and natural rubber. Appl. Polym. Sci. 1986 , 32 , 4169−4183..
Hosseinmardi, A.; Amiralian, N.; Martin, D. J.; Annamalai, P. K. Achieving ultra-tear resistant high-performance natural rubber nanocomposite via bio-inspired lignocellulosic compatibilization. Ind. Crops Prod. 2024 , 207 , 117729..
Zhang, F.; Lusheng, L. I. A. O.; Yongzhou, W. A. N. G.; Yueqiong, W. A. N. G.; Huang, H.; Puwang, L. I.; Rizhong, Z. E. N. G. Reinforcement of natural rubber latex with silica modified by cerium oxide: preparation and properties. J. Rare Earths 2016 , 34 , 221−226..
Yalcin, S.; Aktas, B.; Yilmaz, D. Radiation shielding properties of Cerium oxide and Erbium oxide doped obsidian glass. Radiat. Phys. Chem. 2019 , 160 , 83−88..
Tabuse, S.; Izumi, Y.; Kojima, T.; Yoshida, Y.; Kozawa, T.; Miki, M.; Tagawa, S. Radiation protection effects by add ition of aromatic compounds to n-dodecane. Radiat. Phys. Chem. 2001 , 62 , 179−187..
Diao, S.; Zhang, S.; Yang, Z.; Feng, S.; Zhang, C.; Wang, Z.; Wang, G. Effect of tetraphenylphenyl-modified fumed silica on silicone rubber radiation resistance. J. Appl. Polym. Sci. 2011 , 120 , 2440..
Liu, H.; Shen, Q.; Zhang, L.; Gu, S.; Peng, Y.; Wu, Q.; Wu, J. A fast-healing and high-performance metallosupramolecular elastomer based on pyridine-Cu coordination. Sci. China Mater. 2022 , 65 , 1943−1951..
Zhang, L.; Xiong, H.; Wu, Q.; Peng, Y.; Zhu, Y.; Wang, H.; Wu, J. Constructing hydrophobic protection for ionic interactions toward water, acid, and base-resistant self-healing elastomers and electronic devices. Sci. China Mater. 2021 , 64 , 1780−1790..
Plangpleng, N.; Charoenphun, P.; Polpanich, D.; Sakulkaew, K.; Buasuwan, N.; Onjun, O.; Chuamsaamarkkee, K. Flexible gamma ray shielding based on natural Rubber/BaSO 4 nanocomposites. Radiat. Phys. Chem. 2022 , 199 , 110311..
Intom, S .; Kalkornsurapranee, E.; Johns, J.; Kaewjaeng, S.; Kothan, S.; Hongtong, W.; Kaewkhao, J. Mechanical and radiation shielding properties of flexible material based on natural rubber/Bi 2 O 3 composites. Radiat. Phys. Chem. 2020 , 172 , 108772..
El-Khatib, A. M.; Doma, A. S.; Abbass, M. M.; Hassan, M. F.; Abbas, M. I.; Abd El-Latif, M. M.; Gouda, M. M. Enhancing gamma radiation shielding properties of iron metal and natural rubber composites. J. Appl. Polym. Sci. 2024 , 141 , e55690..
Gouda, M. M.; Zard, K. An extensive investigation on gamma shielding properties of dimethylpolysiloxane modified with nano sized SnO 2 and CdO. Radiat. Phys. Chem. 2024 , 218 , 111588..
Nun-anan, P.; Wisunthorn, S.; Pichaiyut, S.; Nathaworn, C. D.; Nakason, C. Influence of nonrubber components on properties of unvulcanized natural rubber. Polym. Adv. Technol. 2020 , 31 , 44−59..
Shi, X.; Yang, L.; Sun, S.; Zhong, J.; Yu, X.; Zuo, M.; Zheng, Q. Influence of proteins and phospholipids on strain softening behaviors of natural rubber. Polymer 2023 , 283 , 126273..
Tanaka, Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 2001 , 74 , 355−375..
Nakaramontri, Y.; Kummerlöwe, C.; Vennemann, N.; Wisunthorn, S.; Pichaiyut, S.; Nakason, C. Electron tunneling in carbon nanotubes and carbon black hybrid filler-filled natural rubber composites: Influence of non-rubber components. Polym. Compos. 2018 , 39 , E1237−E1250..
Yu, H.; Wang, Q.; Li, J.; Liu, Y.; He, D.; Gao, X.; Yu, H. Effect of lipids on the stability of natural rubber latex and tensile properties of its films. J. Rubb. Res. 2017 , 20 , 213−222..
Lehman, N.; Tuljittraporn, A.; Songtipya, L.; Uthaipan, N.; Sengloyluan, K.; Johns, J.; Kalkornsurapranee, E. Influence of non-rubber components on the properties of unvulcanized natural rubber from different clones. Polymers 2022 , 14 , 1759..
Huang, S. Q.; Zhang, J. Q.; Zhu, Y.; Kong, L. M.; Liao, L. S.; Zhang, F. Q.; Wu, J. R. Revealing the structure-property difference of natural rubber prepared by different methods: protein and gel content are key factors. Chinese J. Polym. Sci. 2024 , 42 , 457−467..
Salomez, M.; Subileau, M.; Intapun, J.; Bonfils, F.; Sainte-Beuve, J.; Vaysse, L.; Dubreucq, E. Micro-organisms in latex and natural rubber coagula of Hevea brasiliensis and their impact on rubber composition, structure and properties. J. Appl. Microbiol. 2014 , 117 , 921−929..
Chen, G.; Wang, B.; Lin, H.; Peng, W.; Zhang, F.; Li, G.; Liao, L. Effect of nonisoprene degradation and naturally occurring network during maturation on the properties of natural rubber. Polymers 2022 , 14 , 2180..
Dafader, N. C.; Haque, M. E.; Jolly, Y. N.; Akhtar, F.; Ahmad, M. U. Dependence of physicochemical properties of radiation vulcanized natural rubber latex film on maturation time. Polym. Plast. Technol. Eng. 2003 , 42 , 217−227..
Mei, C.; Wang, Y. Z.; Lu, G.; Wang, X, P. Effects of different drying methods on the microstructure and thermal oxidative aging resistance of natural rubber. J. Appl. Polym. Sci. 2012 , 126 , 1808−1813..
Lao, T.; Fan, X.; Li, X.; Wang, Y.; Wei, Y.; Liao, S. Influences of non-rubber components on the molecular network and viscoelasticity of natural rubber gum. Polymer 2024 , 127231..
Wang, X.; Luo, Z.; Xu, Y.; Zhong, J.; Zhang, H.; Liang, J. Preparation and performance of natural rubber latex treatment for silica filled natural rubber composites. J. Appl. Polym. Sci. 2023 , 140 , e53966..
Fu, X.; Huang, C.; Zhu, Y.; Huang, G.; Wu, J. Characterizing the naturally occurring sacrificial bond within natural rubber. Polymer 2019 , 161 , 41−48..
Liu, H.; Huang, G. S.; Wei, L. Y.; Zeng, J.; Fu, X.; Huang, C.; Wu, J. R. Inhomogeneous natural network promoting strain-induced crystallization: a mesoscale model of natural rubber. Chinese J. Polym. Sci. 2019 , 37 , 1142−1151..
Huang, C.; Huang, G.; Li, S.; Luo, M.; Liu, H.; Fu, X.; Wu, J. Research on architecture and composition of natural network in natural rubber. Polymer 2018 , 154 , 90−100..
Wartewig, S.; Helmis, G.; Klüppel, M. Trapped e ntanglements in polymer networks and their influence on the stress-strain behavior up to large extensions. Prog. Colloid Polym. Sci . 1992 (pp. 137-143)..
Schlögl, S.; Trutschel, M. L.; Chassé, W.; Riess, G.; Saalwächter, K.Entanglement effects in elastomers: macroscopic vs microscopic properties. Macromolecules 2014 , 47 , 2759−2773..
Optimizing Sulfur Vulcanization for Enhanced Mechanical Performance of Hevea Latex-Dipped Film: Insights from AFM PeakForce Quantitative Nanomechanical Mapping
Simultaneously Improved Curing, Mechanical, Antioxidative Properties and Reduced ZnO Loading of Silica Filled NR Composites by Incorporation of Low-cost Crude Carbon Dots via Conventional Melt-milling Method
Revealing the Structure-Property Difference of Natural Rubber Prepared by Different Methods: Protein and Gel Content are Key Factors
Related Author
Jitladda Sakdapipanich
Chee-Cheong Ho
Ken Nakajima
Han Cheng
Narueporn Payungwong
Peng Yu
Chao-Ying Sun
Hai-Jun Ji
Related Institution
Faculty of Science, University Tunku Abdul Rahman, Sungai Long Campus, Kajang
Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-, Tokyo
National Key Laboratory for Tropical Crop Breeding, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences
Rubber Research Group, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Nakhon Pathom
School of Materials Science and Engineering, Wuhan Institute of Technology