FOLLOWUS
a.Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
liujie123@iccas.ac.cn
Received:09 December 2024,
Revised:06 February 2025,
Accepted:10 February 2025,
Published Online:08 April 2025,
Published:01 July 2025
Scan QR Code
Wu, X. N.; Zhao, X. Y.; Liu, J. Advances in surface materials for resisting snow and freezing disasters. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3320-z
Xin-Nuo Wu, Xue-Ying Zhao, Jie Liu. Advances in Surface Materials for Resisting Snow and Freezing Disasters[J/OL]. Chinese journal of polymer science, 2025, 431-21.
Wu, X. N.; Zhao, X. Y.; Liu, J. Advances in surface materials for resisting snow and freezing disasters. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3320-z DOI:
Xin-Nuo Wu, Xue-Ying Zhao, Jie Liu. Advances in Surface Materials for Resisting Snow and Freezing Disasters[J/OL]. Chinese journal of polymer science, 2025, 431-21. DOI: 10.1007/s10118-025-3320-z.
Snow and freezing disasters are recurrent weather and climate phenomena that affect the world annually. These events exert a significant influence on numerous aspects of life
including transportation
power supply
and daily activities
and result in considerable economic losses. This study aims to provide a comprehensive analysis of the regions affected by these disasters
the preventive and responsive measures employed
recent advancements in key materials
and the challenges encountered. By doing so
we can gain a deeper understanding of the vital role
significant advantages
and untapped potential of key materials for effectively preventing and responding to snow and freezing disasters. Furthermore
promoting research and utilization of these materials not only contributes to the development of the safety and emergency equipment industry but also strengthens the supply of advanced and suitable safety and emergency equipment.
In 2021 Global Natural Disaster Assessment Report , Global Disaster Data Platform, 2022, https://www.gddat.cn.
Wang, L.; Gao, G.; Zhang, Q.; Sun, J.; Wang, Z.; Zhang, Y.; Zhao, S.; Chen, X.; Chen, Y.; Wang, Y.; Chen, L.; Gao, H. Analysis of the severe cold surge, ice-snow and frozen disasters in south China during January 2008: I. Climatic features and its impact. Meteorol. Mon. (in Chinese) 2008 , 34 , 95−100..
Ding, Y.; Jia, X.; Wang, Z.; Chen, X.; Chen, L. A contrasting study of freezing disasters in January 2008 and in winter of 1954/1955 in China. Front. Earth Sci. China 2009 , 3 , 129−145..
Levin, T.; Botterud, A.; Mann, W. N.; Kwon, J.; Zhou, Z. Extreme weather and electricity markets: key lessons from the February 2021 Texas crisis. Joule 2022 , 6 , 1−7..
Ayres, J.; Simendinger, W. H.; Balik, C. M. Characterization of titanium alkoxide sol-gel systems designed for anti-icing coatings: I. Chemistry. J. Coat. Technol. Res. 2007 , 4 , 463−471..
Petrenko, V. F.; Sullivan, C. R.; Kozlyuk, V.; Petrenko, F. V.; Veerasamy, V. Pulse electro-thermal de-icer (PETD). Cold Reg. Sci. Technol. 2011 , 65 , 70−78..
Laforte, J. L.; Allaire, M. A.; Laflamme, J. State-of-the-art on power line de-icing. Atmos. Res. 1998 , 46 , 143−158..
Gauthier, A.; Symon, S.; Clanet, C.; Quéré, D. Water impacting on superhydrophobic macrotextures. Nat. Commun. 2015 , 6 , 8001..
Li, Z.; Kong, Q.; Ma, X.; Zang, D.; Guan, X.; Ren, X. Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: bouncing or sticking. Nanoscale 2017 , 9 , 8249−8255..
He, Z.; Xie, H.; Jamil, M. I.; Li, T.; Zhang, Q. Electro-/photo-thermal promoted anti-icing materials: a new strategy combined with passive anti-icing and active de-icing. Adv. Mater. Interfaces 2022 , 9 , 2200275..
Jiang, J.; Shen, Y.; Xu, Y.; Wang, Z.; Tao, J.; Liu, S.; Liu, W.; Chen, H. An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation. Nat. Commun. 2024 , 15 , 777..
Julbust, A.; Buaksuntear, K.; Suethao, S.; Kohl, P.; Li, Y.; Smitthipong, W. Crosslinked natural rubber and styrene butadiene rubber blends/carbon black composites for self-healable and energy-saved applications. Chinese J. Polym. Sci. 2024 , 42 , 1835−1844..
Yue, L.; Yao, W.; Teng, F.; Zhu, Y.; Zhao, Z.; Liang, C.; Zhu, L. Polymer composite thermoforming: ultrasonic-assisted optimization for enhanced adhesive performance in automotive interior components. Polymers 2023 , 16 , 52..
Rahman, M. Z.; Rahman, M.; Mahbub, T.; Ashiquzzaman, M.; Sagadevan, S.; Hoque, M. E. Advanced bio polymers for automobile and aviation engineering applications. J. Polym. Res. 2023 , 30 , 106..
Du, Y.; Yan, N.; Kortschot, M. T. A simplified fabrication process for biofiber-reinforced polymer composites for automotive interior trim applications. J. Mater. Sci. 2014 , 49 , 2630−2639..
Mansoor, B.; Iqbal, O.; Habumugisha, J. C.; Xia, Z.; Jiang, R.; Chen, W. Polyvinyl alcohol (PVA) based super-hydrophilic anti-fogging layer assisted by plasma spraying for low density polyethylene (LDPE) greenhouse films. Prog. Org. Coat. 2021 , 159 , 106412..
Zhang, H.; Guo, H.; Jiang, R.; Wan, W.; Deng, P.; Zhou, X. Research progress of multifunctional anti-icing composites materials. J. Appl. Polym. Sci. 2024 , 141 , e55922..
Lee, D.; Park, J.; Woo, M. J.; Lee, J.; Park, J.-M.; Lim, H. M.; Lee, T. K.; Yang, S. B.; Nam, S. Y.; Kwon, D. J. Impact of polymer structure in polyurethane topcoats on anti-icing properties. Appl. Surf. Sci. 2024 , 667 , 160402..
Huang, Y.; Zhang, Z.; Ma, C.; Zhang, G. Polymer coating for antiicing and deicing. Polymer 2024 , 302 , 127047..
In 2022 Global Natural Disaster Assessment Report , Global Disaster Data Platform, 2023, https://www.gddat.cn.
Datla, S.; Sahu, P.; Roh, H. J.; Sharma, S. A comprehensive analysis of the association of highway traffic with winter weather conditions. Procedia Soc. Behav. Sci. 2013 , 104 , 497−506..
Oh, D.; Park, J.; Song, Y. K.; Noh, S. M.; Jung, H. W. Crosslinking characteristics of aziridine crosslinkers in polyurethane-based clearcoats for automotive applications. J. Coat. Technol. Res. 2024 , 21 , 1893−1906..
Cuevas, J. M.; Cobos, R.; Germán, L.; Sierra, B.; Laza, J. M.; Vilas-Vilela, J. L. Enhanced mar/scratch resistance in automotive clear coatings by modifying crosslinked polyurethane network with branched flexible oligomers. Prog. Org. Coat. 2022 , 163 , 106668..
Caruso, M. M.; Delafuente, D. A.; Ho, V.; Sottos, N. R.; Moore, J. S.; White, S. R. Solvent-promoted self-hea ling epoxy materials. Macromolecules 2007 , 40 , 8830−8832..
Hou, Y.; Zhu, G.; Cui, J.; Wu, N.; Zhao, B.; Xu, J.; Zhao, N. Superior hard but quickly reversible Si-O-Si network enables scalable fabrication of transparent, self-healing, robust, and programmable multifunctional nanocomposite coatings. J. Am. Chem. Soc. 2022 , 144 , 436−445..
Zhuo, Y.; Xiao, S.; Håkonsen, V.; Li, T.; Wang, F.; He, J.; Zhang, Z. Ultrafast self-healing and highly transparent coating with mechanically durable icephobicity. Appl. Mater. Today 2020 , 19 , 100542..
Rogers, B. W. Rubber grinding mill linings and rubber as a material to resist abrasion. J. Am. Ceram. Soc. 1925 , 8 , 326−328..
Zhang, H.; Wei, W.; Pan, L.; Yang, Z.; Huang, G.; Liu, Y.; Chen, X.; Yang, Z.; Wu, G. Ice-covered environmental adaptability assessment for overhead contact system in high-speed railways. Chin. J. Electr. Eng. 2024 , 10 , 70−79..
Wu, G.; Dong, K.; Xu, Z.; Xiao, S.; Wei, W.; Chen, H.; Li, J.; Huang, Z.; Li, J.; Gao, G.; Kang, G.; Tu, C.; Huang, X. Pantograph-catenary electrical contact system of high-speed railways: recent progress, challenges, and outlooks. Railway Eng. Sci. 2022 , 30 , 437−467..
Nilsson, F.; Moyassari, A.; Bautista, Á.; Castro, A.; Arbeloa, I.; Järn, M.; Lundgren, U.; Welinder, J.; Johansson, K. Modelling anti-icing of railway overhead catenary wires by resistive heating. Int. J. Heat Mass Transfer 2019 , 143 , 118505..
Guo, L.; Gao, X.; Li, Q.; Huang, W.; Shu, Z. Online antiicing technique for the catenary of the high-speed electric railway. IEEE Trans. Power Delivery 2015 , 30 , 1569−1576..
Xu, Z.; Tang, D.; Shen, W.; Jiang, R.; Lu, M. Flexible, high temperature resistant and highly efficient E-heating graphene/polyimide film. AIP Adv. 2024 , 14 , 015041..
Żelazny, R.; Jabłoński, P.; Szczegielniak, T. Operation of the prototype device for induction heating of railway turnouts at various operatingfrequencies. Energies 2021 , 14 , 476..
Cao, Y.; Tan, W.; Wu, Z. Aircraft icin g: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018 , 75 , 353−385..
Ignatyev, D. I.; Khrabrov, A. N.; Kortukova, A. I.; Alieva, D. A.; Sidoryuk, M. E.; Bazhenov, S. G. Interplay of unsteady aerodynamics and flight dynamics of transport aircraft in icing conditions. Aerosp. Sci. Technol. 2020 , 104 , 105914..
Farahani, E.; Liberati, A. C.; Moreau, C.; Dolatabadi, A.; Stoyanov, P. Comparative evaluation of the shear adhesion strength of ice on PTFE solid lubricant. Lubricants 2023 , 11 , 105..
Zhang, Z.; Zhang, J.; Liu, X.; Zheng, K.; Yi, H.; Wang, J. Microwave-heated high-silica glass cloth reinforced polyimide-based metamaterial absorber for aircraft deicing. J. Microw. Power Electromagn. Energy 2021 , 55 , 140−152..
Chao, Q.; Meng, L.; Shuxian, C. Anti-icing characteristics of PTFE super hydrophobic coating on titanium alloy surface. J. Alloys Compd. 2021 , 860 , 157907..
Vertuccio, L.; Foglia, F.; Pantani, R.; Guadagno, L. New aircraft anti/de-icing technologi es. IOP Conf. Ser.: Mater. Sci. Eng. 2021 , 1024 , 012012..
Wei, C.; Qian, W. Wuhan's "big late": the problem of freezing rain and icing high-speed rail (in Chinese). https://www.infzm.com/contents/265700?source=131 (accessed 2024.12.8).
Wu, J., Chapter 8 - Operation and maintenance of pantograph and contact line systems. In Pantograph and contact line system , Wu, J., Ed. Academic Press: 2018; pp 305-327..
Zhou, H.; Duan, F.; Liu, Z.; Chen, L.; Song, Y.; Zhang, Y. Study on electric spark discharge between pantograph and catenary in electrified railway. IET Electr. Syst. Transp. 2022 , 12 , 128−142..
Lu, H.; Chen, M.; Kuang, W. The impacts of abnormal weather and natural disasters on transport and strategies for enhancing ability for disaster prevention and mitigation. Transport Policy 2020 , 98 , 2−9..
Fakorede, O.; Feger, Z.; Ibrahim, H.; Ilinca, A.; Perron, J.; Masson, C. Ice protection systems for wind turbines in cold climate: characteristi cs, comparisons and analysis. Renew. Sustain. Energy Rev. 2016 , 65 , 662−675..
Lee, Y.; Tay, A. A. O. Stress analysis of silicon wafer-based photovoltaic modules under IEC 61215 mechanical load test. Energy Procedia 2013 , 33 , 265−271..
Latthe, S. S.; Sutar, R. S.; Bhosale, A. K.; Nagappan, S.; Ha, C.-S.; Sadasivuni, K. K.; Liu, S.; Xing, R. Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Prog. Org. Coat. 2019 , 137 , 105373..
Fan, C.; Jiang, X. Analysis of the icing accretion performance of conductors and its normalized characterization method of icing degree for various ice types in natural environments. Energies 2018 , 11 , 2678..
Wei, C.; Qian, W. "Most of the greenhouses collapsed", Hubei agriculture welcomes the big exam after freezing rain (in Chinese). https://www.infzm.com/contents/265986?source=131 (accessed 2024.12.8).
Callaghan, T. V.; Johansson, M ., Chapter 5 - Snow, ice, and the biosphere. In Snow and ice-related hazards, risks, and disasters , Shroder, J. F.; Haeberli, W.; Whiteman, C., Eds. Academic Press: Boston, 2015; pp 139-165..
Wei, K.; Yang, Y.; Zuo, H.; Zhong, D. A review on ice detection technology and ice elimination technology for wind turbine. Wind Energy 2020 , 23 , 433−457..
Etemaddar, M.; Hansen, M. O. L.; Moan, T. Wind turbine aerodynamic response under atmospheric icing conditions. Wind Energy 2014 , 17 , 241−265..
Rocha, I. B. C. M.; Raijmaekers, S.; Nijssen, R. P. L.; van der Meer, F. P.; Sluys, L. J. Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades. Compos. Struct. 2017 , 174 , 110−122..
Pu, Z.; Yang, S.; Wang, Q. Recycling of waste wind turbine blades for high-performance polypropylene composites. J. Appl. Polym. Sci. 2024 , 141 , e55474..
Thomas, L.; Ramachandra, M. Advanced materialsfor wind turbine blade- A Review. Mater. Today Proc. 2018 , 5 , 2635−2640..
Yirtici, O.; Ozgen, S.; Tuncer, I. H. Predictions of ice formations on wind turbine blades and power production losses due to icing. Wind Energy 2019 , 22 , 945−958..
Coakley, J. Reflectance and albedo, surface. In Encyclopedia of Atmospheric Sciences ; Holton, J. R., Ed.; Academic Press: Oxford, UK, 2003; pp. 1914–1923..
Dombrovsky, L. A.; Kokhanovsky, A. A.; Randrianalisoa, J. H. On snowpack heating by solar radiation: a computational model. J. Quant. Spectrosc. Radiat. Transfer 2019 , 227 , 72−85..
Li, C.; Chang, G.; Wu, S.; Yang, T.; Zhou, B.; Tang, J.; Liu, L.; Guan, R.; Zhang, G.; Wang, J.; Yang, Y. Highly transparent, superhydrophobic, and durable silica/resin self-cleaning coatings for photovoltaic panels. Colloids Surf., A 2024 , 693 , 133983..
Przybyszewski, B.; Ziętkowska, K.; Grzęda, D.; Kozera, R.; Boczkowska, A.; Liszewska, M.; Pakuła, D.; Sztorch, B.; Przekop, R. E. Anti-icing transparent coatings modified with bi- and tri-functional octaspherosilicate s for photovoltaic panels. Colloids Surf., A 2024 , 703 , 135402..
Luo, Z.; He, T. Synthesis and characterization of poly(dimethylsiloxane)-block-poly(2,2,3,3,4,4,4-heptafluorobutyl methacrylate) diblock copolymers with low surface energy prepared by atom transfer radical polymerization. React. Funct. Polym. 2008 , 68 , 931−942..
Sui, Z.; Li, Y.; Guo, Z.; Zhang, Q.; Xu, Y.; Zhao, X. Preparation and properties of polysiloxane modified fluorine-containing waterborne polyurethane emulsion. Prog. Org. Coat. 2022 , 166 , 106783..
Dhyani, A.; Pike, C.; Braid, J. L.; Whitney, E.; Burnham, L.; Tuteja, A. Facilitating large-scale snow shedding from in-field solar arrays using icephobic surfaces with low-interfacial toughness. Adv. Mater. Technol. 2022 , 7 , 2101032..
Engel, C.; Giovando, J.; Daly, S. River ice modelling for hydropower operations at Albeni Falls Dam, Idaho. Can. J. Civ. Eng. 2024 , 51 , 185−199..
Morgan, V. T.; Swift, D. A. Effect of ice loads on overhead-line conductors. Electron. Power 1965 , 11 , 22−23..
Liu, Z.; Hu, J.; Wu, C.; Zhang, B. Anti-turnover of iced transmission lines based on the cable. J. Phys. Conf. Ser. 2023 , 2535 , 012008..
Sun, W.; Wang, C. Staged icing forecasting of power transmission lines based on icing cycle and improved extreme learning machine. J. Cleaner Prod. 2019 , 208 , 1384−1392..
Wang, R. In Analysis of the accident based on low temperature, snowstorm, ice, coagulation , 2008 China International Conference on Electricity Distribution, 2008; pp 1-7..
Ji, K.; Han, J.; Yang, J.; Zhao, B.; Wang, J.; Liu, B.; Zhan, X.; Zhang, L. In Dynamic Analysis and Suppression Method of Bundled Conductors Following Ice Shedding , 2021 IEEE Sustainable Power and Energy Conference (iSPEC), 2021; pp 1596-1601..
Wu, D.; Cao, H.; Li, D.; Yang, S. Energy-efficient reconstruction method for transmission lines galloping with conditional generative adversarial network. IEEE Access 2020 , 8 , 17310−17319..
Wang, J.; Fu, C.; Chen, Y.; Rao, H.; Xu, S.; Yu, T.; Li, L. Research and application of DC de-icing technology in China southern power grid. IEEE Trans. Power Delivery 2012 , 27 , 1234−1242..
Zhang, Z.; Zhang, H.; Yue, S.; Zeng, W. A review of icing and anti-icing technology for transmission lines. Energies 2023 , 16 , 601..
Xu, X.; Zhang, Z.; Guo, F.; Yang, J.; Zhu, X.; Zhou, X.; Xue, Q. Fabrication of bionic superhydrophobic manganese oxide/polystyrene nanocomposite coating. J. Bionic Eng. 2012 , 9 , 11−17..
Polizos, G.; Winter, K.; Lance, M. J.; Meyer, H. M.; Armstrong, B. L.; Schaeffer, D. A.; Simpson, J. T.; Hunter, S. R.; Datskos, P. G. Scalable superhydrophobic coatings based on fluorinated diatomaceous earth: abrasion resistance versus particle geometry. Appl. Surf. Sci. 2014 , 292 , 563−569..
Li, W.; Wang, Y.; Feng, Y.; Wang, Q.; Xu, X.; Li, G.; Dong, G.; Jing, S.; Chen, E.; Fan, X.; Wang, P. Fabrication of robust conductive and superhydrophob ic coating based on carbon nanotubes. Mater. Res. Express 2020 , 7 , 055009..
Wei, X.; Jia, Z.; Sun, Z.; Guan, Z.; Macalpine, M. Development of anti-icing coatings applied to insulators in China. IEEE Electr. Insul. Mag. 2014 , 30 , 42−50..
Fan, L.; He, J.; Li, B.; Bai, J.; Zhu, T.; Song, L.; Hua, X.; Yuan, Y. Design of superhydrophobic coatings fabricated by spraying for anti-icing. J. Phys. Conf. Ser. 2024 , 2720 , 012005..
Dehbi, A.; Youssef, B.; Chappey, C.; Mourad, A. H. I.; Picuno, P.; Statuto, D. Multilayers polyethylene film for crop protection in harsh climatic conditions. Adv. Mater. Sci. Eng. 2017 , 1 , 4205862..
Belhachemi, A.; Maatoug, M. H.; Canela-Garayoa, R. Comparative analysis by UV-vis and FT-IR spectroscopy of the chemical degradation of polyethylene used as greenhouse cover film. J. Elastomer. Plast. 2022 , 54 , 891−905..
Sirousazar, M.; Ghanizadeh, E.; Rezazadeh, B.; Abbasi-Chianeh, V.; Kheiri, F. Polymeric hydrogel pipes for irrigation application. J. Polym. Environ. 2019 , 27 , 2842−2852..
Alsabri, A.; Al-Ghamdi, S. G. Carbon footprint and embodied energy of PVC, PE, and PP piping: perspective on environmental performance. Energy Rep. 2020 , 6 , 364−370..
Maraveas, C. Durability issues and corrosion of structural materials and systems in farm environment. Appl. Sci. 2020 , 10 , 990..
Wang, J.; Zhang, C.; Deng, Y.; Zhang, P. A review of research on the effect of temperature on the properties of polyurethane foams. Polymers 2022 , 14 , 4586..
Yu, Y.-J.; Hearon, K.; Wilson, T. S.; Maitland, D. J. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Smart Mater. Struct. 2011 , 20 , 085010..
Schneider, N. S.; Dusablon, L. V.; Spano, L. A.; Hopfenberg, H. B.; Votta, F. Sorption and diffusion of water in a rubbery polyurethane. J. Appl. Polym. Sci. 1968 , 12 , 527−532..
He, Q.; Li, K.; Xu, Z.; Wang, J.; Wang, X.; Li, A. Research progress on construction strategy and technical evaluation of aircraft icing accretion protection system. Chin. J. Aeronaut. 2023 , 36 , 1−23..
Zhang, D.; Yang, S.; Zhang, S.; Liu, W.; Pan, H.; Bai, X.; Ma, M.; Shang, Y.; Li, P. Epoxy resin/reduced graphene oxide composites with gradient concentration for aviation deicing. ACS Appl. Eng. Mater. 2023 , 1 , 1535−1542..
Wang, Z.; Yu, W.; Gao, C.; Zhu, Z.; Zhang, J. Multifunctional and high-performance electrothermal films based on carbon black/Ag nanowires/graphene composites. npj Flexible Electron. 2024 , 8 , 52..
Ramanathan, S.; Varadan, V.; Varadan, V. Deicing of helicopter blades using piezoelectric actuators. Proc. SPIE 3990, Smart Structures and Materials 2000: Smart Electronics and MEMS 2000 , 3990 , 281−292..
Villeneuve, E.; Volat, C.; Ghinet, S. Numerical and experimental investigation of the design of a piezoelectric de-icing system for small rotorcraft part 1/3: development of a flat plate numerical model with experimental validation. Aerospace 2020 , 7 , 62..
Levin, I. A. USSR electric impulse de-icing system design. Aircr. Eng. Aerosp. Technol. 1972 , 44 , 7−10..
Möhle, E.; Haupt, M. C.; Horst, P. Coupled numerical simulation and experimental validation of the electroimpulse de-icing process. J. Aircr. 2013 , 50 , 96−102..
Chen, Y.; Jiang, X.; Liao, Y.; Chen, Q.; Wang, M.; Li, T.; Hu, Q. Influence of structural parameters on the pulse effect of pulsed coils. Results Phys. 2022 , 43 , 106128..
Wang, Z. Recent progress on ultrasonic de-icing technique used for wind power generation, high-voltage transmission line and aircraft. Energy Build. 2017 , 140 , 42−49..
Wang, Y.; Xu, Y.; Huang, Q. Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency. Renew. Sustain. Energy Rev. 2017 , 79 , 638−645..
Thoma s, S. K.; Cassoni, R. P.; MacArthur, C. D. Aircraft anti-icing and de-icing techniques and modeling. J. Aircr. 1996 , 33 , 841−854..
Corsi, S. R.; Mericas, D.; Bowman, G. T. Oxygen demand of aircraft and airfield pavement deicers and alternative freezing point depressants. Water Air Soil Pollut. 2012 , 223 , 2447−2461..
Jaesche, P.; Totsche, K. U.; Kogel-Knabner, I. Transport and anaerobic biodegradation of propylene glycol in gravel-rich soil materials. J. Contam. Hydrol. 2006 , 85 , 271−86..
Malinowski, S. Chemical structure analysis of chitosan-modified road bitumen after de-icing salt treatment. Mater. Struct. 2024 , 57 , 227..
Mao, M.; Wei, J.; Li, B.; Li, L.; Huang, X.; Zhang, J. Scalable robust photothermal superhydrophobic coatings for efficient anti-icing and de-icing in simulated/real environments. Nat. Commun. 2024 , 15 , 9610..
Li, S.; Tan, Y.; Fu, Y.; Li, J.; Ye, W.; Li, G.; Liu, X. Effect of phase change materials on thermophysical properties of asphalt mixtures and snow melting performance. Constr. Build. Mater . 2024 , 438 , 136968..
Wu, S.; Du, Y.; Alsaid, Y.; Wu, D.; Hua, M.; Yan, Y.; Yao, B.; Ma, Y.; Zhu, X.; He, X. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. U. S. A. 2020 , 117 , 11240−11246..
Gerardi, J.; Ingram, R.; Catarella, R., A shape memory alloy based de-icing system for aircraft. In 33rd Aerospace Sciences Meeting and Exhibit , American Institute of Aeronautics and Astronautics: 1995. DOI: 10.2514/6.1995-454
Liu, X.; Xing, Y.; Zhao, L. Study of shape memory alloy de-icing device for nonrotating components of aircrafts. IOP Conf. Ser.: Mater. Sci. Eng. 2018 , 394 , 032106..
Tamer, O.; Kyriazis, A.; Sinapius, M. Parameter study and experimental analysis of a thermo-mechanical de-icing concept. Smart Mater. Struct. 2020 , 29 , 045021..
Liu, T. L.; Kim, C. J. C. Turning a surface superrepellent even to completely wetting liquids. Science 2014 , 346 , 1096−1100..
Mishchenko, L.; Hatton, B.; Bahadur, V.; Taylor, J. A.; Krupenkin, T.; Aizenberg, J. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 2010 , 4 , 7699−7707..
Ho, A. Y. Y.; Luong Van, E.; Lim, C. T.; Natarajan, S.; Elmouelhi, N.;Low, H. Y.; Vyakarnam, M.; Cooper, K.; Rodriguez, I. Lotus bioinspired superhydrophobic, self-cleaning surfaces from hierarchically assembled templates. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52 , 603−609..
Alizadeh, A.; Yamada, M.; Li, R.; Shang, W.; Otta, S.; Zhong, S.; Ge, L.; Dhinojwala, A.; Conway, K. R.; Bahadur, V.; Vinciquerra, A. J.; Stephens, B.; Blohm, M. L. Dynamics of ice nucleation on water repellent surfaces. Langmuir 2012 , 28 , 3180−6..
Bai, G.; Gao, D.; Liu, Z.; Zhou, X.; Wang, J. Probing the critical nucleus size for ice formation with graphene oxide nanosheets. Nature 2019 , 576 , 437−441..
Jung, S.; Dorrestijn, M.; Raps, D.; Das, A.; Megaridis, C. M.; Po ulikakos, D. Are superhydrophobic surfaces best for icephobicity. Langmuir 2011 , 27 , 3059−66..
Li, Z.; Zhen, Z.; Chai, M.; Zhao, X.; Zhong, Y.; Zhu, H. Transparent electrothermal film defoggers and antiicing coatings based on wrinkled graphene. Small 2020 , 16 , e1905945..
He, M.; Li, H.; Wang, J.; Song, Y. Superhydrophobic surface at low surface temperature. Appl. Phys. Lett. 2011 , 98 , 093118..
Kim, P.; Wong, T. S.; Alvarenga, J.; Kreder, M. J.; Adorno-Martinez, W. E.; Aizenberg, J. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 2012 , 6 , 6569−6577..
Chen, J.; Dou, R.; Cui, D.; Zhang, Q.; Zhang, Y.; Xu, F.; Zhou, X.; Wang, J.; Song, Y.; Jiang, L. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate. ACS Appl. Mater. Interfaces 2013 , 5 , 4026−30..
Zhang, L.; Guo, Z.; Sarma, J.; Dai, X. Passive removal of highly wetting liquids and ice on quasi-liquid surface s. ACS Appl. Mater. Interfaces 2020 , 12 , 20084−20095..
Hao, X.; Sun, Z.; Wu, S.; Wang, T. W.; Liu, Y.; Wu, Y.; He, X.; Liu, Q.; Zhou, F. Self-lubricative organic–inorganic hybrid coating with anti-icing and anti-waxing performances by grafting liquid-like polydimethylsiloxane. Adv. Mater. Interfaces 2022 , 9 , 2200160..
He, Z.; Xiao, S.; Gao, H.; He, J.; Zhang, Z. Multiscale crack initiator promoted super-low ice adhesion surfaces. Soft Matter 2017 , 13 , 6562−6568..
Azimi Dijvejin, Z.; Jain, M. C.; Kozak, R.; Zarifi, M. H.; Golovin, K. Smart low interfacial toughness coatings for on-demand de-icing without melting. Nat. Commun. 2022 , 13 , 5119..
Wang, D.; Sun, Q.; Hokkanen, M. J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; Zhou, Q.; Chen, L.; Wang, Z.; Ras, R. H. A.; Deng, X. Design of robust superhydrophobic surfaces. Nature 2020 , 582 , 55−59..
Wei, J.; Zhang, J.; Cao, X.; Huo, J.; Huang, X.; Zhang, J. Durable superhydrophobic coatin gs for prevention of rain attenuation of 5G/weather radomes. Nat. Commun. 2023 , 14 , 2862..
Maitra, T.; Antonini, C.; Tiwari, M. K.; Mularczyk, A.; Imeri, Z.; Schoch, P.; Poulikakos, D. Supercooled water drops impacting superhydrophobic textures. Langmuir 2014 , 30 , 10855−10861..
Bahadur, V.; Garimella, S. V. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements. Langmuir 2009 , 25 , 4815−20..
Lambley, H.; Graeber, G.; Vogt, R.; Gaugler, L. C.; Baumann, E.; Schutzius, T. M.; Poulikakos, D. Freezing-induced wetting transitions on superhydrophobic surfaces. Nat. Phys. 2023 , 19 , 649−655..
Meuler, A. J.; Smith, J. D.; Varanasi, K. K.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2010 , 2 , 3100−10..
Chen, J.; Liu, J.; He, M.; Li, K.; Cui, D.; Zhang, Q.; Zeng, X.; Zhang, Y.; Wang, J.; Song, Y. Superhydrophobic surfaces cannot reduce ice adhesion . Appl. Phys. Lett. 2012 , 101 ,111603..
Zou, M.; Beckford, S.; Wei, R.; Ellis, C.; Hatton, G.; Miller, M. A. Effects of surface roughness and energy on ice adhesion strength. Appl. Surf. Sci. 2011 , 257 , 3786−3792..
Wang, L.; Tian, Z.; Jiang, G.; Luo, X.; Chen, C.; Hu, X.; Zhang, H.; Zhong, M. Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 2022 , 13 , 378..
Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv. Mater. (Weinheim, Ger.) 2007 , 19 , 2520−2524..
Mockenhaupt, B.; Ensikat, H.-J.; Spaeth, M.; Barthlott, W. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Langmuir 2008 , 24 , 13591−13597..
Dotan, A.; Dodiuk, H.; Laforte, C.; Kenig, S. The relationship between water wetting and ice adhesion. J. Adhes. Sci. Technol. 2009 , 23 , 1907−1915..
Varanasi, K. K.; Deng, T.; Smith, J. D.; Hsu, M.; Bhate, N. Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 2010 , 97 , 234102..
Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997 , 202 , 1−8..
Furuta, T.; Sakai, M.; Isobe, T.; Nakajima, A. Effect of dew condensation on the wettability of rough hydrophobic surfaces coated with two different silanes. Langmuir 2010 , 26 , 13305−9..
Karmouch, R.; Ross, G. G. Experimental study on the evolution of contact angles with temperature near the freezing point. J. Phys. Chem. C 2010 , 114 , 4063−4066..
Kulinich, S. A.; Farhadi, S.; Nose, K.; Du, X. W. Superhydrophobic surfaces: are they really ice-repellent. Langmuir 2011 , 27 , 25−9..
Varanasi, K. K.; Hsu, M.; Bhate, N.; Yang, W.; Deng, T. Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 2009 , 95 , 094101..
He, Q.; Xu, Y.; Zhang, F.; Jia, Y.; Du, Z.; Li, G.; Shi, B.; Li, P.; Ning, M.; Li, A. Preparation methods and research progress of super-hydrophobic anti-icing surface. Adv. Colloid Interface Sci. 2024 , 323 , 103069..
Xuan, S.; Yin, H.; Li, G.; Zhang, Z.; Jiao, Y.; Liao, Z.; Li, J.; Liu, S.; Wang, Y.; Tang, C.; Wu, W.; Li, G.; Yin, K. Trifolium repens L.-like periodic micronano structured superhydrophobic surface with ultralow ice adhesion for efficient anti-icing/deicing. ACS Nano 2023 , 17 , 21749−21760..
Tan, Y.; Yang, J.; Li, Y.; Li, X.; Wu, Q.; Fan, Y.; Yu, F.; Cui, J.; Chen, L.; Wang, D.; Deng, X. Liquid-pressure-guided superhydrophobic surfaces with adaptiveadhesion and stability. Adv. Mater. 2022 , 34 , e2202167..
Ghalmi, Z.; Farzaneh, M. Experimental investigation to evaluate the effect of PTFE nanostructured roughness on ice adhesion strength. Cold Reg. Sci. Technol. 2015 , 115 , 42−47..
Huang, J.; Yang, M.; Zhang, H.; Zhu, J. Solvent-free fabrication of robust superhydrophobic powder coatings. ACS Appl. Mater. Interfaces 2021 , 13 , 1323−1332..
Wen, M.; Wang, L.; Zhang, M.; Jiang, L.; Zheng, Y. Antifogging and icing-delay properties of composite micro- and nanostructured surfaces. ACS Appl. Mater. Interfaces 2014 , 6 , 3963−8..
Saffar, M. A.; Eshaghi, A.; Dehnavi, M. R. Fabrication of superhydrophobic, self-cleaning and anti-icing ZnO/PTFE-SiO2 nano-composite thin film. Mater. Chem. Phys. 2021 , 259 , 124085..
Wang, L.; Gong, Q.; Zhan, S.; Jiang, L.; Zheng, Y. Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 2016 , 28 , 7729−35..
Zheng, W.; Teng, L.; Lai, Y.; Zhu, T.; Li, S.; Wu, X.; Cai, W.; Chen, Z.; Huang, J. Magnetic responsive and flexible composite superhydrophobic photothermal film for passive anti-icing/active deicing. Chem. Eng. J. 2022 , 427 , 130922..
Hu, C.; Chen, W.;Li, T.; Ding, Y.; Yang, H.; Zhao, S.; Tsiwah, E. A.; Zhao, X.; Xie, Y. Constructing non-fluorinated porous superhydrophobic SiO 2 -based films with robust mechanical properties. Colloids Surf., A 2018 , 551 , 65−73..
Peng, C.; Hu, X.; You, Z.; Xu, F.; Jiang, G.; Ouyang, H.; Guo, C.; Ma, H.; Lu, L.; Dai, J. Investigation of anti-icing, anti-skid, and water impermeability performances of an acrylic superhydrophobic coating on asphalt pavement. Constr. Build. Mater. 2020 , 264 , 120702..
Davis, A.; Yeong, Y. H.; Steele, A.; Bayer, I. S.; Loth, E. Superhydrophobic nanocomposite surface topography and ice adhesion. ACS Appl. Mater. Interfaces 2014 , 6 , 9272−9..
Dou, R.; Chen, J.; Zhang, Y.; Wang, X.; Cui, D.; Song, Y.; Jiang, L.; Wang, J. Anti-icing coating with an aqueous lubricating layer. ACS Appl. Mater. Interfaces 2014 , 6 , 6998−7003..
Li, Y.; Li, B.; Zhao, X.; Tian, N.; Zhang, J. Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing. ACS Appl. Mater. Interfaces 2018 , 10 , 3939 1−39399..
Cheng, W.; Zeng, X.; Chen, H.; Li, Z.; Zeng, W.; Mei, L.; Zhao, Y. Versatile polydopamine platforms: synthesis and promising applications for surface modification and advanced nanomedicine. ACS Nano 2019 , 13 , 8537−8565..
Yang, P.; Zhu, F.; Zhang, Z.; Cheng, Y.; Wang, Z.; Li, Y. Stimuli-responsive polydopamine-based smart materials. Chem. Soc. Rev. 2021 , 50 , 8319−8343..
Wang, H.; Yan, R.; Zou, Y.; Xing, D.; Zhong, K. Light-driven self-healing polyurethane based on PDA@Ag nanoparticles with improved mechanical and antibacterial properties. J. Mater. Chem. B 2022 , 10 , 1085−1093..
Liu, F.; Sun, F.; Pan, Q. Highly compressible and stretchable superhydrophobic coating inspired by bio-adhesion of marine mussels. J. Mater. Chem. A 2014 , 2 , 11365−11371..
Zhao, Z.; Zhang, Q.; Song, X.; Chen, J.; Ding, Y.; Wu, H.; Guo, S. Versatile melanin-like coatings with hierarchical structure toward personal thermal management, anti-icing/deicing, and UV protection. ACS Appl. Mater. Interfaces 2023 , 15 , 3522−3533..
He, J.; Wang, J.; Wang, R.; Jie, J.; Chen, B.; Luo, G.; Bao, J.; Yang, K. Preparation and anti-icing performance of liquid lubricant micro-nano composite coating based on modified nano-SiO2. J. Adhes. Sci. Technol. 2023 , 37 , 2139−2153..
Wong, T. S.; Kang, S. H.; Tang, S. K.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 2011 , 477 , 443−7..
Bormashenko, E. Physics of pre-wetted, lubricated and impregnated surfaces: a review. Philos. Trans. A Math. Phys. Eng. Sci. 2019 , 377 , 20180264..
Villegas, M.; Zhang, Y.; Abu Jarad, N.; Soleymani, L.; Didar, T. F. Liquid-infused surfaces: a review of theory, design, and applications. ACS Nano 2019 , 13 , 8517−8536..
Hao, C.; Liu, Y.; Chen, X.; He, Y.; Li, Q.; Li, K. Y.; Wang, Z. Electrowetting on liquid-infused film (EWOLF): complete reversibility and controlled droplet oscillation suppression for fast optical imaging. Sci. Rep. 2014 , 4 , 6846..
Wang, P.; Lu, Z.; Zhang, D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria. Corros. Sci. 2015 , 93 , 159−166..
Yang, S.; Qiu, R.; Song, H.; Wang, P.; Shi, Z.; Wang, Y. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application. Appl. Surf. Sci. 2015 , 328 , 491−500..
Guo, H.; Fuchs, P.; Casdorff, K.; Michen, B.; Chanana, M.; Hagendorfer, H.; Romanyuk, Y. E.; Burgert, I. Bio-inspired superhydrophobic and omniphobic wood surfaces. Adv. Mater. Interfaces 2017 , 4 , 1600289..
Keiser, A.; Keiser, L.; Clanet, C.; Quéré, D. Drop friction on liquid-infused materials. Soft Matter 2017 , 13 , 6981−6987..
Leslie, D. C.; Waterhouse, A.; Berthet, J. B.; Valentin, T. M.; Watters, A. L.; Jain, A.; Kim, P.; Hatton, B. D.; Nedder, A.; Donovan, K.; Super, E. H.; Howell, C.; Johnson, C. P.; Vu, T. L.; Bolge n, D. E.; Rifai, S.; Hansen, A. R.; Aizenberg, M.; Super, M.; Aizenberg, J.; Ingber, D. E. A bioinspired omniphobic surface coating on medical devices prevents thrombosis and biofouling. Nat. Biotechnol. 2014 , 32 , 1134−1140..
Chen, J.; Howell, C.; Haller, C. A.; Patel, M. S.; Ayala, P.; Moravec, K. A.; Dai, E.; Liu, L.; Sotiri, I.; Aizenberg, M.; Aizenberg, J.; Chaikof, E. L. An immobilized liquid interface prevents device associated bacterial infection in vivo . Biomaterials 2017 , 113 , 80−92..
Yuan, S.; Luan, S.; Yan, S.; Shi, H.; Yin, J. Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl. Mater. Interfaces 2015 , 7 , 19466−19473..
Peppou-Chapman, S.; Hong, J. K.; Waterhouse, A.; Neto, C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem. Soc. Rev. 2020 , 49 , 3688−3715..
O'Hagan, D. Understanding organofluorine chemistry. An introduction to the C―F bond. Chem. Soc. Rev. 2008 , 37 , 308−319..
Maccone, P.; Di Nicolò,E.; Boccaletti, G. Viscosity dependence on temperature for PFPE lubricants: An empirical approach. NLGI Spokesman 2006 , 69 , 28−35..
Liu, Y.; Gao, S.; Liu, J.; Zhang, Q. Biomimetic slippery liquid-infused porous surfaces fabricated by porous fluorinated polyurethane films for anti-icing property. Prog. Org. Coat. 2023 , 179 , 107524..
Yeong, Y. H.; Wang, C.; Wynne, K. J.; Gupta, M. C. Oil-Infused superhydrophobic silicone material for low ice adhesion with long-term infusion stability. ACS Appl. Mater. Interfaces 2016 , 8 , 32050−32059..
Kim, J. H.; Kim, M. J.; Lee, B.; Chun, J. M.; Patil, V.; Kim, Y.-S. Durable ice-lubricating surfaces based on polydimethylsiloxane embedded silicone oil infused silica aerogel. Appl. Surf. Sci. 2020 , 512 , 145728..
Chen, J.; Luo, Z.; Fan, Q.; Lv, J.; Wang, J. Anti-ice coating inspired by ice skating. Small 2014 , 10 , 4693−4699..
Lee, H.; Alcaraz, M. L.; Rubner, M. F.; Cohen, R. E. Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 2013 , 7 , 2172−2185..
Zhao, J.; Meyer, A.; Ma, L.; Ming, W. Acrylic coatings with surprising antifogging and frost-resisting properties. Chem. Commun. 2013 , 49 , 11764..
Shamshiri, M.; Momen, G.; Jafari, R. Icephobic coatings beyond boundaries: Layered integrationof phase change materials beneath a PEG-PDMS copolymer-containing coating to enhance anti-icing performance. Prog. Org. Coat. 2024 , 189 , 108324..
Huang, B.; Jiang, S.; Diao, Y.; Liu, X.; Liu, W.; Chen, J.; Yang, H. Hydrogels as durable anti-icing coatings inhibit and delay ice nucleation. Molecules 2020 , 25 , 3378..
Lee, H.; Gilbert, J. B.; Angile, F. E.; Yang, R.; Lee, D.; Rubner, M. F.; Cohen, R. E. Design and fabrication of zwitter-wettable nanostructured films. ACS Appl. Mater. Interfaces 2015 , 7 , 1004−11..
Wang, Y.; Li, T.; Li, S.; Sun, J. Antifogging and frost-re sisting polyelectrolyte coatings capable of healing scratches and restoring transparency. Chem. Mater. 2015 , 27 , 8058−8065..
Tao, C.; Bai, S.; Li, X.; Li, C.; Ren, L.; Zhao, Y.; Yuan, X. Formation of zwitterionic coatings with an aqueous lubricating layer for antifogging/anti-icing applications. Prog. Org. Coat. 2018 , 115 , 56−64..
Ezzat, M.; Huang, C. J. Zwitterionic polymer brush coatings with excellent anti-fog and anti-frost properties. RSC Adv. 2016 , 6 , 61695−61702..
Cheng, D. F.; Urata, C.; Yagihashi, M.; Hozumi, A. A statically oleophilic but dynamically oleophobic smooth nonperfluorinated surface. Angew. Chem. Int. Ed . 2012 , 51 , 2956−2959..
Yarbrough, J. C.; Rolland, J. P.; DeSimone, J. M.; Callow, M. E.; Finlay, J. A.; Callow, J. A. Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 2006 , 39 , 2521−2528..
Cheng, D. F.; Masheder, B.; Urata, C.; Hoz umi, A. Smooth perfluorinated surfaces with different chemical and physical natures: their unusual dynamic dewetting behavior toward polar and nonpolar liquids. Langmuir 2013 , 29 , 11322−11329..
Shome, A.; Martinez, I.; Pinon, V. D.; Moses, J. C.; Garren, M.; Sapkota, A.; Crutchfield, N.; Francis, D. J.; Brisbois, E. J.; Handa, H. "Reactive" chemical strategy to attain substrate independent "liquid-like" omniphobic solid anti-biofouling coatings. Adv. Funct. Mater . 2024 , 34 , 2401387..
Chen, L.; Huang, S.; Ras, R. H. A.; Tian, X. Omniphobic liquid-like surfaces. Nat. Rev. Chem. 2023 , 7 , 123−137..
He, Z.; Zhuo, Y.; He, J.; Zhang, Z. Design and preparation of sandwich-like polydimethylsiloxane (PDMS) sponges with super-low ice adhesion. Soft Matter 2018 , 14 , 4846−4851..
Golovin, K.; Dhyani, A.; Thouless, M. D.; Tuteja, A. Low-interfacial toughness materials for effective large-scale deicing. Science 2019 , 364 , 371−375..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution