FOLLOWUS
Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
lichuang21@ustc.edu.cn
Published:01 October 2024,
Published Online:27 August 2024,
Received:20 June 2024,
Revised:20 July 2024,
Accepted:20 July 2024
Scan QR Code
Liao, C.; Du, M. Q.; Li, C. Photoswitchable spiropyridine enabled photoactuation of polymeric hydrogels under physiological pH conditions. Chinese J. Polym. Sci. 2024, 42, 1602–1609
Cong Liao, Meng-Qi Du, Chuang Li. Photoswitchable Spiropyridine Enabled Photoactuation of Polymeric Hydrogels under Physiological pH Conditions. [J]. Chinese Journal of Polymer Science 42(10):1602-1609(2024)
Liao, C.; Du, M. Q.; Li, C. Photoswitchable spiropyridine enabled photoactuation of polymeric hydrogels under physiological pH conditions. Chinese J. Polym. Sci. 2024, 42, 1602–1609 DOI: 10.1007/s10118-024-3211-8.
Cong Liao, Meng-Qi Du, Chuang Li. Photoswitchable Spiropyridine Enabled Photoactuation of Polymeric Hydrogels under Physiological pH Conditions. [J]. Chinese Journal of Polymer Science 42(10):1602-1609(2024) DOI: 10.1007/s10118-024-3211-8.
The molecular design and synthesis of a new polymerizable spiropyridine compound with a high pKa was reported. Upon covalently incorporated into polymer hydrogels
its molecular photoisomerization leads to macroscale photoactuation of the hydrogels at physiological pH. The independence of this spiropyridine hydrogel from the acidic environment makes it biotolerant and shows excellent biocompatibility.
The incorporation of molecular switches into polymer networks has been a powerful approach for the development of functional polymer materials that display macroscopic actuation and function enabled directly by molecular changes. However
such materials sometimes require harsh conditions to perform their functions
and the design of new molecular photoswitches that can function under physiological conditions is highly needed. Here
we report the design and synthesis of a spiropyridine-based photoswitchable hydrogel that exhibits light-driven actuation at physiological pH. Owing to its high p
K
a
spiropyridine maintains its ring-open protonated form at neutral pH
and the resulting hydrogel remains in a swollen state. Upon irradiation with visible light
the ring closure of spiropyridine leads to a decrease in the charge and a reduction in the volume of the hydrogel. The contracted gel could spontaneously recover to its expanding state in the dark
and this process is highly dynamic and reversible when the light is switched on and off. Furthermore
the hydrogel shows switchable fluorescence in response to visible light. Bending deformation is observed in the hydrogel thin films upon irradiation from one side. Importantly
the independence of this spiropyridine hydrogel from the acidic environment makes i
t biotolerant and shows excellent biocompatibility. This biocompatible spiropyridine hydrogel might have important biorelated applications in the future.
Spiropyridine photowitchPolymer hydrogelPhotoactuationPhysiological pHBiocompatibility
Quan, H.; Kisailus, D.; Meyers, M. A. Hydration-induced reversible deformation of biological materials.Nat. Rev. Mater.2020,6, 264−283..
Kulbay, M.; Wu, K. Y.; Truong D.; Tran, S. D. Smart molecules in ophthalmology: hydrogels as responsive systems for ophthalmic applications.Smart Molecules2024,2, e20230021..
Yuk, H.; Wu, J.; Zhao, X. Hydrogel interfaces for merging humans and machines.Nat. Rev. Mater.2022,7, 935−952..
Thambi, T.; Jung, J. M.; Lee, D. S. Recent strategies to develop ph-sensitive injectable hydrogels.Biomater. Sci.2023,11, 1948−1961..
Guo, B.; Liang, Y.; Dong, R. Physical dynamic double-network hydrogels as dressings to facilitate tissue repair.Nat. Protoc.2023,18, 3322−3354..
Chen, S.; Yang, L.; Leung, F. K.-C.; Kajitani, T.; Stuart, M. C. A.; Fukushima, T.; van Rijn, P.; Feringa, B. L. Photoactuating artificial muscles of motor amphiphiles as an extracellular matrix mimetic scaffold for mesenchymal stem cells.J. Am. Chem. Soc.2022,144, 3543−3553..
Matsuda, T.; Kawakami, R.; Namba, R.; Nakajima, T.; Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training.Science2019,363, 504−508..
Zhao, Y.; Xuan, C.; Qian, X.; Alsaid, Y.; Hua, M.; Jin, L.; He, X. Soft phototactic swimmer based on self-sustained hydrogel oscillator.Sci. Rob.2019,4, eaax7112..
Jiao, D.; Zhu, Q. L.; Li, C. Y.; Zheng, Q.; Wu, Z. L. Programmable morphing hydrogels for soft actuators and robots: from structure designs to active functions.Acc. Chem. Res.2022,55, 1533−1545..
Liu, X.; Gao, M.; Chen, J.; Guo, S.; Zhu, W.; Bai, L.; Zhai, W.; Du, H.; Wu, H.; Yan, C.; Shi, Y.; Gu, J.; Qi, H. J.; Zhou, K. Recent advances in stimuli-responsive shape-morphing hydrogels.Adv. Funct. Mater.2022,32, 2203323..
Zhang, Y.; Liu, K.; Liu, T.; Ni, C.; Chen, D.; Guo, J.; Liu, C.; Zhou, J.; Jia, Z.; Zhao, Q.; Pan, P.; Xie, T. Differential diffusion driven far-from-equilibrium shape-shifting of hydrogels.Nat. Commun.2021,12, 6155..
Sun, Y.; Le, X.; Zhou, S.; Chen, T. Recent progress in smart polymeric gel-based information storage for anti-counterfeiting.Adv. Mater.2022,34, 2201262..
Gevorkian, A.; Morozova, S. M.; Kheiri, S.; Khuu, N.; Chen, H.; Young, E.; Yan, N.; Kumacheva, E. Actuation of three-dimensional-printed nanocolloidal hydrogel with structural anisotropy.Adv. Funct. Mater.2021,31, 2010743..
Hu, L.; Chee, P. L.; Sugiarto, S.; Yu, Y.; Shi, C.; Yan, R.; Yao, Z.; Shi, X.; Zhi, J.; Kai, D.; Yu, H. D.; Huang, W. Hydrogel-based flexible electronics.Adv. Mater.2023,35, 2205326..
Zhou, S. W.; Yu, C.; Chen, M.; Shi, C. Y.; Gu, R.; Qu, D. H. Self-healing and shape-shifting polymers controlled by dynamic bonds.Smart Molecules2023,1, e20220009..
Li, Q.; Schenning, A. P. H. J.; Bunning, T. J. Light-responsive smart soft matter technologies.Adv. Opt. Mater.2019,7, 1901160..
Li, L.; Scheiger, J. M.; Levkin, P. A. Design and applications of photoresponsive hydrogels.Adv. Mater.2019,31, 1807333..
Cong, L.; Chuang, L. Molecular design of photoresponsive hydrogels for biomimetic actuation.J. Funct. Polym.2023,36, 185−202..
Zheng, Y.; Li, C. Photothermally driven oxazine hydrogel actuators at the water-air interface.Giant2023,16, 100192..
Goulet-anssens, A.; Eisenreich, F.; Hecht, S. Enlightening materials with photoswitches.Adv. Mater.2020,32, 1905966..
Li, C.; Kazem-Rostami, M.; Seale, J. S. W.; Zhou, S.; Stupp, S. I. Macroscopic actuation of bisazo hydrogels driven by molecular photoisomerization.Chem. Mater.2023,35, 3923−3930..
Shang, H.; Le, X.; Sun, Y.; Shan, F.; Wu, S.; Zheng, Y.; Li, D.; Guo, D.; Liu, Q.; Chen, T. Integrating photorewritable fluorescent information in shape-emory organohydrogel toward dual encryption.Adv. Opt. Mater.2022,10, 2200608..
Cao, J.; Zhang, D.; Zhou, Y.; Zhang, Q.; Wu, S. Controlling properties and functions of polymer gels using photochemical reactions.Macromol. Rapid Commun.2022,43, 2100703..
Xu, F.; Feringa, B. L. Photoresponsive supramolecular polymers: from light-ontrolled small molecules to smart materials.Adv. Mater.2023,35, 2204413..
Iwaso, K.; Takashima, Y.; Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains.Nat. Chem.2016,8, 625−632..
Gu, Y.; Alt, E. A.; Wang, H.; Li, X.; Willard, A. P.; Johnson, J. A. Photoswitching topology in polymer networks with metal-organic cages as crosslinks.Nature2018,560, 65−69..
Li, Z. Y.; Liu, Y. Y.; Li, Y. J.; Wang, W.; Song, Y.; Zhang, J.; Tian, H. High-preservation single-cell operation through a photoresponsive hydrogel-nanopipette system.Angew. Chem. Int. Ed.2021,60, 5157−5161..
Ziółkowski, B.; Florea, L.; Theobald, J.; Benito-Lopez, F.; Diamond, D. Self-protonating spiropyran-co-nipam-co-acrylic acid hydrogel photoactuators.Soft Matter2013,9, 8754..
Chen, J.; Leung, F. K. C.; Stuart, M. C. A.; Kajitani, T.; Fukushima, T.; van der Giessen, E.; Feringa, B. L. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors.Nat. Chem.2017,10, 132−138..
Li, C.; Iscen, A.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Light-driven expansion of spiropyran hydrogels.J. Am. Chem. Soc.2020,142, 8447−8453..
Li, C.; Lau, G. C.; Yuan, H.; Aggarwal, A.; Dominguez, V. L.; Liu, S.; Sai, H.; Palmer, L. C.; Sather, N. A.; Pearson, T. J.; Freedman,D. E.; Amiri, P. K.; Cruz, M. O. d. l.; Stupp, S. I. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields.Sci. Robot.2020,5, eabb9822..
Hu, Y.; Ji, Q.; Huang, M.; Chang, L.; Zhang, C.; Wu, G.; Zi, B.; Bao, N.; Chen, W.; Wu, Y. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure.Angew. Chem. Int. Ed.2021,60, 20511−20517..
Li, C.; Xue, Y.; Han, M.; Palmer, L. C.; Rogers, J. A.; Huang, Y.; Stupp, S. I. Synergistic photoactuation of bilayeredspiropyran hydrogels for predictable origami-like shape change.Matter2021,4, 1377−1390..
Liao, Y. Design and applications of metastable-state photoacids.Acc. Chem. Res.2017,50, 1956−1964..
Elgattar, A.; Alghazwat, O.; Brown, A. B.; Bryantsev, V. S.; Bocharova, V.; Liao, Y. Photoreaction of indazole metastable-state photoacid.J. Photoch. Photobio. A2023,439, 114599..
Premadasa, U. I.; Bocharova, V.; Miles, A. R.; Stamberga, D.; Belony, S.; Bryantsev, V. S.; Elgattar, A.; Liao, Y.; Damron, J. T.; Kidder, M. K.; Doughty, B.; Custelcean, R.; Ma, Y. Z. Photochemically driven CO2release using a metastable-state photoacid for energy efficient direct air capture.Angew. Chem. Int. Ed.2023,62, e202304957..
Abeyrathna, N.; Liao, Y. A reversible photoacid functioning in PBS buffer under visible light.J. Am. Chem. Soc.2015,137, 11282−11284..
Elgattar, A.; Abeyrathna, N.; Liao, Y. Localized pH pulses in pbs buffer repeatedly induced by visible light.J. Phys. Chem. B2019,123, 648−654..
Alghazwat, O.; Elgattar, A.; Alharithy, H.; Liao, Y. A reversible photoacid switched by different wavelengths of light.ChemPhotoChem2021,5, 376−380..
Li, C.; Iscen, A.; Sai, H.; Sato, K.; Sather, N. A.; Chin, S. M.; Álvarez, Z.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I. Supramolecular-covalent hybrid polymers for light-activated mechanical actuation.Nat. Mater.2020,19, 900−909..
Berton, C.; Busiello, D. M.; Zamuner, S.; Solari, E.; Scopelliti, R.; Fadaei-Tirani, F.; Severin, K.; Pezzato, C. Thermodynamics and kinetics of protonated merocyanine photoacids in water.Chem. Sci.2020,11, 8457..
Wimberger, L.; Prasad, S. K. K.; Peeks, M. D.; Andréasson, J.; Schmidt, T. W.; Beves, J. E. Large, tunable, and reversible pH changes by merocyanine photoacids.J. Am. Chem. Soc.2021,143, 20758..
Yang, X.; Shi, W.; Chen, Z.; Du, M.; Xiao, S.; Qu, S.; Li, C. Light-fueled nonequilibrium and adaptable hydrogels for highly tunable autonomous self-oscillating functions.Adv. Funct. Mater.2023,33, 2214394..
Guo, K.; Yang, X.; Zhou, C.; Li, C. Self-regulated reversal deformation and locomotion of structurally homogenous hydrogels subjected to constant light illumination.Nat. Commun.2024,15, 1694..
0
Views
20
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution