FOLLOWUS
a.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
b.Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
c.School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
yhe@dhu.edu.cn
Received:11 November 2024,
Revised:23 January 2025,
Accepted:2025-02-26,
Published Online:10 April 2025,
Published:30 April 2025
Scan QR Code
Pei, X. L.; Yang, Q.; Sun, Y. L.; Wu, W.; Yu, J. Y.; He, Y. Influence of bromo-aromatic substrates on direct arylation of EDOTs toward higher molecular conjugate polymer. Chinese J. Polym. Sci. 2025, 43, 718–729
Xi-Lin Pei, Quan Yang, Yan-Lu Sun, et al. Influence of Bromo-Aromatic Substrates on Direct Arylation of EDOTs toward Higher Molecular Conjugate Polymer[J/OL]. Chinese journal of polymer science, 2025, 43718-729.
Pei, X. L.; Yang, Q.; Sun, Y. L.; Wu, W.; Yu, J. Y.; He, Y. Influence of bromo-aromatic substrates on direct arylation of EDOTs toward higher molecular conjugate polymer. Chinese J. Polym. Sci. 2025, 43, 718–729 DOI: 10.1007/s10118-025-3327-5.
Xi-Lin Pei, Quan Yang, Yan-Lu Sun, et al. Influence of Bromo-Aromatic Substrates on Direct Arylation of EDOTs toward Higher Molecular Conjugate Polymer[J/OL]. Chinese journal of polymer science, 2025, 43718-729. DOI: 10.1007/s10118-025-3327-5.
Bromo-aromatics substrate-controlled electrophilicity modulation for enhanced EDOT activation.
The influence of the electronic and steric properties of bromoaromatic substrates on direct arylation polymerization for synthesizing high-molecular-weight conjugated polymers was investigated through a combination of experiments and calculations. Bromo-aromatic substrates with electron-withdrawing fluoro substituents exhibited higher yields and degrees of polymerization under PPh
3
-assisted conditions compared to those with electron-donating or bulky methyl substituents. Additionally
excessive steric hindrance at ortho-sites or overly electron-deficient dibromoaromatic substrates leads to reaction inactivation. Calculations indicated that electron-withdrawing substituents enhanced the electrophilicity of arylpalladium-PPh
3
intermediates
facilitating the activation of electron-rich arylative substrates and promoting polymer growth. Furthermore
steric hindrance from the substituents can influence the preferred reaction pathway
thereby increasing the real reaction barriers. Both experimental and computational results suggest that bromoaromatic substrates with optimized electron-deficient characteristics significantly improve monomer conversion and polymerization efficiency with
n
-hexylmethylether-substituted EDOT. These findings clarify how the electronic and steric properties of bromo-aromatic substrates affect EDOT derivative activation and are expected to aid in optimizing the polymerization conditions for the preparation of high-molecular-weight conjugated polymers.
Elschner, A.; Stephan, K.; Lovenich, W.; Merker, U.; KReuter, K. PEDOT: Principles and applications of an intrinsically conductive polymer , CRC Press, Boca Raton, 2010, 377.
Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000 , 12 , 481−494..
DuBois, C. J.; Abboud, K. A.; Reynolds, J. R. Electrolyte-controlled redox conductivity and n-type doping in poly(bis-EDOT-pyridine)s. J. Phys. Chem. B 2004 , 108 , 8550−8557..
Song, Y.; Dai, X.; Zou, Y.; Li, C.; Di, C. A.; Zhang, D.; Zhu, D. Boosting the thermoelectric performance of the doped DPP-EDOT conjugated polymer by incorporating an ionic additive. Small 2023 , 19 , 2300231..
Estrada, L. A.; Liu, D. Y.; Salazar, D. H.; Dyer, A. L.; Reynolds, J. R. Poly[bis-EDOT-isoindigo ] : an electroactive polymer applied to electrochemical supercapacitors. Macromolecules 2012 , 45 , 8211−8220..
Yano, H.; Kudo, K.; Marumo, K.; Okuzaki, H. Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm −1 . Sci. Adv. 2019 , 5 , eaav9492..
Tan, Z. R.; Xing, Y. Q.; Cheng, J. Z.; Zhang, G.; Shen, Z.-Q.; Zhang, Y. J.; Liao, G.; Chen, L.; Liu, S. Y. EDOT-based conjugated polymers accessed via C–H direct arylation for efficient photocatalytic hydrogen production. Chem. Sci. 2022 , 13 , 1725−1733..
Zeglio, E.; Vagin, M.; Musumeci, C.; Ajjan, F. N.; Gabrielsson, R.; Trinh, X. T.; Son, N. T.; Maziz, A.; Solin, N.; Inganäs, O. Conjugated polyelectrolyte blends for electrochromic and electrochemical transistor devices. Chem. Mater. 2015 , 27 , 6385−6393..
Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018 , 3 , 17086..
Wang, Y.; Zeglio, E.; Liao, H.; Xu, J.; Liu, F.; Li, Z.; Maria, I. P.; Mawad, D.; Herland, A.; McCulloch, I.; Yue, W. Hybrid alkyl–ethylene glycol side chains enhance substrate adhesion and operational stability in accumulation-mode organic electrochemical transistors. Chem. Mater. 2019 , 31 , 9797−9806..
Gharahcheshmeh, M. H.; Tavakoli, M. M.; Gleason, E. F.; Robinson, M. T.; Kong, J.; Gleason, K. K. Tuning, optimization, and perovskite solar cell device integration of ultrathin poly(3,4-ethylene dioxythiophene) films via a single-step all-dry process. Sci. Adv. 2019 , 5 , eaay0414..
Twelve Wang, C.; Mueller, C. J.; Gann, E.; Liu, A. C. Y.; Thelakkat, M.; McNeill, C. R. EDOT-diketopyrrolopyrrole copolymers for polymer solar cells. J. Mater. Chem. A 2016 , 4 , 3477−3486..
Zhu, B.; Luo, S. C.; Zhao, H.; Lin, H. A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H. H. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 2014 , 5 , 4523..
Strakosas, X.; Biesmans, H.; Abrahamsson, T.; Hellman, K.; Ejneby, M. S.; D, o., Mary J. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 2023 , 379 , 795−802..
Gobalasingham, N. S.; Thompson, B. C. Direct arylation polymerization: A guide to optimal conditions for effective conjugated polymers. Prog. Polym. Sci. 2018 , 83 , 135−201..
Bura, T.; Blaskovits, J. T.; Leclerc, M. Direct (hetero)arylation polymerization: trends and perspectives. J. Am. Chem. Soc. 2016 , 138 , 10056−10071..
Bohra, H.; Wang, M. Direct C–H arylation: a “greener” approach towards facile synthesis of organic semiconducting molecules and polymers. J. Mater. Chem. A 2017 , 5 , 11550−11571..
Michiyuki, T.; Maksso, I.; Ackermann, L. Photo-induced ruthenium-catalyzed C−H arylation polymerization at ambient temperature. Angew. Chem. Int. Ed. 2024 , 63 , e202400845..
Brassard, S.; Sangachin, M. H.; Leclerc, M. Toward defect suppression in polythiophenes synthesized by direct (hetero)arylation polymerization. Macromolecules 2023 , 56 , 1362−1371..
Mercier, L. G.; Leclerc, M. Direct (hetero)arylation: a new tool for polymer chemists. Acc. Chem. Res. 2013 , 46 , 1597−1605..
Rudenko, A. E.; Wiley,C. A.; Tannaci, J. F.; Thompson, B.C. Optimization of direct arylation polymerization conditions for the synthesis of poly (3-hexylthiophene). J. Polym. Sci. Pol. Chem. 2013 , 51 , 2660−2668..
Wakioka, M.; Ichihara, N.; Kitano, Y.; Ozawa, F. A highly efficient catalyst for the synthesis of alternating copolymers with thieno[3,4-c ] pyrrole-4,6-dione units via direct arylation polymerization. Macromolecules 2014 , 47 , 626−631..
Wang, K.; Wang, G.; Wang, M. Balanced ambipolar poly(diketopyrrolopyrrole-alt-tetrafluorobenzene) semiconducting polymers synthesized via direct arylation polymerization. Macromol. Rapid Commun. 2015 , 36 , 2162−2170..
Wang, Q.; Takita, R.; Kikuzaki, Y.; Ozawa, F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J. Am. Chem. Soc. 2010 , 132 , 11420−11421..
Shao, J.; Wang, G.; Wang, K.; Yang, C.; Wang, M. Direct arylation polycondensation for efficient synthesis of narrow-bandgap alternating D–A copolymers consisting of naphthalene diimide as an acceptor. Polym. Chem. 2015 , 6 , 6836−6844..
Wang, X.; Wang, K.; Wang, M. Synthesis of conjugated polymers via an exclusive direct-arylation coupling reaction: A facile and straightforward way to synthesize thiophene-flanked benzothiadiazole derivatives and their copolymers. Polym. Chem. 2015 , 6 , 1846−1855..
Bhardwaj, D.; Shahjad, S.; Gupta, S.; Yadav, P.; Bhargav, R.; Patra, A. All-conjugated poly (3-hexylthiophene)-block-poly(hexyl-3,4-ethylenedioxythiophene) copolymers. ChemistrySelect 2017 , 2 , 9557−9562..
Zhang, X.; Shi, Y.; Deng, Y.; Geng, Y. Direct arylation polycondensation of thiophene-based C−H monomers. Chin. J. Chem. 2023 , 41 , 2908−2924..
Qassab, M.; Lohier, J. F.; Marineau-Plante, G.; Wayzani, A. A.; Herbinet, R.; Durandetti, M.; Hardouin, J.; Karsenti, P. L.; Le Pluart, L.; Harvey, P. D.; Lemouchi, C.; Sharma, G. D. Role of 3, 4-ethylenedioxythiophene in the enhancementof optical and charge transport properties of low band gap diketopyrrolopyrrole-containing metallooligomers designed for organic solar cells. ACS Appl. Energy Mater. 2023 , 6 , 12452−12467..
Castillo, G. E.; Thompson, B. C. Room temperature synthesis of a well-defined conjugated polymer using direct arylation polymerization (DArP). ACS Macro Lett. 2023 , 12 , 1339−1344..
Grenier, F.; Aïch, B. R.; Lai, Y. Y.; Guérette, M.; Holmes, A. B.; Tao, Y.; Wong, W. W. H.; Leclerc, M. Electroactive and photoactive poly[isoindigo-alt-EDOT ] synthesized using direct (hetero)arylation polymerization in batch and in continuous flow. Chem. Mater. 2015 , 27 , 2137−2143..
Pei, D.; Wang, Z.; Peng, Z.; Zhang, J.; Deng, Y.; Han, Y.; Ye, L.; Geng, Y. Impact of molecular weight on the mechanical and electrical properties of a high-mobility diketopyrrolopyrrole-based conjugated polymer. Macromolecules 2020 , 53 , 4490−4500..
Wu, H. Y.; Yang, C. Y.; Li, Q. F.; Kolhe,N. B.; Strakosas, X.; Stoeckel, M. A.; Wu, Z. A.; Jin, W. L.; Savvakis, M.; Kroon, R.; Tu, D. Y.; Woo, H. Y.; Berggren, M.; Jenekhe, S. A.; Fabiano, S. Influence of molecular weight on the organic electrochemical transistor performance of ladder-type conjugated polymers. Adv. Mater. 2022 , 34 , 2106235..
Liu, C. Y.; Chong, H.; Lin, H. A.; Yamashita, Y.; Zhang, B.; Huang, K. W.; Hashizume, D.; Yu, H. H. Palladium-catalyzed direct C-H arylations of dioxythiophenes bearing reactive functional groups: a step-economical approach for functional pi-conjugated oligoarenes. Org. Biomol. Chem. 2015 , 13 , 8505−8511..
Guo, Q.; Zhang, J.; Li, X.; Gong, H.; Wu, S.; Li, J. Physical and electrochemical properties of soluble 3,4-ethylenedioxythiophene (EDOT)-based copolymers synthesized via direct (hetero)arylation polymerization. Front. Chem. 2021 , 9 , 753840..
Xing, L.; Liu, J. R.; Hong, X.; Houk, K. N.; Luscombe, C. K. An exception to the carothers equation caused by the accelerated chain extension in a Pd/Ag cocatalyzed cross dehydrogenative coupling polymerization. J. Am. Chem. Soc. 2022 , 144 , 2311−2322..
Blaskovits, J. T.; Johnson, P. A.; Leclerc, M. Mechanistic origin of β-defect formation in thiophene-based polymers prepared by direct (hetero)arylation. Macromolecules 2018 , 51 , 8100−8113..
Pei, X.; Yang, Q.; Sun, Y.; Wu, W.; Yu, J.; He, Y. Tuning “ligandless” direct arylation polymerization toward less-branching EDOT polymers. Polym. Chem., 2025 ,16, 117-125 .
Mirabal, R. A.; Buratynski, J. A.; Scott, R. J.; Schipper, D. J. A palladium precatalyst for direct arylation polymerization. Polym. Chem. 2024 , 15 , 847−852..
Adrio, L. A.; Nguyen, B. N.; Guilera, G.; Livingston, A. G.; Hii, K. K. Speciation of Pd(OAc) 2 in ligandless Suzuki–Miyaura reactions. Catal. Sci. Technol. 2012 , 2 , 316−323..
Ben-Ari, E.; Cohen, R.; Gandelman, M.; Shimon, L. J. W.; Martin, J. M. L.; Milstein, D. L. Ortho C−H activation of haloarenes and anisole by an electron-rich iridium(I) complex: mechanism and origin of regio- and chemoselectivity. An experimental and theoretical study. Organometallics 2006 , 25 , 3190−3210..
Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N. R.; Hartwig, J. F. Mild Iridium-catalyzed borylation of arenes. high turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 2002 , 124 , 390−391..
Donat-Bouillud, A.; Lévesque, I.; Tao, Y.; D'Iorio, M.; Beaupré, S.; Blondin, P.; Ranger, M.; Bouchard, J.; Leclerc, M. Light-emitting diodes from fluorene-based π -conjugated polymers. Chem. Mater. 2000 , 12 , 1931−1936..
Choi, S. J.; Kuwabara, J.; Kanbara, T. Microwave-assi sted polycondensation via direct arylation of 3,4-ethylenedioxythiophene with 9,9-dioctyl-2,7-dibromofluorene. ACS Sustain. Chem. Eng. 2013 , 1 , 878−882..
Grenier, F.; Goudreau, K.; Leclerc, M. Robust direct (hetero)arylation polymerization in biphasic conditions. J. Am. Chem. Soc. 2017 , 139 , 2816−2824..
Zhang, M.; Tsao, H. N.; Pisula, W.; Yang, C.; Mishra, A. K.; Müllen, K. Field-effect transistors based on a benzothiadiazole−cyclopentadithiophene copolymer. J. Am. Chem. Soc. 2007 , 129 , 3472−3473..
Zhang, X. R.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Joseph Kline, R.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W. M.; McCulloch, I.; DeLongchamp, D. M. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 2013 , 4 , 2238..
Du, J.; Biewer, M. C.; Stefan, M. C. Benzothiadiazole building units in solution-processable small molecules for organic photovoltaics. J. Mater. Chem. A 2016 , 4 , 15771−15787..
Narayanan, S.; Raghunathan, S. P.; Poulose, A. C.; Mathew, S.; Sreekumar, K.; Sudha Kartha, C.; Joseph, R. Third-order nonlinear optical properties of 3,4-ethylenedioxythiophene copolymers with chalcogenadiazole acceptors. New J. Chem. 2015 , 39 , 2795−2806..
Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 2006 , 125 ,194101..
Feller, D. The role of databases in support of computational chemistry calculations. J. Comput. Chem. 1996 , 17 , 1571−1586..
Lafrance, M.; Fagnou, K. Palladium-catalyzed benzene arylation: Incorporation of catalytic pivalic acid as a proton shuttle and a key element in catalyst design. J. Am. Chem. Soc. 2006 , 128 , 16496−16497..
Carole, W. A.; Colacot, T. J. Understanding palladium acetate from a user perspective. Chem. Eur. J. 2016 , 22 , 7686−7695..
Gorel sky, S. I.; Lapointe, D.; Fagnou, K. Analysis of the palladium-catalyzed (aromatic) C-H bond metalation-deprotonation mechanism spanning the entire spectrum of arenes. J. Org. Chem. 2012 , 77 , 658−668..
Gorelsky, S. I.; Lapointe, D.; Fagnou, K. Analysis of the concerted metalation-deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J. Am. Chem. Soc. 2008 , 130 , 10848−10849..
Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K. Reductive elimination of d 8 -organotransition metal complexes. Bull. Chem. Soc. Jpn. 1981 , 54 , 1857−1867..
Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. Effect of ligand steric properties and halide identity on the mechanism for oxidative addition ofhaloarenes to trialkylphosphine Pd(0) complexes. J. Am. Chem. Soc. 2009 , 131 , 8141−8154..
Amatore, C.; Pfluger, F. Mechanism of oxidative addition of palladium(0) with aromatic iodides in toluene, monitored at ultramicroelectrodes. Organometallics 1990 , 9 , 2276−2282..
Bickelhaupt, F. M.; Ziegler, T. Oxidative insertion as frontside SN2 substitution: a theoretical study of the model reaction system Pd + CH 3 Cl. Organometallics 1995 , 14 , 2288−2296..
Rio, J.; Liang, H.; Perrin, M.-E. L.; Perego, L. A.; Grimaud, L.; Payard, P.-A. We already know everything about oxidative addition to Pd(0): Do we? ACS Catal. 2023 , 13 (17), 11399-11421..
Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. Catalytic intermolecular direct arylation of perfluorobenzenes. J. Am. Chem. Soc. 2006 , 128 , 8754−8756..
Ma, W.; Mei, R.; Tenti, G.; Ackermann, L. Ruthenium(II)-catalyzed oxidative C-H alkenylations of sulfonic acids, sulfonyl chlorides and sulfonamides. Chem. Eur. J. 2014 , 20 , 15248−15251..
Rogge, T.; Oliveira, J. C. A.; Kuniyil, R.; Hu, L.; Ackermann, L. Reactivity-controlling factors in carboxylate-assisted C–H activation under 4d and 3d transition metal catalysis. ACS Catal. 2020 , 10 , 10551−10558..
Wang, L.; Carrow, B. P. Oligothiophene synthesis by a general C–H activation mechanism: electrophilic concerted metalation–deprotonation (eCMD). ACS Catal. 2019 , 9 , 6821−6836..
E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO Version 3.1.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution