Accessing Degradable Polyethylene Materials with In-chain Ester Units via Mechanochemical Backbone Editing
RESEARCH ARTICLE|Updated:2025-03-28
|
Accessing Degradable Polyethylene Materials with In-chain Ester Units via Mechanochemical Backbone Editing
Chinese Journal of Polymer ScienceVol. 43, Pages: 1-6(2025)
Affiliations:
a.Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
b.School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
Zhang, X. H.; Zhao, Y. J.; Wang, C.; Tang, S. Accessing degradable polyethylene materials with in-chain ester units via mechanochemical backbone editing. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3285-y
Xiao-Hui Zhang, Ya-Jun Zhao, Can Wang, et al. Accessing Degradable Polyethylene Materials with In-chain Ester Units via Mechanochemical Backbone Editing[J/OL]. Chinese journal of polymer science, 2025, 431-6.
Zhang, X. H.; Zhao, Y. J.; Wang, C.; Tang, S. Accessing degradable polyethylene materials with in-chain ester units via mechanochemical backbone editing. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-025-3285-yDOI:
Xiao-Hui Zhang, Ya-Jun Zhao, Can Wang, et al. Accessing Degradable Polyethylene Materials with In-chain Ester Units via Mechanochemical Backbone Editing[J/OL]. Chinese journal of polymer science, 2025, 431-6. DOI: 10.1007/s10118-025-3285-y.
Accessing Degradable Polyethylene Materials with In-chain Ester Units via Mechanochemical Backbone Editing
Incorporating a low density of ester units into the backbone of polyethylene materials enhances their sustainability and recyclability while maintaining the main material properties of polyethylenes. Here we report a new way to access degradable polyethylene materials with a low content of in-chain ester units
via
mechanochemical backbone editing. Initially
ester groups are incorporated as side groups through catalytic copolymerization of ethylene with a cyclobutene-fused lactone monomer (CBL)
yielding polyethylene materials with high molecular weights and adjustable thermomechanica
l properties. Subsequent solid-state ball-milling treatment selectively introduces side-chain ester groups into the main chain of the polyethylene materials
via
force-induced cycloreversion of the cyclobutane units. Under acidic conditions
hydrolysis of the resultant polyethylene materials with in-chain ester units facilitates further degradation into oligomers.
关键词
Keywords
references
Stürzel, M.; Mihan, S.; Mülhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016 , 116 , 1398−1433..
Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Plastic waste inputs from land into the ocean. Science 2015 , 347 , 768−771..
Parke, S. M.; Lopez, J. C.; Cui, S.; LaPointe, A. M.; Coates, G. W. Polyethylene incorporating Diels-Alder comonomers: a “Trojan Horse” strategy for chemically recyclable polyolefins. Angew. Chem. Int. Ed. 2023 , 62 , e202301927..
Li, K.; Jian, Z. Switchable polyolefins from polar functionalization to degradability. CCS Chem. 2024 , 6 , 1941−1950..
Nan, T.; Chen, Q.; Zheng, Z.; Liang, Y.; Qin, Y.; Wang, Y.; Liu, B.; Cui, D. Installing a trigger to upcycle high-density polyethylene. J. Am. Chem. Soc. 2024 , 146 , 27794−27801..
Johnson, A. M.; Johnson, J. A. Thermally robust yet deconstructable and chemically recyclable high-density polyethylene (HDPE)-like materials based on Si−O bonds. Angew. Chem. Int. Ed. 2023 , 62 , e202315085..
Baur, M.; Lin, F.; Morgen, T. O.; Odenwald, L.; Mecking, S. Polyethylene materials with in-chain ketones from nonalternating catalytic copolymerization. Science 2021 , 374 , 604−607..
Tang, S.; Seidel, F. W.; Nozaki, K. High density polyethylenes bearing isolated in-chain carbonyls. Angew. Chem. Int. Ed. 2021 , 60 , 26506−26510..
Chen, S. Y.; Song, Y. H.; Jiao, S.; Zou, C.; Li, S. H.; Chen, C.; Lu, X. B.; Liu, Y. Carbonyl functionalized polyethylene materials via Ni- and Pd-diphosphazane monoxide catalyzed nonalternating copolymerization. J. Catal. 2023 , 417 , 334−340..
Zhou, F.; Dai, H.; Tang, S.; Zhou, Y. Synthesis of polyethylenes with in-chain isolated carbonyls from CO 2 and ethylene via a tandem photoreduction/polymerization protocol. CCS Chem . 2024 , 6 , 1591−1599..
Tang, S.; Nozaki, K. Advances in the synthesis of copolymers from carbon dioxide, dienes, and olefins. Acc. Chem. Res. 2022 , 55 , 1524−1532..
Tang, S.; Lin, B. L.; Tonks, I.; Eagan, J. M.; Ni, X.; Nozaki, K. Sustainable copolymer synthesis from carbon dioxide and butadiene. Chem. Rev. 2024 , 124 , 3590−3607..
Price, C. J.; Reich, B. J. E.; Miller, S. A. Thermodynamic and kinetic considerations in the copolymerization of ethylene and carbon dioxide. Macromolecules 2006 , 39 , 2751−2756..
Moha, V.; Cozzula, D.; Hölscher, M.; Leitner, W.; Müller, T. E. A DFT study on the co-polymerization of CO 2 and ethylene: feasibility analysis for the direct synthesis of polyethylene esters. ChemSusChem 2016 , 9 , 1614−1622..
Rummelt, S. M.; Zhong, H.; Korobkov, I.; Chirik, P. J. Iron-mediated coupling of carbon dioxide and ethylene: macrocyclic metallalactones enable access to various carboxylates. J. Am. Chem. Soc. 2018 , 140 , 11589−11593..
Zeng, T.; You, W.; Chen, G.; Nie, X.; Zhang, Z.; Xia, L.; Hong, C.; Chen, C.; You, Y. Degradable PE-based copolymer with controlled ester structure incorporation by cobalt-mediated radical copolymerization under mild condition. iScience 2020 , 23 , 100904..
Häußler, M.; Eck, M.; Rothauer, D.; Mecking, S. Closed-loop recycling of polyethylene-like materials. Nature 2021 , 590 , 423−427..
Arrington, A. S.; Brown, J. R.; Win, M. S.; Winey, K. I.; Long, T. E. Melt polycondensation of carboxytelechelic polyethylene for the design of degradable segmented copolyester polyolefins. Polym. Chem. 2022 , 13 , 3116−3125..
Zhao, Y.; Rettner, E. M.; Harry, K. L.; Hu, Z.; Miscall, J.; Rorrer, N. A.; Miyake, G. M. Chemically recyclable polyolefin-like multiblock polymers. Science 2023 , 382 , 310−314..
Han, X. W.; Zhang, X.; Zhou, Y.; Maimaitiming, A.; Sun, X. L.; Gao, Y.; Li, P.; Zhu, B.; Chen, E. Y. X.; Kuang, X.; Tang, Y. Circular olefin copolymers made De Novofrom ethylene and α-olefins. Nat. Commun. 2024 , 15 , 1462..
Jang, Y. J.; Nguyen, S.; Hillmyer, M. A. Chemically recyclable linear and branched polyethylenes synthesized from stoichiometrically self-balanced telechelic polyethylenes. J. Am. Chem. Soc. 2024 , 146 , 4771−4782..
Yang, R.; Xu, G.; Tao, W.; Wang, Q.; Tang, Y. Recycled polymer: green roads for polyester plastics. Green Carbon 2024 , 2 , 1−11..
Ditzler, R. A. J.; King, A. J.; Towell, S. E.; Ratushnyy, M.; Zhukhovitskiy, A. V. Editing of polymer backbones. Nat. Rev. Chem. 2023 , 7 , 600−615..
Ratushnyy, M.; Zhukhovitskiy, A. V. Polymer skeletal editing via anionic brook rearrangements. J. Am. Chem. Soc. 2021 , 143 , 17931−17936..
Ditzler, R. A. J.; Zhukhovitskiy, A. V. Sigmatropic rearrangements of polymer backbones: vinyl polymers from polyesters in one step. J. Am. Chem. Soc. 2021 , 143 , 20326−20331..
Galan, N. J.; Brantley, J. N. General access to allene-containing polymers using the Skattebøl rearrangement. ACS Macro Lett. 2020 , 9 , 1662−1666..
Galan, N. J.; Brantley, J. N. Precision synthesis of tunable p olyallenamers from “masked” precursors. Macromolecules 2023 , 56 , 305−310..
Ditzler, R. A. J.; Rapagnani, R. M.; Berney, N. K.; Koby, R. F.; Krist, E. C.; Kruse, B. J.; Fokwa, H. D.; Tonks, I. A.; Zhukhovitskiy, A. V. Architectural editing of polyesters and polyurethanes via palladium(II)-catalyzed [3,3 ] -sigmatropic oxo-rearrangements. J. Am. Chem. Soc. 2024 , 146 , 15286−15292..
Baur, M.; Mast, N. K.; Brahm, J. P.; Habé, R.; Morgen, T. O.; Mecking, S. High-density polyethylene with in-chain photolyzable and hydrolyzable groups enabling recycling and degradation. Angew. Chem. Int. Ed. 2023 , 62 , e202310990..
Hsu, T. G.; Zhou, J.; Su, H. W.; Schrage, B. R.; Ziegler, C. J.; Wang, J. A polymer with “locked” degradability: superior backbone stability and accessible degradability enabled by mechanophore installation. J. Am. Chem. Soc. 2020 , 142 , 2100−2104..
Zhang, X.; Zhao, Y.; Chen, M.; Ji, M.; Sha, Y.; Nozaki, K.; Tang, S. Polyethylene materials with tunable degradability by incorporating in-chain mechanophores. J. Am. Chem. Soc. 2024 , 146 , 24024−24032..
Kean, Z. S.; Black Ramirez, A. L.; Yan, Y.; Craig, S. L. Bicyclo[3.2.0 ] heptane mechanophores for the non-scissile and photochemically reversible generation of reactive bis-enones. J. Am. Chem. Soc. 2012 , 134 , 12939−12942..
Kean, Z. S.; Niu, Z.; Hewage, G. B.; Rheingold, A. L.; Craig, S. L. Stress-responsive polymers containing cyclobutane core mechanophores: reactivity and mechanistic insights. J. Am. Chem. Soc. 2013 , 135 , 13598−13604..
Wang, J.; Kouznetsova, T. B.; Boulatov, R.; Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 2016 , 7 , 13433..
Chen, Z.; Mercer, J. A. M.; Zhu, X.; Romaniuk, J. A. H.; Pfattner, R.; Cegelski, L.; Martinez, T. J.; Burns, N. Z.; Xia, Y. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 2017 , 357 , 475−479..
Chen, Z.; Zhu, X.; Yang, J.; Mercer, J. A. M.; Burns, N. Z.; Martinez, T. J.; Xia, Y. The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nat. Chem. 2020 , 12 , 302−309..
Zhou, J.; Hsu, T. G.; Wang, J. Mechanochemical degradation and recycling of synthetic polymers. Angew. Chem. Int. Ed. 2023 , 62 , e202300768..
Liu, P.; Jimaja, S.; Immel, S.; Thomas, C.; Mayer, M.; Weder, C.; Bruns, N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat. Chem. 2024 , 16 , 1184−1192..
Li, Z.; Zhang, X.; Zhao, Y.; Tang, S. Mechanochemical backbone editing for controlled degradation of vinyl polymers. Angew. Chem. Int. Ed. 2024 , 63 , e202408225..