FOLLOWUS
a.State Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
b.School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
xiaopeng@nimte.ac.cn (P.X.)
tao.chen@nimte.ac.cn (T.C.)
Received:15 November 2024,
Revised:06 January 2025,
Accepted:2025-01-26,
Published Online:03 April 2025,
Published:2025-03
Scan QR Code
Zhou, W.; Han, Y.; Xiao, P.; Yu, Y.; Wang, Y. C.; Chen, T. Interfacial elastic film with temperature mediated-phase transition behavior for tunable suspended sensing. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3314-x
Wei Zhou, Yue Han, Peng Xiao, et al. Interfacial Elastic Film with Temperature Mediated-phase Transition Behavior for Tunable Suspended Sensing[J/OL]. Chinese journal of polymer science, 2025, 431-8.
Zhou, W.; Han, Y.; Xiao, P.; Yu, Y.; Wang, Y. C.; Chen, T. Interfacial elastic film with temperature mediated-phase transition behavior for tunable suspended sensing. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3314-x DOI:
Wei Zhou, Yue Han, Peng Xiao, et al. Interfacial Elastic Film with Temperature Mediated-phase Transition Behavior for Tunable Suspended Sensing[J/OL]. Chinese journal of polymer science, 2025, 431-8. DOI: 10.1007/s10118-025-3314-x.
Controllably tuning the sensing performance of flexible mechanical sensors is important for them to realize on-demand sensing of various mechanical stimuli in different application scenarios. However
current regulating strategies focus on the construction process of individual sensors
the response performance of the as-formed sensors is still hard to autonomously tune with external stimulus changes like human skin. Here
we propose a new strategy that realizes post-tuning of the sensing performance by introducing a temperature-dependent phase transition elastomer into the sensing film. Through an interfacially confined photopolymerization reaction
a graphene-based phase-transition elastomeric (GPTE) film with a robust interface and excellent conductivity is well-formed at the water/air interface. Benefiting from the crystallization-melt dynamic switching in the elastomer network
the GPTE film could experience the reversible transformation between soft (1.65 MPa) and stiff (12.27 MPa) states
showing huge changes of elastic modulus up to seven times near the phase transition temperature (28.5 °C). Furthermore
the GPTE film is designed into a suspended perceptual configuration realizing the dynamic detection of 3D deformation adapted to temperature changes with up to 3.5-fold difference in response sensitivity. Finally
the self-adaptive sensing behavior of temperature-mediated 3D deformation is demonstrated by the effective detection of the dynamic stimulation process of cold and hot water droplets by the GPTE suspended film. The proposed strategy of phase transition-induced post-tuning of sensing performance could greatly facilitate flexible mechanical sensors towards a more intelligent one.
Wang, Y.; Adam, M. L.; Zhao, Y.; Zheng, W.; Gao, L.; Yin, Z.; Zhao, H. Machine learning-enhanced flexible mech anical sensing. Nano-Micro Lett. 2023 , 15 , 55..
Ma, S. D.; Wu, Y. T.; Tang, J.; Zhang, Y.-M.; Yan, T.; Pan, Z. J. A Multi-model, large-range flexible strain sensor based on carbonized silk habotai for human health monitoring. Chinese J. Polym. Sci. 2023 , 41 , 1238−1249..
Li, S.; Wang, H.; Ma, W.; Qiu, L.; Xia, K.; Zhang, Y.; Lu, H.; Zhu, M.; Liang, X.; Wu, X. E.; Liang, H.; Zhang, Y. Monitoring blood pressure and cardiac function without positioning via a deep learning-assisted strain sensor array. Sci. Adv. 2023 , 9 , eadh0615..
Cai, X.; Xiao, Y.; Zhang, B.; Yang, Y.; Wang, J.; Chen, H.; Shen, G. Surface control and electrical tuning of mxene electrode for flexible self-powered human-machine interaction. Adv. Funct. Mater. 2023 , 33 , 2304456..
Shi, J.; Dai, Y.; Cheng, Y.; Xie, S.; Li, G.; Liu, Y.; Wang, J.; Zhang, R.; Bai, N.; Cai, M.; Zhang, Y.; Zhan, Y.; Zhang, Z.; Yu, C.; Guo, C. F. Embedment of sensing elements for robust, highly sensitive, and cross-talk-free iontronic skins for robotics applications. Sci. Adv. 2023 , 9 , eadf8831..
Shi, X.; Luo, J.; Luo, J.; Li, X.; Han, K.; Li, D.; Cao, X.; Wang, Z. L. Flexible wood-based triboelectric self-powered smart home system. ACS Nano 2022 , 16 , 3341−3350..
Zhao, C. X.; Guo, M.; Mao, J.; Li, Y. T.; Wu, Y. P.; Guo, H.; Xiang, D.; Li, H. Self-healing, stretchable, temperature-sensitive and strain-sensitive hydrogel-based flexible sensors. Chinese J. Polym. Sci. 2023 , 41 , 334−344..
Zhou, W.; Xiao, P.; Liang, Y.; Wang, Q.; Liu, D.; Yang, Q.; Chen, J.; Nie, Y.; Kuo, S. W.; Chen, T. Bionic adaptive thin-membranes sensory system based on microspring effect for high-sensitive airflow perception and noncontact manipulation. Adv. Funct. Mater. 2021 , 31 , 2105323..
Liu, Y.; Tao, J.; Yang, W.; Zhang, Y.; Li, J.; Xie, H.; Bao, R.; Gao, W.; Pan, C. Biodegradable, breathable leaf vein-based tactile sensors with tunable sensitivity and sensing range. Small 2022 , 18 , 2106906..
Yang, C.; Huang, W. X.; Lin, Y.; Cao, S. T.; Wang, H.; Sun, Y. P.; Fang, T.; Wang, M. L.; Kong, D. S. Stretchable MXene/carbon nanotube bilayer strain sensors with tunable sensitivity and working ranges. ACS Appl. Mater. Interfaces 2024 , 16 , 30274−30283..
Zhou, W.; Xiao, P.; Zhang, C.; Yang, Q.; Chen, T. Dynamic competitive strains enabled self-supporting Janus nanostructured films for high-performance airflow perception. Mater. Horiz. 2023 , 10 , 1264−1273..
Zhou, W.; Yu, Y.; Xiao, P.; Deng, F.; Zhang, Y.; Chen, T. A Suspended, 3D morphing sensory system for robots to feel and protect. Adv. Mater. 2024 , 36 , 2403447..
Luo, H. X.; Chen, X. L.; Li, S.; Xu, J. B.; Li, X. M.; Tian, H. M.; Wang, C. H.; Li, B.; Zhang, M. M.; Sun, B.; He, J.; Shao, J. Y. Bioinspired suspended sensing membrane array with modulable wedged-conductive channels for crosstalk-free and high-resolution detection. Adv. Sci. 2024 , 11 , 2403645..
Tan, X. C.; Xu, J. D.; Jian, J. M.; Dun, G. H.; Cui, T. R.; Yang, Y.; Ren, T. L. Programmable sensitivity screening of strain sensors by local electrical and mechanical properties coupling. ACS Nano 2021 , 15 , 20590−20599..
Chen, X.; Luo, Y.; Chen, Y.; Li, S.; Deng, S.; Wang, B.; Zhang, Q.; Li, X.; L i, X.; Wang, C.; He, J.; Tian, H.; Shao, J. Biomimetic contact behavior inspired tactile sensing array with programmable microdomes pattern by scalable and consistent fabrication. Adv. Sci . 2024 , 11 , 2408082..
Ma, J.; Huo, X.; Yin, J.; Cai, S.; Pang, K.; Liu, Y.; Gao, C.; Xu, Z. Axially encoded mechano-metafiber electronics by local strain engineering. Adv. Mater. 2023 , 35 , 2305615..
Shao, H. Q.; Wei, K. D.; Gong, T.; Jia, J.; Tang, C. Y.; Zha, X. J.; Ke, K.; Bao, R. Y.; Zhang, K.; Wang, Y.; Yang, W. Elastic Janus microarray film strain sensors with heterogeneous modulus and conductivity for healthcare and braille identification. Adv. Funct. Mater. 2024 , 34 , 2316134..
Zhou, X.; Zhang, X.; Zhao, H.; Krishnan, B. P.; Cui, J. Self-healable and recyclable tactile force sensors with post-tunable sensitivity. Adv. Funct. Mater. 2020 , 30 , 2003533..
Jiang, Q. Y.; Li, R.; Wang, F.; Shi, X. F.; Chen, F. X.; Huang, Y.; Wang, B. S.; Zhang, W. S.; Wu, X. K.; Wei, F.; Zhang, R. F. Ultrasensitive airflow sensors based on suspended carbon nanotube networks. Adv. Mater . 2022 , 34 , 2107062..
Liu, Q. X.; Liu, Y.; Shi, J. L.; Liu, Z. G.; Wang, Q.; Guo, C. F. High-porosity foam-based iontronic pressure sensor with superhigh sensitivity of 9280 kPa −1 . Nano-Micro Lett. 2022 , 14 , 21..
Wang, H.; Yuan, B.; Zhu, X.; Shan, X.; Chen, S.; Ding, W.; Cao, Y.; Dong, K.; Zhang, X.; Guo, R.; Yao, Y.; Wang, B.; Tang, J.; Liu, J. Multi-stimulus perception and visualization by an intelligent liquid metal-elastomer architecture. Sci. Adv. 2024 , 10 , eadp5215..
Han, S. Q.; Chen, Y. Y.; Xu, B.; Wei, J.; Yu, Y. L. An azoester-containing photoresponsive linear liquid crystal polymer with good mesophase stability. Chinese J. Polym. Sci. 2020 , 38 , 806−813..
Zhao, X.; Peng, L. M.; Chen, Y.; Zha, X. J.; Li, W. D.; Bai, L.; Ke, K.; Bao, R. Y.; Yang, M. B.; Yang, W. Phase change mediated mechanically transformative dynamic gel for intelligent control of versatile devices. Mater. Horiz. 2021 , 8 , 1230−1241..
Chen, L.; Zhao, C.; Huang, J.; Zhou, J. J.; Liu, M. J. Enormous-stiffness-changing polymer networks by glass transition mediated microphase separation. Nat. Commun. 2022 , 13 , 6821..
Zhou, Y. C.; Yu, C. T.; Zhang, X.; Zheng, Y.; Wang, B.; Bao, Y. Z.; Shan, G. R.; Wang, H. X.; Pan, P. J. Ultrasensitive ionic conductors with tunable resistance switching temperature enabled by phase transformation of polymer cocrystals. Adv. Mater. 2024 , 36 , 2309568..
Park, J.; Sun, J. Y. Phase-transitional ionogel-based supercapacitors for a selective operation. ACS Appl. Mater. Interfaces 2022 , 14 , 23375−23382..
Gao, M.; Wu, H. X.; Plamthottam, R.; Xie, Z. X.; Liu, Y.; Hu, J. H.; Wu, S. W.; Wu, L.; He, X. M.; Pei, Q. B. Skin temperature-triggered, debonding-on-demand sticker for a self-powered mechanosensitive communication system. Matter 2021 , 4 , 1962−1974..
Zhou, W.; Xiao, P.; Chen, T. Carbon-based Janus films toward flexible sensors, soft actuators, and beyond. Acc. Mater. Res. 2023 , 4 , 334−347..
Yu, Y.; Li, Z. L.; Zhou, W.; Lu, W.; Wei, S. X.; Chen, T. Electricity/light-heat-hygro multi-responsive soft luminescent systems for rewritable and programmable information display. Chem. Eng. J. 2024 , 490 , 151742..
Xiao, P.; Zhou, W.; Liang, Y.; Kuo, S. W.; Yang, Q.; Chen, T. Biomimetic skins enable strain-perception-strengthening soft morphing. Adv. Funct. Mater. 2022 , 32 , 2201812..
Liang, Y.; Shi, J.; Xiao, P.; He, J.; Ni, F.; Zhang, J.; Huang, Y.; Huang, C. F.; Chen, T. A lotus-inspired Janus hybrid film enabled by interfacial self-assembly and in situ asymmetric modification. Chem. Commun. 2018 , 54 , 12804−12807..
0
Views
29
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution