FOLLOWUS
a.Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
b.Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi’an 710072, China
c.School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang 453003, China
d.Xi’an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
e.International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
renhao@snnu.edu.cn (H.R.)
yangpeng@snnu.edu.cn (P.Y.)
Received:30 November 2024,
Revised:23 December 2024,
Accepted:2024-12-27,
Published Online:13 March 2025,
Published:2025-02
Scan QR Code
Bai, J. W.; Liu, W.; Wen, B.; Lei, Z. L.; Li, C.; Ren, H.; Yang, P. Synergistic functional group interactions for stable interfacial adhesion: insights from amyloid-inspired polymers. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3304-z
Jin-Wei Bai, Wei Liu, Bin Wen, et al. Synergistic Functional Group Interactions for Stable Interfacial Adhesion: Insights from Amyloid-inspired Polymers[J/OL]. Chinese journal of polymer science, 2025, 431-9.
Bai, J. W.; Liu, W.; Wen, B.; Lei, Z. L.; Li, C.; Ren, H.; Yang, P. Synergistic functional group interactions for stable interfacial adhesion: insights from amyloid-inspired polymers. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3304-z DOI:
Jin-Wei Bai, Wei Liu, Bin Wen, et al. Synergistic Functional Group Interactions for Stable Interfacial Adhesion: Insights from Amyloid-inspired Polymers[J/OL]. Chinese journal of polymer science, 2025, 431-9. DOI: 10.1007/s10118-025-3304-z.
Amyloid-like proteins are critical for interfacial adhesion across various marine organisms and bacteria. However
the specific contributions of different functional residues remain unclear. Herein
we introduce an approach to deconstruct and mimic these residues using synthetic homopolymers and random copolymers with phenyl
amino
carboxyl
and hydroxyl functional groups using reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting polymers
designed with comparable molecular weights (
M
n
: 10–20 kDa) and narrow dispersities (PDI
<
1.3)
mimic the diverse surface che
mistry of amyloid-like proteins
enabling systematic investigation of their adhesive properties. The interfacial adhesion forces of different polymer films were quantified using atomic force microscopy (AFM) with a colloidal probe. Remarkably
copolymers with multiple functional groups demonstrated significantly enhanced adhesion compared to homopolymers
a trend corroborated by macroscopic shear strength and stability tests. These results highlight that the synergistic effects of multiple functional groups are crucial for achieving universal interfacial adhesion of macromolecules
offering insights into protein adhesion mechanisms
and guiding polymer-based interfacial modifications.
Chapman, M. R.; Robinson, L. S.; Pinkner, J. S.; Roth, R.; Heuser, J.; Hammar, M.; Normark, S.; Hultgren, S. J. Role of escherichia coli curli operons in directing amyloid fiber formation. Science 2002 , 295 , 851−855..
Larsen, P.; Nielsen, J. L.; Dueholm, M. S.; Wetzel, R.; Otzen, D.; Nielsen, P. H. Amyloid adhesins are abundant in natural biofilms. Environ. Microbiol. 2007 , 9 , 3077−3090..
Lipke, P. N.; Garcia, M. C.; Alsteens, D.; Ramsook, C. B.; Klotz, S. A.; Dufrêne, Y. F. Strengthening relationships: amyloids create adhesion nanodomains in yeasts. Trends Microbiol. 2012 , 20 , 59−65..
Cámara-Almirón, J.; Caro-Astorga, J.; de Vicente, A.; Romero, D. Beyond the expected: the structural and functional diversity of bacterial amyloids. Crit. Rev. Microbiol. 2018 , 6 , 653−666..
Brubaker, C. E.; Messersmith, P. B. The present and future of biologically inspired adhesive interfaces and materials. Langmuir 2011 , 28 , 2200−2205..
Berger, O.; Battistella, C.; Chen, Y.; Oktawiec, J.; Siwicka, Z. E.; Tullman-Ercek, D.; Wang, M.; Gianneschi, N. C. Mussel adhesive-inspired proteomimetic polymer. J. Am. Chem. Soc. 2022 , 144 , 4383−4392..
Dalsin, J. L.; Hu, B.; Lee, B. P.; Messersmith, P. B. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J. Am. Chem. Soc. 2003 , 125 , 4253−4258..
Wei, Q.; Achazi, K.; Liebe, H.; Schulz, A.; Noeske, P. L. M.; Grunwald, I.; Haag, R. Mussel-inspired dendritic polymers as universal multifunctional coatings. Angew. Chem. Int. Ed. 2014 , 53 , 11650−11655..
Nishida, J.; Higaki, Y.; Takahara, A. Synthesis and characterization of barnacle adhesive mimetic towards underwater adhesion. Chem. Lett. 2015 , 44 , 1047−1049..
Wu, Y.; Chen, K.; Wang, J.; Chen, M.; Dai, W.; Liu, R. Recent advances and future developments in the preparation of polypeptides via n-carboxyanhydride (NCA) ring-opening polymerization. J. Am. Chem. Soc. 2024 , 146 , 24189−24208..
Chen, Q.; Zhang, X.; Zhang, D.; Liu, G.; Ma, K.; Liu, J.; Ma, K.; Chen, M.; Li, Y.; Liu, R. Universal and one-step modification to render diverse materials bioactivation. J. Am. Chem. Soc. 2023 , 145 , 18084−18093..
Liu, Y.; Miao, S.; Ren, H.; Tian, L.; Zhao, J.; Yang, P. Synthesis and functionalization of scalable and versatile 2d protein films via amyloid-like aggregation. Nat. Protoc. 2024 , 19 , 539−564..
Ren, H.; Chen, H.; Kang, Y.; Liu, W.; Liu, Y.; Tao, F.; Miao, S.; Zhang, Y.; Liu, Q.; Dong, M.;Liu, Y.; Liu, B.; Yang, P. Non-fibril amyloid aggregation at the air/water interface: self-adaptive pathway resulting in a 2d janus nanofilm. Chem. Sci. 2024 , 15 , 8946−8958..
Qin, R.; Guo, Y.; Ren, H.; Liu, Y.; Su, H.; Chu, X.; Jin, Y.; Lu, F.; Wang, B.; Yang, P. Instant adhesion of amyloid-like nanofilms with wet surfaces. ACS Cent. Sci. 2022 , 8 , 705−717..
Lu, Q.; Danner, E.; Waite, J. H.; Israelachvili, J. N.; Zeng, H.; Hwang, D. S. Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface 2012 , 10 , 20120759..
Nelson, R.; Sawaya, M. R.; Balbirnie, M.; Madsen, A. Ø.; Riekel, C.; Grothe, R.; Eisenberg, D. Structure of the cross-β spine of amyloid-like fibrils. Nature 2005 , 435 , 773−778..
Wolff, J. O.; Grawe, I.; Wirth, M.; Karstedt, A.; Gorb, S. N. Spider's super-glue: thread anchors are composite adhesives with synergistic hierarchical organization. Soft Matter 2015 , 11 , 2394−2403..
Gu, J.; Miao, S.; Yan, Z.; Yang, P. Multiplex binding of amyloid-like protein nanofilm to different material surfaces. Colloid and Interface Sci. Commun. 2018 , 22 , 42−48..
Yu, J.; Kan, Y.; Rapp, M.; Danner, E.; Wei, W.; Das, S.; Miller, D. R.; Chen, Y.; Waite, J. H.; Israelachvili, J. N. Adaptive hydrophobic and hydrophilic interactions of mussel foot proteins with organic thin films. Proc. Natl. Acad. Sci. 2013 , 110 , 15680−15685..
Zhong, C.; Gurry, T.; Cheng, A. A.; Downey, J.; Deng, Z.; Stultz, C. M.; Lu, T. K. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nat. Nanotechnol. 2014 , 9 , 858−866..
DeBenedictis, E. P.; Liu, J.; Keten, S. Adhesion mechanisms of curli subunit CsgA to abiotic surfaces. Sci. Adv. 2016 , 2 , e1600998..
Zhang, N.; Hu, X.; Guan, P.; Zeng, K.; Cheng, Y. Adsorption mechanism of amyloid fibrils to graphene nanosheets and their structural destruction. J. Phys. Chem. C 2018 , 123 , 897−906..
Ou, X.; Xue, B.; Lao, Y.; Wutthinitikornkit, Y.; Tian, R.; Zou, A.; Yang, L.; Wang, W.; Cao, Y.; Li, J. Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Sci. Adv. 2020 , 6 , eabb7620..
Bhat, R.; Foster, L. L.; Rani, G.; Vemparala, S.; Kuroda, K. The function of peptide-mimetic anionic groups and salt bridges in the antimicrobial activity and conformation of cationic amphiphilic copolymers. RSC Adv. 2021 , 11 , 22044−22056..
Takahashi, H.; Yumoto, K.; Yasuhara, K.; Nadres, E. T.; Kikuchi, Y.; Buttitta, L.; Taichman, R. S.; Kuroda, K. Anticancer polymers designed for killing dormant prostate cancer cells. Sci. Rep . 2019 , 9 ,1096.
Kuroda, K.; Caputo, G. A. Antimicrobial polymers as synthetic mimics of host-defense peptides. Wiley Interdiscip. Rev.-Nanomed. Nanobiotechnol. 2013 , 5 , 49−66..
Palermo, E. F.; Vemparala, S.; Kuroda, K. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers. Biomacromolecules 2012 , 13 , 1632−1641..
Keddie, D. J.; Moad, G.; Rizzardo, E.; Thang, S. H. RAFT agent design and synthesis. Macromolecules 2012 , 45 , 5321−5342..
Qiu, X.; Winnik, F. M. Synthesis of α,ω -dimercapto poly(n-isopropylacrylamides) by RAFT polymerization with a hydrophilic difunctional chain transfer agent. Macromolecules 2007 , 40 , 872−878..
Sadat, A.; Joye, I. J. Peak fitting applied to fourier transform infrared and raman spectroscopic analysis of proteins. Appl. Sci 2020 , 10 , 5918..
Dupont Gillain, C. C.; Fauroux, C. M. J.; Gardner, D. C. J.; Leggett, G. J. Use of AFM to probe the adsorption strength and time-dependent changes of albumin on self-assembled monolayers. J. Biomed. Mater. Res. Part A 2003 , 67A , 548−558..
Kidoaki, S.; Matsuda, T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope. Langmuir 1999 , 15 , 7639−7646..
Butt, H.; Cappella, B.; Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 2005 , 59 , 1−152..
Li, A.; Mu, Y.; Jiang, W.; Wan, X. A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chem. Commun. 2015 , 51 , 9117−9120..
Lo Presti, M.; Rizzo, G.; Farinola, G. M.; Omenetto, F. G. Bioinspired biomaterial composite for all-water-based high-performance adhesives. Adv. Sci. 2021 , 8 , 2004786..
Crisp, D. J.; Walker, G.; Young, G. A.; Yule, A. B. Adhesion and substrate choice in mussels and barnacles. J. Colloid. Interface. Sci. 1985 , 104 , 40−50..
Safari, A.; Tukovic, Z.; Cardiff, P.; Walter, M.; Casey, E.; Ivankovic, A. Interfacial separation of a mature biofilm from a glass surface – a combined experimental and cohesive zone modelling approach. J. Mech. Behav. Biomed. Mater. 2016 , 54 , 205−218..
Li, Z.; Lazaridis, T. The effect of water displacement on binding thermodynamics: concanavalin a. J. Phys. Chem. B 2005 , 109 , 662−670..
Wang, D.; Ha, Y.; Gu, J.; Li, Q.; Zhang, L.; Yang, P. 2D protein supramolecular nanofilm with exceptionally large area and emergent functions. Adv. Mater . 2016 , 28 , 7414−7423..
Gohad, N. V.; Aldred, N.; Hartshorn, C. M.; Jong Lee, Y.; Cicerone, M. T.; Orihuela, B.; Clare, A. S.; Rittschof, D.; Mount, A. S. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat. Commun. 2014 , 5 , 4414..
Liu, Y.; Tao, F.; Miao, S.; Yang, P. Controlling the structure and function of protein thin films through amyloid-like aggregation. Acc. Chem. Res. 2021 , 54 , 3016−3027..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution