FOLLOWUS
a.Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
b.MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
yongjin-li@hznu.edu.cn (Y.J. L)
jing_yang@hznu.edu.cn (J.Y.)
Received:11 November 2024,
Revised:23 December 2024,
Accepted:2025-01-11,
Published Online:13 March 2025,
Published:2025-02
Scan QR Code
Shang, Y. J.; Guo, B. B.; Li, H. N.; Li, Y. J.; Yang, J. Polyamide composite membranes on electrospun nanofibers for osmotic enrichment of ionic liquids from aqueous solutions. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3294-x
Yu-Jie Shang, Bian-Bian Guo, Hao-Nan Li, et al. Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions[J/OL]. Chinese journal of polymer science, 2025, 431-9.
Shang, Y. J.; Guo, B. B.; Li, H. N.; Li, Y. J.; Yang, J. Polyamide composite membranes on electrospun nanofibers for osmotic enrichment of ionic liquids from aqueous solutions. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3294-x DOI:
Yu-Jie Shang, Bian-Bian Guo, Hao-Nan Li, et al. Polyamide Composite Membranes on Electrospun Nanofibers for Osmotic Enrichment of Ionic Liquids from Aqueous Solutions[J/OL]. Chinese journal of polymer science, 2025, 431-9. DOI: 10.1007/s10118-025-3294-x.
The recovery of ionic liquids (ILs) has attracted growing attention as an indispensable process in “green” industrial applications. Forward osmosis (FO) has proven to be a sustainable method for concentrating the very dilute aqueous solutions of ILs at ambient temperature
in which semi-permeable membranes play a vital role in determining the recovery efficiency. Herein
we use interfacial polymerization method to prepare thin-film composite membranes consisting of polyamide skin layer and electrospun nanofibrous substrate with tunable water permeability and IL selectivity for osmotic enrichment of imidazolium ILs from their dilute aqueous solutions through FO process. The resulting FO membrane shows a compact polyamide layer with a thickness of 30–200 nm
guranteeing a high selectivity to ILs and water. Meanwhile
the nanofibrous substrate with large and interconnect pores as well as low tortuosity
providing mechanical and permeable support for the composite membranes. IL structure influences the osmotic pressure difference as well as the interactions with polyamide layer of the membrane and thus determines the whole concentration process. First
the alkyl chain growth augments the osmosis pressure difference between the ILs solution and draw solution
resulting in an enhancement in driving force of water osmosis and IL enrichment. Moreover
alkyl length aggravates external concentration polarization caused by the enhanced adsorption of ILs onto the skin layer
via
electrostatic and alkyl-
π
interactions. Meanwhile
such adsorbed ILs further enhance the IL retention but decrease the reverse salt diffusion. Therefore
imidazolium ILs with varied alkyl lengths are ultimately enriched with a 100-fold increase in concentration from their dilute aqueous solutions with high IL/NaCl rejection and low IL loss. Remarkably
the final concentration of IL with longe
st alkyl length reaches the highest (6.4 mol·L
–1
). This work provides the insights in respect to material preparation and process amelioration for IL recovery with high scalability at mild conditions.
Hayes, R.; Warr, G. G.; Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 2015 , 115 , 6357−6426..
Jessop, P. G. Searching for green solvents. Green Chem. 2011 , 13 , 1391−1398..
Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 1999 , 99 , 2071−2084..
Liu, S.; Zhou, L.; Wang, P.; Zhang, F.; Yu, S.; Shao, Z.; Yi, B. Ionic-liquid-based proton conducting membranes for anhydrous H 2 /Cl 2 fuel-cell applications. ACS Appl. Mater. Interfaces 2014 , 6 , 3195−3200..
Zeng, S.; Zhang, X.; Bai, L.; Zhang, X.; Wang, H.; Wang, J.; Bao, D.; Li, M.; Liu, X.; Zhang, S. Ionic-liquid-based CO 2 capture systems: structure, interaction and process. Chem. Rev. 2017 , 117 , 9625−9673..
Le Bideau, J.; via u, L.; Vioux, A. Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 2011 , 40 , 907−925..
Guo, B. B.; Liu, C.; Zhu, C. Y.; Xin, J. H.; Zhang, C.; Yang, H. C.; Xu, Z. K. Double charge flips of polyamide membrane by ionic liquid-decoupled bulk and interfacial diffusion for on-demand nanofiltration. Nat. Commun. 2024 , 15 , 2282..
Liu, C.; Yang, J.; Guo, B.nB.; Agarwal, S.; Greiner, A.; Xu, Z. K. Interfacial polymerization at the alkane/ionic liquid interface. Angew. Chem. Int. Ed. 2021 , 60 , 14636−14643..
Li, J.; Gonzales, R. R.; Takagi, R.; Chen, Y. C.; Matsuoka, A.; Deng, L.; Matsuyama, H. Continuous purification of drugs by ionic liquid-drawn organi c solvent forward osmosis and solute recovery. Environ. Chem. Lett. 2024 , 22 , 29−34..
Wang, H.; Gurau, G.; Rogers, R. D. Ionic liquid processing of cellulose. Chem. Soc. Rev. 2012 , 41 , 1519−1537..
Sun, L.; Brennecke, J. F. Characterization of imidazolium chloride ionic liquids plus trivalent chromium chloride for chromium electroplating. Ind. Eng. Chem. Res. 2015 , 54 , 4879−4890..
Ventura, S. P. M.; Marques, C. S.; Rosatella, A. A.; Afonso, C. A. M.; Gonçalves, F.; Coutinho, J. A. P. Toxicity assessment of various ionic liquid families towards vibrio fischeri marine bacteria. Ecotoxicol. Environ. Saf. 2012 , 76 , 162−168..
Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustain. Chem. 2014 , 4 , 44−53..
Mai, N. L.; Ahn, K.; Koo, Y. M. Methods for recovery of ionic liquids—a review. Process Biochem. 2014 , 49 , 872−881..
Idris, A.; Vijayaraghavan, R.; Patti, A. F.; MacFarlane, D. R. Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain. Chem. Eng. 2014 , 2 , 1888−1894..
Lemus, J.; Palomar, J.; Heras, F.; Gilarranz, M. A.; Rodriguez, J. J. Developing criteria for the recovery of ionic liquids from aqueous phase by adsorption with activated carbon. Sep. Purif. Technol. 2012 , 97 , 11−19..
Deng, Y.; Long, T.; Zhang, D.; Chen, J.; Gan, S. Phase diagram of [Amim ] Cl + salt aqueous biphasic systems and its application for [Amim ] Cl recovery. J. Chem. Eng. Data 2009 , 54 , 2470−2473..
Werber, J. R.; Osuji, C. O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016 , 1 , 16018..
Wang, X.; Nie, Y.; Zhang, X.; Zhang, S.; Li, J. Recovery of ionic liquids from dilute aqueous solutions by electrodialysis. Desalination 2012 , 285 , 205−212..
Avram, A. M.; Ahmadiannamini, P.; Qian, X.; Wickramasinghe, S. R. Nanofiltration membranes for ionic liquid recovery. Sep. Sci. Technol. 2017 , 52 , 2098−2107..
Lynam, J. G.; Chow, G. I.; Coronella, C. J.; Hiibel, S. R. Ionic liquid and water separation by membrane distillation. Chem. Eng. J. 2016 , 288 , 557−561..
Wu, H.; Shen, F.; Wang, J.; Luo, J.; Liu, L.; Khan, R.; Wan, Y. Separation and concentration of ionic liquid aqueous solution by vacuum membrane distillation. J. Membr. Sci. 2016 , 518 , 216−228..
An, Y.-P.; Liu, C.; Yang, J.; Guo, B.-B.; Xu, Z. K. Concentrating water-soluble ionic liquids from aqueous solutions: osmotic distillation with hydrophobic membranes. J. Membr. Sci. 2020 , 608 , 118222..
Haerens, K.; Deuren, S. Van; Matthijs, E.; Bruggen, B. Van Der. Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem. 2010 , 12 , 2182−2188..
Fernández, J. F.; Bartel, R.; Bottin-Weber, U.; Stolte, S.; Thöming, J. Recovery o f ionic liquids from wastewater by nanofiltration. J. Membr. Sci. Technol. 2013 , 3 , 1−8..
Wang, J.; Luo, J.; Zhang, X.; Wan, Y. Concentration of ionic liquids by nanofiltration for recycling: filtration behavior and modeling. Sep. Purif. Technol. 2016 , 165 , 18−26..
Chung, T. S.; Li, X.; Ong, R. C.; Ge, Q.; Wang, H.; Han, G. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications. Curr. Opin. Chem. Eng. 2012 , 1 , 246−257..
Liu, C.; An, Y. P.; Yang, J.; Guo, B. B.; Yu, H. H.; Xu, Z. K. Osmotic pressure as driving force for recovering ionic liquids from aqueous solutions. J. Membr. Sci. 2020 , 599 , 117835..
Zhao, S.; Zou, L.; Tang, C. Y.; Mulcahy, D. Recent developments in forward osmosis: opportunities and challenges. J. Membr. Sci. 2012 , 396 , 1−21..
Xie, M. Y.; Wang, J.; Wu, Q. Y. Nanofiltration membranes via layer-by-layer assembly and cross-linking of polyethyleneimine/sodium lignosulfonate for heavy m etal removal. Chinese J. Polym. Sci. 2020 , 38 , 965−972..
Guo, B.-B.; Zhu, C. Y.; Xu, Z. K. Surface and interface engineering for advanced nanofiltration membranes. Chinese J. Polym. Sci. 2022 , 40 , 124−137..
Lin, H. B.; Zhao, J. G.; Lu, N.; Han, Q.; Wang, J. Q.; Guan, J. M.; Wang, X.; Liu, F. Prussian blue/cellulose acetate thin film composite nanofiltration membrane for molecular sieving and catalytic fouling resistance. Chinese J. Polym. Sci. 2023 , 41 , 593−604..
Liang, H. Q.; Hung, W. S.; Yu, H. H.; Hu, C. C.; Lee, K. R.; Lai, J. Y.; Xu, Z. K. Forward osmosis membranes with unprecedented water flux. J. Membr. Sci. 2017 , 529 , 47−54..
Xu, J.; Yan, H.; Zhang, Y.; Pan, G.; Liu, Y. The morphology of fully-aromatic polyamide separation layer and its relationship with separation performance of TFC membranes. J. Membr. Sci. 2017 , 541 , 174−188..
Bui, N. N.; McCutcheon, J. R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ. Sci. Technol. 2013 , 47 , 1761−1769..
Soroush, A.; Barzin, J.; Barikani, M.; Fathizadeh, M. Interfacially polymerized polyamide thin film composite membranes: preparation, characterization and performance evaluation. Desalination 2012 , 287 , 310−316..
Karan, S.; Jiang, Z.; Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 2015 , 348 , 1347−1351..
Wei, J.; Liu, X.; Qiu, C.; Wang, R.; Tang, C. Y. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J. Membr. Sci. 2011 , 381 , 110−117..
Kim, B.; Gwak, G.; Hong, S. Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S). Desalination 2017 , 422 , 5−16..
Cui, Y.; Chung, T.-S. Pharmaceutical concentration using organic solvent forward osmosis for solvent recovery. Nat. Commun. 2018 , 9 , 1426..
Wu, H.; Shen, F.; Wang, J.; Wan, Y. Membrane fouling in vacuum membrane distillation for ionic liquid recycling: interaction energy analysis with the XDLVO approach. J. Membr. Sci. 2018 , 550 , 436−447..
Garcia-Castello, E. M.; McCutcheon, J. R. Dewatering press liquor derived from orange production by forward osmosis. J. Membr. Sci. 2011 , 372 , 97−101..
Ribas, J.; Cubero, E.; Luque, F. J.; Orozco, M. Theoretical study of alkyl- π and aryl- π interactions. reconciling theory and experiment. J. Org. Chem. 2002 , 67 (20) , 7057–7065..
Arashnezhad, F.; Zare M. Effect of ether functionalization and alkyl chain length on the structure and electronic properties of ammonium ionic liquids. Chem. Phys. Lett. 2021 , 775 , 138650..
Zhao, C.; Li, P.; Smith, M.D.; Pellechia, P.J.; Shimizu, K.D. Experimental study of the cooperativity of CH− π interactions. Org. Lett. 2014 , 16 , 3520−3523..
Gómez, E.; González, B.; Domínguez, Á.; Tojo, E.; Tojo, J. Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures. J. Chem. Eng. Data 2006 , 51 , 696−701..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution