FOLLOWUS
a.Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
b.Macao Institute of Materials Science and Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa 999078, Macao, China
bhyu@must.edu.mo (B.H.Y.)
sszeng@must.edu.mo (S.S.Z.)
Received:30 November 2024,
Revised:12 January 2025,
Accepted:2025-01-22,
Published Online:03 March 2025,
Published:2025-02
Scan QR Code
Yu, C. J.; Yu, B. H.; Zeng, S. S. High humidity-resistant and reversible mechanochromic wrinkling surface activated by dual mechanical modes. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3307-9
Cheng-Jun Yu, Bin-Hong Yu, Song-Shan Zeng. High Humidity-resistant and Reversible Mechanochromic Wrinkling Surface Activated by Dual Mechanical Modes[J/OL]. Chinese journal of polymer science, 2025, 431-9.
Yu, C. J.; Yu, B. H.; Zeng, S. S. High humidity-resistant and reversible mechanochromic wrinkling surface activated by dual mechanical modes. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3307-9 DOI:
Cheng-Jun Yu, Bin-Hong Yu, Song-Shan Zeng. High Humidity-resistant and Reversible Mechanochromic Wrinkling Surface Activated by Dual Mechanical Modes[J/OL]. Chinese journal of polymer science, 2025, 431-9. DOI: 10.1007/s10118-025-3307-9.
A high humidity-resistant
dual mechanical responsive
and reversible mechanochromic wrinkling system based on a VHB 4910-polydimethylsiloxane (PDMS) substrate with a thin film consisting of 90 wt% poly(vinyl butyral) (PVB) and 10 wt% hydroxypropyl cellulose (HPC) has been reported. The wrinkling system exhibited significant optical tuning from transparent to opaque states with 50% changes in transmittance
which was achieved through the dual mechanical modes of pre-stretching and releasing processes or bending. Upon exposure to ethanol vapor or a re-flattening process
wrinkles can be erased
yielding a transparent state. Consequently
the wrinkling system could be reversibly switched between transparency and opacity for 1000 cycles with marginal changes in the optical performance. Owing to the insolubility of PVB in water
the wrinkling patterns exhibited excellent durability in high-humidity environments (relative humidity (RH) = 99%). Furthermore
the smart encryption device is also demonstrated
via
mechano-controlled surface topography by patterning the wrinkling system
suggesting potential applications of the designed structure in smart windows
anti-counterfeiting
dynamic display
optical information encryption
and rewritable surfaces.
Andrew Richard, P. 515 million years of structural colour. J. Opt. A: Pure Appl. Opt . 2000, 2 , R15−R28..
Vukusic, P.; Sambles, J. R. Photonic structures in biology. Nature 2003 , 424 , 852−855..
Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008 , 71 , 076401..
Sun, J.; Bhushan, B.; Tong, J. Structural coloration in nature. RSC. Adv. 2013 , 3 , 14862−14889..
Zhang, C.; McAdams Ii, D. A.; Grunlan, J. C. Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv. Mater. 2016 , 28 , 6292−6321..
Zhang, Z.; Vogelbacher, F.; Song, Y.; Tian, Y .; Li, M. Bio-inspired optical structures for enhancing luminescence. Exploration 2023 , 3 , 20220052..
Stavenga, D. G.; Leertouwer, H. L.; Wilts, B. D. Coloration principles of nymphaline butterflies – thin films, melanin, ommochromes and wing scale stacking. J. Exp. Biol. 2014 , 217 , 2171−2180..
Trzeciak, T. M.; Wilts, B. D.; Stavenga, D. G.; Vukusic, P. Variable multilayer reflection together with long-pass filtering pigment determines the wing coloration of papilionid butterflies of the nireus group. Opt. Express 2012 , 20 , 8877−8890..
Seago, A. E.; Brady, P.; Vigneron, J. P.; Schultz, T. D. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J. R. Soc. Interface 2008 , 6 , S165−S184..
Airoldi, C. A.; Lugo, C. A.; Wightman, R.; Glover, B. J.; Robinson, S. Mechanical buckling can pattern the light-diffracting cuticle of Hibiscus trionum. Cell Rep . 2021, 36 , 10975.
Oh, J. H.; Woo , J. Y.; Jo, S.; Han, C. S. Iridescent and glossy effect on polymer surface using micro-/nanohierarchical structure: artificial queen of the night tulip petals. ACS Appl. Mater. Interfaces 2019 , 11 , 26442−26447..
Nixon, M. R.; Orr, A. G.; Vukusic, P. Wrinkles enhance the diffuse reflection from the dragonfly rhyothemis resplendens. J. R. Soc. Interface 2015 , 12 , 20140749..
Hanlon, R. T.; Chiao, C. C.; Mäthger, L. M.; Barbosa, A.; Buresch, K. C.; Chubb, C. Cephalopod dynamic camouflage: bridging the continuum between background matching and disruptive coloration. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2008 , 364 , 429−437..
Hou, H.; Yin, J.; Jiang, X. Smart patterned surface with dynamic wrinkles. Acc. Chem. Res. 2019 , 52 , 1025−1035..
Smith, A. T.; Shen, K.; Hou, Z.; Zeng, S.; Jin, J.; Ning, C.; Zhao, Y.; Sun, L. Dual photo- and mechanochromisms of graphitic carbon nitride/polyvinyl alcohol film. Adv. Funct. Mater. 2022 , 32 , 2110285..
Mao, Z.; Zeng, S.; Shen, K.; Choo i, A. P.; Smith, A. T.; Jones, M. D.; Zhou, Y.; Liu, X.; Sun, L. Dynamic mechanochromic optics with tunable strain sensitivity for strain-responsive digit display. Adv. Opt. Mater. 2020 , 8 , 2001472..
Zeng, S.; Yang, Z.; Hou, Z.; Park, C.; Jones, M. D.; Ding, H.; Shen, K.; Smith, A. T.; Jin, H. X.; Wang, B.; Jiang, H.; Sun, L. Dynamic multifunctional devices enabled by ultrathin metal nanocoatings with optical/photothermal and morphological versatility. Proc. Nat. Acad. Sci. 2022 , 119 , e2118991119..
Jiang, Y.; Zeng, S.; Yao, Y.; Xu, S.; Dong, Q.; Chen, P.; Wang, Z.; Zhang, M.; Zhu, M.; Xu, G.; Zeng, H.; Sun, L. Dynamic optics with transparency and color changes under ambient conditions. Polymers 2019 , 11 , 103..
Zeng, S.; Shen, K.; Liu, Y.; Chooi, A. P.; Smith, A. T.; Zhai, S.; Chen, Z.; Sun, L. Dynamic thermal radiation modulators via mechanically tunable surface emissivity. Mater. Today 2021 , 45 , 44−53..
Wu, C.; Zeng, S.; Wang, Z.; Wang, F.; Zhou, H.; Zhang, J.; Ci, Z.; Sun, L. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility. Adv. Funct. Mater. 2018 , 28 , 1803168..
Bodin, J. N.; Shen, K.; Zeng, S.; Sun, L. Expanding horizons: diverse applications of rubbers and elastomers in emerging technologies. Rubber Chem. Technol. 2024 , 97 , 93−117..
Hou, Z.; Zeng, S.; Shen, K.; Healey, P. R.; Schipper, H. J.; Zhang, L.; Zhang, M.; Jones, M. D.; Sun, L. Interactive deformable electroluminescent devices enabled by an adaptable hydrogel system with optical/photothermal/mechanical tunability. Mater. Horiz. 2023 , 10 , 5931−5941..
Zeng, S.; Smith, A. T.; Shen, K.; Sun, L. Smart soft materials with multiscale architecture and dynamic surface topographies. Acc. Mater. Res. 2022 , 3 , 1115−1126..
Liu, N.; Sun, Q.; Yang, Z.; Shan, L.; Wang, Z.; Li, H. Wrinkled interfaces: taking advantage of anisotropic wrinkling to periodically pattern polymer surfaces. Adv. Sci. 2023 , 10 , 2207210..
Liu, N.; Lu, Y.; Li, Z.; Zhao, H.; Yu, Q.; Huang, Y.; Yang, J.; Huang, L. Smart wrinkled interfaces: patterning, morphing, and coding of polymer surfaces by dynamic anisotropic wr inkling. Langmuir 2024 , 40 , 18837−18856..
Keshavarz Hedayati, M.; Elbahri, M. Review of metasurface plasmonic structural color. Plasmonics 2017 , 12 , 1463−1479..
Isapour, G.; Lattuada, M. Bioinspired stimuli-responsive color-changing systems. Adv. Mater. 2018 , 30 , 1707069..
Shang, L.; Zhang, W.; Xu, K.; Zhao, Y. Bio-inspired intelligent structural color materials. Mater. Horiz. 2019 , 6 , 945−958..
Hong, W.; Yuan, Z.; Chen, X. Structural color materials for optical anticounterfeiting. Small 2020 , 16 , 1907626..
Hou, X.; Li, F.; Song, Y.; Li, M. Recent progress in responsive structural color. J. Phys. Chem. Lett. 2022 , 13 , 2885−2900..
Wang, H.; Zhang, H.; Chen, Z.; Zhao, Y.; Gu, Z.; Shang, L. Polymer-based responsive structural color materials. Prog. Mater. Sci. 2023 , 135 , 101091..
Yang, S.; Khare, K.; Lin, P. C. Harnessing surface wrinkle patterns in soft matter. Adv. Funct. Mater. 2010 , 20 , 2550−2564..
Chung, J. Y.; Nolte, A. J.; Stafford, C. M. Surface wrinkling: a versatile platform for measuring thin-film properties. Adv. Mater. 2011 , 23 , 349−368..
Li, F.; Hou, H.; Yin, J.; Jiang, X. Near-infrared light–responsive dynamic wrinkle patterns. Sci. Adv. 2018 , 4 , eaar5762..
Jiang, B.; Liu, L.; Gao, Z.; Feng, Z.; Zheng, Y.; Wang, W. Fast dual-stimuli-responsive dynamic surface wrinkles with high bistability for smart windows and rewritable optical displays. ACS Appl. Mater. Interfaces 2019 , 11 , 40406−40415..
Zong, C.; Zhao, Y.; Ji, H.; Han, X.; Xie, J.; Wang, J.; Cao, Y.; Jiang, S.; Lu, C. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem. Int. Ed. 2016 , 55 , 3931−3935..
Zeng, S.; Liu, Y.; Li, S.; Shen, K.; Hou, Z.; Chooi, A. P.; Smith, A. T.; Chen, Z.; Sun, L. Smart laser-writable micropatterns with multiscale photo/moisture reconstructible structure. Adv. Funct. Mater. 2021 , 31 , 2009481..
Wu, K.; Zhu, T.; Zhu, L.; Sun, Y.; Chen, K.; Chen, J.; Yuan, H.; Wang, Y.; Zhang, J.; Liu, G.; Chen, X.; Sun, J. Reversible mechanochromisms via manipulating surface wrinkling. Nano Lett. 2022 , 22 , 2261−2269..
Ma, T.; Li, T.; Zhou, L.; Ma, X.; Yin, J.; Jiang, X. Dynamic wrinkling pattern exhibiting tunable fluorescence for anticounterfeiting applications. Nat. Commun. 2020 , 11 , 1811..
Zeng, S.; Li, R.; Freire, S. G.; Garbellotto, V. M. M.; Huang, E. Y.; Smith, A. T.; Hu, C.; Tait, W. R. T.; Bian, Z.; Zheng, G.; Zhang, D.; Sun, L. Moisture-responsive wrinkling surfaces with tunable dynamics. Adv. Mater. 2017 , 29 , 1700828..
Rodríguez-Hernández, J. Wrinkled interfaces: Taking advantage of surface instabilities to pattern polymer surfaces. Prog. Polym. Sci. 2015 , 42 , 1−41..
Chen, C. M.; Yang, S. Wrinkling instabilities in polymer films and their applications. Polym. Int. 2012 , 61 , 1041−1047..
Zeng, S.; Zhang, D.; Huang, W.; Wang, Z.; Freire, S. G.; Yu, X.; Smith, A. T.; Huang, E. Y.; Nguon, H.; Sun, L. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds. Nat. Commun. 2016 , 7 , 11802..
Ke, Y.; Chen, J.; Lin, G.; Wang, S.; Zhou, Y.; Yin, J.; Lee, P. S.; Long, Y. Smart windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy. Mater. 2019 , 9 , 1902066..
Chen, B.; Feng, Q.; Liu, W.; Liu, Y.; Yang, L.; Ge, D. Review on mechanoresponsive smart windows: structures and driving modes. Materials 2023 , 16 , 779..
Zeng, S.; Sun, H.; Park, C.; Zhang, M.; Zhu, M.; Yan, M.; Chov, N.; Li, E.; Smith, A. T.; Xu, G.; Li, S.; Hou, Z.; Li, Y.; Wang, B.; Zhang, D.; Sun, L. Multi-stimuli responsive chromism with tailorable mechanochromic sensitivity for versatile interactive sensing under ambient conditions. Mater. Horiz. 2020 , 7 , 164−172..
Zeng, S.; Li, R.; Tait, W. R. T.; Smith, A. T.; Zhang, M.; Zhu, M.; Chov, N.; Xu, G.; Zhang, D.; Sun, L. Spontaneous formation of wrinkle-driven tubular structure as a versatile platform for adaptive 3D stretchable electronics. Mater. Horiz. 2020 , 7 , 2368−2377..
Li, Z.; Zhai, Y.; Wang, Y.; Wendland, G. M.; Yin, X.; Xiao, J. Harnessing surface wrinkling–cracking patterns for tunable optical transmittance. Adv. Opt. Mater. 2017 , 5 , 1700425..
Xu, Y.; Zeng, S.; Xian, W.; Lin, L.; Ding, H.; Liu, J.; Xiao, M.; Wang, S.; Li, Y.; Meng, Y.; Sun, L. Transparency change mechanochromism based on a robust PDMS-hydrogel bilayer structure. Macromol. Rapid Commun. 2021 , 42 , 2000446..
Zeng, S.; Shen, K.; Li, S.; Li, R.; Hou, Z.; Zhang, X.; Tait, W. R. T.; Kajiwara, T.; Takahara, A.; Smith, A. T.; Jones, M. D.; Zhang, D.; Sun, L. Tailoring multistimuli responsive micropatterns activated by various mechanical modes. Adv. Funct. Mater. 2021 , 31 , 2100612..
Zhang, X. A.; Jiang, Y.; Venkatesh, R. B. ; Raney, J. R.; Stebe, K. J.; Yang, S.; Lee, D. Scalable manufacturing of bending-induced surface wrinkles. ACS Appl. Mater. Interfaces 2020 , 12 , 7658−7664..
Nolte, A. J.; Young, C. J.; Davis, C. S. Wrinkling-to-delamination transition in thin polymer films on compliant substrates. Soft Matter 2017 , 13 , 7930−7937..
M. A. Ghanem.; X. Liang.; B. Lydon, L.; Potocsnak, T. Wehr.; S. Hoang.; S. Cai.; N. Boechler. Wrinkles riding waves in soft layered materials. Adv. Mater. Interfaces 2019 , 6 , 1801609..
Wang Y.; Kim B J.; Peng B. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces. Proc. Natl. Acad. Sci. U.S.A. 2019 , 116 , 21361−21368..
Wang, Q.; Zhao, X.; Beyond wrinkles. multimodal surface instabilities for multifunctional patterning. MRS Bull . 2016, 41 , 115−122..
Karolina Pierchala M.; Kadumudi F B.; Mehrali M. Soft electronic materials with combinatorial properties generate dvia mussel-inspired chemistry and halloysite nanotube reinforcement. ACS Nano 2021 , 15 , 9531−9549..
Sarabia-Vallejos M A.; Cerda-Iglesias F E.; Pérez-Monje D A. Smart polymer surfaces with complex wrinkled patterns: reversible, non-planar, gradient, and hierarchical structures. Polymers 2023, 15 , 612..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution