FOLLOWUS
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
xu_zy@tju.edu.cn (Z.Y.X.)
wgliu@tju.edu.cn (W.G.L.)
Published:30 November 2024,
Published Online:13 September 2024,
Received:06 June 2024,
Revised:01 July 2024,
Accepted:07 July 2024
Scan QR Code
Zhang, Q.; Xu, Z. Y.; Liu, W. G. Hydrogen-bonding crosslinked supramolecular polymer materials: from design evolution of side-chain hydrogen-bonding to applications. Chinese J. Polym. Sci. 2024, 42, 1619–1641
Qian Zhang, Zi-Yang Xu, Wen-Guang Liu. Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications. [J]. Chinese Journal of Polymer Science, 2024,42(11):1619-1641.
Zhang, Q.; Xu, Z. Y.; Liu, W. G. Hydrogen-bonding crosslinked supramolecular polymer materials: from design evolution of side-chain hydrogen-bonding to applications. Chinese J. Polym. Sci. 2024, 42, 1619–1641 DOI: 10.1007/s10118-024-3204-7.
Qian Zhang, Zi-Yang Xu, Wen-Guang Liu. Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications. [J]. Chinese Journal of Polymer Science, 2024,42(11):1619-1641. DOI: 10.1007/s10118-024-3204-7.
Recent advancements in hydrogen-bonding crosslinked supramolecular polymer materials are comprehensively reviewed
with a focus on the design principles of hydrogen-bonding units featuring distinct side-chain chemical structures and the extensive applications of hydrogen bonding crosslinked systems. This review highlights how subtle structural variations in these units enable the fabrication of H-bonded supramolecular polymer materials with significantly diverse performances.
Hydrogen bonds (H-bonds) are the most essential non-covalent interactions in nature
playing a crucial role in stabilizing the secondary structures of proteins. Taking inspiration from nature
researchers have developed several multiple H-bonds crosslinked supramolecular polymer materials through the incorporation of H-bond side-chain units into the polymer chains.
N
-acryloyl glycinamide (NAGA) is a monomer with dual amides in the side group
which facilitates the formation of multiple dense intermolecular H-bonds within poly(
N
-acryloyl glycinamide) (PNAGA)
thereby exhibiting diverse properties dependent on concentration and meeting various requirements across different applications. Moreover
numerous attempts have been undertaken to synthesize diverse NAGA-derived units through meticulous chemical structure regulation and fabricate corresponding H-bonding crosslinked supramolecular polymer materials. Despite this
the systematic clarification of the impact of chemical structures of side moieties on intermolecular associations and material performances remains lacking. The present review will focus on the design principle f
or synthesizing NAGA-derived H-bond side-chain units and provide an overview of the recent advancements in multiple H-bonds crosslinked PNAGA-derived supramolecular polymer materials
which can be categorized into three groups based on the chemical structure of H-bonds units: (1) monomers with solely cooperative H-bonds; (2) monomers with synergistic H-bonds and other physical interactions; and (3) diol chain extenders with cooperative H-bonds. The significance of subtle structural variations in these NAGA-derived units
enabling the fabrication of hydrogen-bonded supramolecular polymer materials with significantly diverse performances
will be emphasized. Moreover
the extensive applications of multiple H-bonds crosslinked supramolecular polymer materials will be elucidated.
Hydrogen bondsHigh strengthSide chainSupramolecular polymer materials
Goor, O. J. G. M.; Hendrikse, S. I. S.; Dankers, P. Y. W.; Meijer, E. W. From supramolecular polymers to multi-component biomaterials.Chem. Soc. Rev.2017,46, 6621−6637..
Voorhaar, L.; Hoogenboom, R. Supramolecular polymer networks: hydrogels and bulk materials.Chem. Soc. Rev.2016,45, 4013−4031..
Wang, H.; Mills, J.; Sun, B.; Cui, H. G. Therapeutic supramolecular polymers: designs and applications.Prog. Polym. Sci.2024,148, 101769..
Zhang, E. R.; Bai, R. B.; Morelle, X. P.; Suo, Z. G. Fatigue fracture of nearly elastic hydrogels.Soft Matter2018,14, 3563−3571..
Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels.Nature2012,489, 133−136..
Fonseca Guerra, C.; Bickelhaupt, F. M.; Snijders, J. G.; Baerends, E. J. Hydrogen bonding in DNA base pairs: reconciliation of theory and experiment.J. Am. Chem. Soc.2000,122, 4117−4128..
Jena, S.; Dutta, J.; Tulsiyan, K. D.; Sahu, A. K.; Choudhury, S. S.; Biswal, H. S. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding andπ-stacking.Chem. Soc. Rev.2022,51, 4261−4286..
Dai, X. Y.; Zhang, Y. Y.; Gao, L. N.; Bai, T.; Wang, W.; Cui, Y. L.; Liu, W. G. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel.Adv. Mater.2015,27, 3566−3571..
Xu, Z. Y.; Liu, W. G. Poly(N-acryloyl glycinamide): a fascinating polymer that exhibits a range of properties from UCST to high-strength hydrogels.Chem. Commun.2018,54, 10540−10553..
Liu, Y. X.; Wang, L. L.; Zhao, L.; Zhang, Y. G.; Li, Z. T.; Huang, F. H. Multiple hydrogen bonding driven supramolecular architectures and their biomedical applications.Chem. Soc. Rev.2024,53, 1592−1623..
Vereroudakis, E.; Vlassopoulos, D. Tunable dynamic properties of hydrogen-bonded supramolecular assemblies in solution.Prog. Polym. Sci.2021,112, 101321..
Song, J. W.; Chen, C. J.; Zhu, S. Z.; Zhu, M. W.; Dai, J. Q.; Ray, U.; Li, Y. J.; Kuang, Y. D.; Li, Y. F.; Quispe, N.; Yao, Y. G.; Gong, A.; Leiste, U. H.; Bruck, H. A.; Zhu, J. Y.; Vellore, A.; Li, H.; Minus, M. L.; Jia, Z.; Martini, A.; Li, T.; Hu, L. Processing bulk natural wood into a high-performance structural material.Nature2018,554, 224−228..
Zhang, Q.; Chen, Y. J.; Wei, P. D.; Zhong, Y.; Chen, C. J.; Cai, J. Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures.Mater. Today2021,51, 27−38..
Watson, J. D.; Crick, F. H. C. Genetical implications of the structure of deoxyribonucleic acid.Nature1953,171, 964−967..
Wang, Y.; He, Y. D.; Yu, Z.; Gao, J. W.; ten Brinck, S.; Slebodnick, C.; Fahs, G. B.; Zanelotti, C. J.; Hegde, M.; Moore, R. B.; Ensing, B.; Dingemans, T. J.; Qiao, R.; Madsen, L. A. Double helical conformation and extreme rigidity in a rodlike polyelectrolyte.Nat. Commun.2019,10, 801..
Kenny, P. W. Hydrogen-bond donors in drug design.J. Med. Chem.2022,65, 14261−14275..
Deng, Y. X.; Zhang, Q.; Qu, D. H. Emerging hydrogen-bond design for high-performance dynamic polymeric materials.ACS Mater. Lett.2023,5, 480−490..
Fernández, J. A. Exploring hydrogen bond in biological molecules.J. Indian. Inst. Sci.2020,100, 135−154..
Han, Z. L.; Wang, P.; Lu, Y. C.; Jia, Z.; Qu, S. X.; Yang, W. A versatile hydrogel network-repairing strategy achieved by the covalent-like hydrogen bond interaction.Sci. Adv.2022,8, eabl5066..
Verjans, J.; Hoogenboom, R. Supramolecular polymer materials based on ureidopyrimidinone quadruple hydrogen bonding units.Prog. Polym. Sci.2023,142, 101689..
Liu, B.; Xu, Z. Y.; Gao, H. J.; Fan, C. C.; Ma, G. S.; Zhang, D. F.; Xiao, M.; Zhang, B. J.; Yang, Y.; Cui, C. Y.; Wu, T. L.; Feng, X. Q; Liu, W. G. Stiffness self-tuned shape memory hydrogels for embolization of aneurysms.Adv. Funct. Mater.2020,30, 1910197..
Zhao, X. Q.; Wu, J. P.; Zhou, Y. F.; Pan, Y. D.; Lu, T. Q.; Song, X. P,; Hu, J. Fatigue behaviors of physical hydrogels based on hydrogen bonds.Extreme Mech. Lett.2021,46, 101320..
Sun, L. J.; Huang, H. F.; Zhang, L. Z.; Neisiany, R. E.; Ma, X. P.; Tan, H.; You, Z. W. Spider-silk-inspired tough, self-healing, and melt-spinnable ionogels.Adv. Sci.2024,11, 2305697..
Hou, W. H.; Wang, J.; Lv, J. A. Bioinspired liquid crystalline spinning enables scalable fabrication of high-performing fibrous artificial muscles.Adv. Mater.2023,35, 2211800..
Liu, B.; Liu, W. G. Poly(vinyl diaminotriazine): from molecular recognition to high-strength hydrogels.Macromol. Rapid Commun.2018,39, 1800190..
Tang, L.; Liu, W. G.; Liu, G. P. High-strength hydrogels with integrated functions of H-bonding and thermoresponsive surface-mediated reverse transfection and cell detachment.Adv. Mater.2010,22, 2652−2656..
Chang, X. H.; Geng, Y. H.; Cao, H. Q.; Zhou, J.; Tian, Y.; Shan, G. R.; Bao, Y. Z.; Wu, Z. L.; Pan, P. J. Dual-crosslink physical hydrogels with high toughness based on synergistic hydrogen bonding and hydrophobic interactions.Macromol. Rapid Commun.2018,39, e1700806..
He, H. M.; Li, D.; Lin, Z. F.; Peng, L. Q.; Yang, J. R.; Wu, M. M.; Cheng, D. L.; Pan, H. B.; Ruan, C. S. Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting.Biofabrication2020,12, 045003..
Shuai, L. Y. Z.; Guo, Z. H.; Zhang, P. P.; Wan, J. M.; Pu, X.; Wang, Z. L. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles.Nano Energy2020,78, 105389..
Deng, J.; Zhao, C. S.; Spatz, J. P.; Wei, Q. Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration.ACS Nano2017,11, 8282−8291..
Xu, Z. Y.; Fan, C. C.; Zhang, Q.; Liu, Y.; Cui, C. Y.; Liu, B.; Wu, T. L.; Zhang, X. P.; Liu, W. G. A self-thickening and self-strengthening strategy for 3D printing high-strength and antiswelling supramolecular polymer hydrogels as meniscus substitutes.Adv. Funct. Mater.2021,31, 2100462..
Zhang, H. F.; Zheng, S. Y.; Chen, C. W.; Zhang, D. G. A graphene hybrid supramolecular hydrogel with high stretchability, self-healable and photothermally responsive properties for wound healing.RSC Adv.2021,11, 6367−6373..
Campbell, S. E.; Sanders, T. G.; Morrison, W. B. MR imaging of meniscal cysts: incidence, location, and clinical significance.AJR. Am. J. Roentgenol.2001,177, 409−413..
Makris, E. A.; Hadidi, P.; Athanasiou, K. A. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration.Biomaterials2011,32, 7411−7431..
Zhang, Q.; Xu, Z. Y.; Zhang, X. P.; Liu, C. J.; Yang, R.; Sun, Y. G.; Zhang, Y. H.; Liu, W. G. 3D printed high-strength supramolecular polymer hydrogel-cushioned radially and circumferentially oriented meniscus substitute.Adv. Funct. Mater.2022,32, 2200360..
Fox, A. J.; Wanivenhaus, F.; Burge, A. J.; Warren, R. F.; Rodeo, S. A. The human meniscus: a review of anatomy, function, injury, and advances in treatment.Clin. Anat.2015,28, 269−287..
Freutel, M.; Seitz, A. M.; Galbusera, F.; Bornstedt, A.; Rasche, V.; KnotheTate, M. L.; Ignatius, A.; Dürselen, L. Medial meniscal displacement and strain in three dimensions under compressive loads: MR assessment.J. Magn. Reson. Imaging2014,40, 1181−1188..
Xing, S. J.; Zhang, G. N.; Zhang, A. B.; Chang, Z. B.; Guo, Z. Y.; Dong, A. J.; Zhang, J. H. Poly(N-acryloyl glycinamide) eutectogels.J. Polym. Sci.2024,62, 925−936..
Zhang, X. H.; Yang, X. F.; Dai, Q. Y.; Zhang, Y. C.; Pan, H. T.; Yu, C. X.; Feng, Q.; Zhu, S. L.; Dong, H.; Cao, X. D. Tough thermoplastic hydrogels with re-processability and recyclability for strain sensors.J. Mater. Chem. B2021,9, 176−186..
Deng, L.; Deng, S. S.; Pan, S. Y.; Wu, Z. Y.; Hu, Y. Y.; Li, K.; Zhou, Y.; Li, J. T.; Huang, L.; Sun, S. G. Multivalent amide-hydrogen-bond supramolecular binder enhances the cyclic stability of silicon-based anodes for lithium-ion batteries.ACS Appl. Mater. Interfaces2021,13, 22567−22576..
Feng, D. D.; Jiao, Y. C.; Wu, P. Y. Guiding Zn uniform deposition with polymer additives for long-lasting and highly utilized Zn metal anodes.Angew Chem. Int. Ed.2023,62, e202314456..
Feng, Z. B.; Zuo, H. L.; Gao, W. S.; Ning, N. Y.; Tian, M.; Zhang, L. Q. A robust, self-healable, and shape memory supramolecular hydrogel by multiple hydrogen bonding interactions.Macromol. Rapid Commun.2018,39, 1800138..
Guo, Y.; He, M. M.; Peng, Y.; Zhang, Q.; Yan, L. K.; Zan, X. J.κ-Carrageenan/poly(N-acryloyl glycinamide) double-network hydrogels with high strength, good self-recovery, and low cytotoxicity.J. Mater. Sci.2020,55, 9109−9118..
Wu, Y.; Lu, Y. H.; Wu, C.; Chen, J. L.; Ning, N.; Yang, Z. Y.; Guo, Y.; Zhang, J. Y.; Hu, X. F.; Wang, Y. B. Conductive dual hydrogen bonding hydrogels for the electrical stimulation of infected chronic wounds.J. Mater. Chem. B2021,9, 8138−8146..
Huang, Y. K.; Zhai, X. Y.; Ma, T. F.; Zhang, M. Z.; Yang, H. Z.; Zhang, S.; Wang, J. B.; Liu, W. G.; Jin, X.; Lu, W. W.; Zhao, X. L.; Hou, W. Y.; Sun, T. W.; Shen, J.; Pan, H. B.; Du, Y. P.; Yan, C. H. A unified therapeutic-prophylactic tissue-engineering scaffold demonstrated to prevent tumor recurrence and overcoming infection toward bone remodeling.Adv. Mater.2023,35, 2300313..
Zhai, X. Y.; Ma, Y. F.; Hou, C. Y.; Gao, F.; Zhang, Y. Y.; Ruan, C. S.; Pan, H. B.; Lu, W. W.; Liu, W. G. 3D-printed high strength bioactive supramolecular polymer/clay nanocomposite hydrogel scaffold for bone regeneration.ACS Biomater. Sci. Eng.2017,3, 1109−1118..
Liang, Q. F.; Gao, F.; Zeng, Z. W.; Yang, J. R.; Wu, M. M.; Gao, C. J.; Cheng, D. L.; Pan, H. B.; Liu, W. G.; Ruan, C. S. Coaxial scale-up printing of diameter-tunable biohybrid hydrogel microtubes with high strength, perfusability, and endothelialization.Adv. Funct. Mater.2020,30, 2001485..
Yang, J. R.; Chen, Z. G.; Gao, C. J.; Liu, J.; Liu, K. Z.; Wang, X.; Pan, X. L.; Wang, G. C.; Sang, H. B.; Pan, H. B.; Liu, W. G.; Ruan, C. S. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair.Nat. Commun.2024,15, 3565..
Dong, L. L.; Han, Z. Z.; Li, X. Tannic acid-mediated multifunctional 3D printed composite hydrogel for osteochondral regeneration.Int. J. Bioprinting2022,8, 220−231..
Zhao, X. R.; Nie, X. F.; Zhang, X. P.; Sun, Y. G.; Yang, R.; Bian, X. Y.; Zhang, Q.; Wang, H. Y.; Xu, Z. Y.; Liu, W. G. 3D printedβ-sheet-reinforced natural polymer hydrogel bilayer tissue engineering scaffold.Sci. China Technol. Sci.2023,67, 1170−1184..
Rzaev, Z. M. O.; Dinçer, S.; Pişkin, E. Functional copolymers ofN-isopropylacrylamide for bioengineering applications.Prog. Polym. Sci.2007,32, 534−595..
Chen, H.; Yang, F. Y.; Chen, Q.; Zheng, J. A novel design of multi-mechanoresponsive and mechanically strong hydrogels.Adv. Mater.2017,29, 1606900..
Cao, Z. Q.; Jiang, S. Y. Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles.Nano Today2012,7, 404−413..
He, B. B.; Yang, J. H.; Liu, Y.; Xie, X. H.; Hao, H. J.; Xing, X. L.; Liu, W. G. An in situ-forming polyzwitterion hydrogel: towards vitreous substitute application.Bioact. Mater.2021,6, 3085−3096..
Wang, T.; Deng, J.; Ran, R. J.; Shi, W. Q.; Gao, Y. X.; Ren, X.; Cao, J.; Zhang, M.In-situforming PEG-engineering hydrogels with anti-fouling characteristics as an artificial vitreous body.Chem. Eng. J.2022,449, 137486..
Guo, Q.; Sun, H.; Wu, X. J.; Yan, Z. W.; Tang, C. J.; Qin, Z. H.; Yao, M. M.; Che, P. C.; Yao, F. L.; Li, J. J.In situclickable purely zwitterionic hydrogel for peritoneal adhesion prevention.Chem. Mater.2020,32, 6347−6357..
Wang, H. B.; Wu, Y. H.; Cui, C. Y.; Yang, J. H.; Liu, W. G. Antifouling super water absorbent supramolecular polymer hydrogel as an artificial vitreous body.Adv. Sci.2018,5, 1800711..
Zhang, Y. H.; Cui, C. Y.; Sun, Y. G.; Zhang, X. P.; Yang, R.; Yang, J. H.; Xie, F.; Liu, W. G. A hyperbranched polymer-based water-resistant adhesive: durable underwater adhesion and primer for anchoring anti-fouling hydrogel coating.Sci. China Technol. Sci.2022,65, 201−213..
Wang, H. B.; Li, H. F.; Wu, Y. H.; Yang, J. H.; Liu, W. G. A high strength, anti-fouling, self-healable, and thermoplastic supramolecular polymer hydrogel with low fibrotic response.Sci. China Technol. Sci.2019,62, 569−577..
Shi, X. H.; Gao, H. J.; Dai, F. Y.; Feng, X. Q.; Liu, W. G.A thermoresponsive supramolecular copolymer hydrogel for the embolization of kidney arteries.Biomater. Sci.2016,4, 1673−1681..
Wu, Y. H.; Wang, H. B.; Gao, F.; Xu, Z. Y.; Dai, F. Y.; Liu, W. G. An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions.Adv. Funct. Mater.2018,28, 1801000..
Kuang, L. J.; Huang, J. H.; Liu, Y. T.; Li, X. L.; Yuan, Y.; Liu, C. S. Injectable hydrogel with NIR light-responsive, dual-mode PTH release for osteoregeneration in osteoporosis.Adv. Funct. Mater.2021,31, 2105383..
Gao, F.; Xu, Z. Y.; Liang, Q. F.; Liu, B.; Li, H. F.; Wu, Y. H.; Zhang, Y. Y.; Lin, Z. F.; Wu, M. M.; Ruan, C. S.; Liu, W. G. Direct 3D printing of high strength biohybrid gradient hydrogel scaffolds for efficient repair of osteochondral defect.Adv. Funct. Mater.2018,28, 1706644..
Tian, Y. Y.; Lai, J. H.; Li, C.; Sun, J. L.; Liu, K.; Zhao, C. Z.; Zhang, M. M. Poly(N-acryloyl glycinamide-co-N-acryloxysuccinimide) nanoparticles: tunable thermo-responsiveness and improved bio-interfacial adhesion for cell function regulation.ACS Appl. Mater. Interfaces2023,15, 7867−7877..
Nishimura, S.; Sato, D.; Koga, T. Mechanically tunable hydrogels with self-healing and shape memory capabilities from thermo-responsive amino acid-derived vinyl polymers.Gels2023,9, 829..
Fan, C. C.; Liu, B.; Xu, Z. Y.; Cui, C. Y.; Wu, T. L.; Yang, Y.; Zhang, D. F.; Xiao, M.; Zhang, Z. D.;Liu, W. G. Polymerization ofN-acryloylsemicarbazide: a facile and versatile strategy to tailor-make highly stiff and tough hydrogels.Mater. Horiz.2020,7, 1160−1170..
Wu, J. Y.; Zhang, Z. X.; Wu, Z. Y.; Liu, D. S.; Yang, X. X.; Wang, Y. X.; Jia, X.; Xu, X.; Jiang, P.; Wang, X. L. Strong and ultra-tough supramolecular hydrogel enabled by strain-induced microphase separation.Adv. Funct. Mater.2023,33, 2210395..
Wu, J. Y.; Wu, Z. Y.; Zeng, H. J.; Liu, D. S.; Ji, Z. Y.; Xu, X.; Jia, X.; Jiang, P.; Fan, Z. J.; Wang, X. L.; Zhou, F. Biomechanically compatible hydrogel bioprosthetic valves.Chem. Mater.2022,34, 6129−6141..
Yang, R.; Fan, C. C.; Dou, Y. M.; Zhang, X. P.; Xu, Z. Y.; Zhang, Q.; Sun, Y. G.; Yang, Q.; Liu, W. G. 3D printing stiff antibacterial hydrogels for meniscus replacement.Appl. Mater. Today2021,24, 101089..
Fan, C. C.; Xu, Z. Y.; Wu, T. L.; Cui, C. Y.; Liu, Y.; Liu, B.; Yang, J. H.; Liu, W. G. 3D printing of lubricative stiff supramolecular polymer hydrogels for meniscus replacement.Biomater. Sci.2021,9, 5116−5126..
Xu, Z. Y.; Zhang, Q.; Fan, C. C.; Xiao, M.; Yang, R.; Yao, Y.; Wu, Y.; Nie, X. F.; Wang, H. Y.; Liu, W. G. A gel microparticle-based self-thickening strategy for 3D printing high-modulus hydrogels skeleton cushioned with PNAGA hydrogel mimicking anisotropic mechanics of meniscus.Bioact. Mater.2023,26, 64−76..
Zhang, Q.; Yang, X. X.; Wang, K.; Xu, Z. Y.; Liu, W. G. A high-density hydrogen bond locking strategy for constructing anisotropic high-strength hydrogel-based meniscus substitute.Adv. Sci.2024,11, 2310035..
Wu, J. Y.; Wang, Y. H.; Jiang, P.; Wang, X. L.; Jia, X.; Zhou, F. Multiple hydrogen-bonding induced nonconventional red fluorescence emission in hydrogels.Nat. Commun.2024,15, 3482..
Ren, Y. L.; Zhang, Y. Y.; Sun, W. H.; Gao, F.; Fu, W. G.; Wu, P. Y.; Liu, W. G. Methyl matters: an autonomic rapid self-healing supramolecular poly(N-methacryloyl glycinamide) hydrogel.Polymer2017,126, 1−8..
Yu, J.; Wang, K.; Fan, C. C.; Zhao, X. Y.; Gao, J. S.; Jing, W. H.; Zhang, X. P.; Li, J.; Li, Y.; Yang, J. H.; Liu, W. G. An ultrasoft self-fused supramolecular polymer hydrogel for completely preventing postoperative tissue adhesion.Adv. Mater.2021,33, 2008395..
Gao, F.; Zhang, Y. Y.; Li, Y. M.; Xu, B.; Cao, Z. Q.; Liu, W. G. Sea Cucumber-inspired autolytic hydrogels exhibiting tunable high mechanical performances, repairability, and reusability.ACS Appl. Mater. Interfaces2016,8, 8956−8966..
Tang, R. F.; Dong, H. F.; Lu, H. W.; Nie, J.; Zhu, X. Q. Customization of supramolecular hydrogels through one-step photopolymerization and its mechanism.Chem. Mater.2023,35, 4761−4771..
Wasnik, K.; Gupta, P. S.; Mukherjee, S.; Oviya, A.; Prakash, R.; Pareek, D.; Patra, S.; Maity, S.; Rai, V.; Singh, M.; Singh, G.; Yadav, D. D.; Das, S.; Maiti, P.; Paik, P. Poly(N-acryloylglycine-acrylamide) hydrogel mimics the cellular microenvironment and promotes neurite growth with protection from oxidative stress.ACS Appl. Bio Mater.2023,6, 5644−5661..
Liang, X. X.; Ding, H. Y.; Wang, Q. A.; Wang, M. M.; Yin, B. B.; Sun, G. X. Nature-inspired semi-IPN hydrogels with tunable mechanical properties and multi-responsiveness.New J. Chem.2021,45, 861−871..
Deepuppha, N.; Khadsai, S.; Rutnakornpituk, B.; Wichai, U.; Rutnakornpituk, M. Multiresponsive poly(N-acryloyl glycine)-based nanocomposite and its drug release characteristics.J. Nanomater.2019,2019, 8252036..
Gupta, P. S.; Wasnik, K.; Singh, G.; Patra, S.; Pareek, D.; Yadav, D. D.; Tomar, M. S.; Maiti, S.; Singh, M.; Paik, P.In vivopotential of polymericN-acryloyl-glycine nanoparticles with anti-inflammatory activities for wound healing.Mater. Adv.2023,4, 4718−4731..
Li, K. R.; Li, B. D.; Li, X. A novel material poly(N-acryloyl-L-glycine)-brush graftedN-doped magnetic biochar by surface-initiated RAFT polymerization for efficient elimination of heavy metal ions.Sep. Purif. Technol.2022,292, 121053..
Peppas, N. A.; Huang, Y.; Torres-Lugo, M.; Ward, J. H.; Zhang, J. Physicochemical foundations and structural design of hydrogels in medicine and biology.Annu. Rev. Biomed. Eng.2000,2, 9−29..
Hoch, E.; Schuh, C.; Hirth, T.; Tovar, G. E.; Borchers, K. Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation.J. Mater. Sci. Mater. Med.2012,23, 2607−2617..
Wang, Z. F.; An, G.; Zhu, Y.; Liu, X. M.; Chen, Y. H.; Wu, H. K.; Wang, Y. J.; Shi, X. T.; Mao, C. B. 3D-printable self-healing and mechanically reinforced hydrogels with host-guest non-covalent interactions integrated into covalently linked networks.Mater. Horiz.2019,6, 733−742..
Gao, F.; Xu, Z. Y.; Liang, Q. F.; Li, H. F.; Peng, L. Q.; Wu, M. M.; Zhao, X. L.; Cui, X.; Ruan, C. S.; Liu, W. G. Osteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffolds.Adv. Sci.2019,6, 1900867..
Sun, Y. G.; Gao, Z. W.; Zhang, X. P.; Xu, Z. Y.; Zhang, Y. H.; He, B. B.; Yang, R.; Zhang, Q.; Yang, Q.; Liu, W. G. 3D-printed, bi-layer, biomimetic artificial periosteum for boosting bone regeneration.Bio-Des. Manuf.2022,5, 540−555..
Dou, X. Y.; Wang, H. F.; Yang, F.; Shen, H.; Wang, X.; Wu, D. C. One-step soaking strategy toward anti-swelling hydrogels with a stiff “armor”.Adv. Sci.2023,10, 2206242..
Cui, C. Y.; Wu, T. L.; Gao, F.; Fan, C. C.; Xu, Z. Y.; Wang, H. B.; Liu, B.; Liu, W. G. An autolytic high strength instant adhesive hydrogel for emergency self-rescue.Adv. Funct. Mater.2018,28, 1804925..
Cui, C. Y.; Wu, T. L.; Chen, X. Y.; Liu, Y.; Li, Y.; Xu, Z. Y.; Fan, C. C.; Liu, W. G. A Janus hydrogel wet adhesive for internal tissue repair and anti-postoperative adhesion.Adv. Funct. Mater.2020,30, 2005689..
Xing, J. Q.; Ding, Y.; Zheng, X. R.; Yu, P.; Qin, M.; Qiu, R. M.; Li, Y. Y.; Shang, S. Y.; Xie, J.; Li, J. S. Barnacle-inspired robust and aesthetic Janus patch with instinctive wet adhesive for oral ulcer treatment.Chem. Eng. J.2022,444, 136580..
Ostomel, T. A.; Shi, Q.; Stoimenov, P. K.; Stucky, G. D. Metal oxide surface charge mediated hemostasis.Langmuir2007,23, 11233−11238..
Yang, X.; Liu, W.; Li, N.; Wang, M. S.; Liang, B.; Ullah, I.; Luis Neve, A.; Feng, Y. K.; Chen, H.; Shi, C. C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism.Biomater. Sci.2017,5, 2357−2368..
Chen, X. T.; Yan, Y. G.; Li, H.; Wang, X. H.; Tang, S. C.; Li, Q.; Wei, J.; Su, J. C. Evaluation of absorbable hemostatic agents of polyelectrolyte complexes using carboxymethyl starch and chitosan oligosaccharide bothin vitroandin vivo.Biomater. Sci.2018,6, 3332−3344..
Chen, X. Y.; Cui, C. Y.; Liu, Y.; Fan, C. C.; Xiao, M.; Zhang,D. F.; Xu, Z. Y.; Li, Y.; Yang, J. H.; Liu, W. G. A robust poly(N-acryloyl-2-glycine)-based sponge for rapid hemostasis.Biomater. Sci.2020,8, 3760−3771..
Wan, Z. Y.; He, J. H.; Yang, Y. T.; Chong, T.; Wang, J. X.; Guo, B. L.; Xue, L. Injectable adhesive self-healing biocompatible hydrogel for haemostasis, wound healing, and postoperative tissue adhesion prevention in nephron-sparing surgery.Acta. Biomater.2022,152, 157−170..
Pang, Y. D.; Wang, H. Y.; Yao, Y.; Chen, D. Y.; Yang, R.; Wang, Z. Y.; Yang, J. H.; Li, Y. M.; Liu, W. G. An injectable self-crosslinked wholly supramolecular polyzwitterionic hydrogel for regulating microenvironment to boost infected diabetic wound healing.Adv. Funct. Mater.2023,33, 2303095..
Wang, H. Y.; Liu, B. C.; Chen, D. Y.; Wang, Z. Y.; Wang, H. L.; Bao, S. Y.; Zhang, P.; Yang, J. H.; Liu, W. G. Low hysteresis zwitterionic supramolecular polymer ion-conductive elastomers with anti-freezing properties, high stretchability, and self-adhesion for flexible electronic devices.Mater. Horiz.2024,11, 2628−2642..
Zhang, Y. Y.; Li, Y. M.; Liu, W. G. Dipole-dipole and H-bonding interactions significantly enhance the multifaceted mechanical properties of thermoresponsive shape memory hydrogels.Adv. Funct. Mater.2015,25, 471−480..
Zhang, Y. Y.; Gao, H. J.; Wang, H.; Xu, Z. Y.; Chen, X. W.; Liu, B.; Shi, Y.; Lu, Y.; Wen, L. F.; Li, Y.; Li, Z. S.; Men, Y. F.; Feng, X. Q.; Liu, W. G. Radiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteries.Adv. Funct. Mater.2018,28, 1705962..
Yao, P. Q; Bao, Q. W.; Yao, Y.; Xiao, M.; Xu, Z. Y.; Yang, J. H.; Liu, W. G. Environmentally stable, robust, adhesive, and conductive supramolecular deep eutectic gels as ultrasensitive flexible temperature sensor.Adv. Mater.2023,35, 2300114..
Xu, J.; Wang, X. Y.; Zhang, X. R.; Zhang, Y. M.; Yang, Z. H.; Li, S.; Tao, L. M.; Wang, Q. M.; Wang, T. M. Room-temperature self-healing supramolecular polyurethanes based on the synergistic strengthening of biomimetic hierarchical hydrogen-bonding interactions and coordination bonds.Chem. Eng. J.2023,451, 138673..
Shi, C. Y.; Zhang, Q.; Yu, C. Y.; Rao, S. J.; Yang, S.; Tian, H.; Qu, D. H. An ultrastrong and highly stretchable polyurethane elastomer enabled by a zipper-like ring-sliding effect.Adv. Mater.2020,32, 2000345..
Qin, Z. W.; Yang, Y.; Tian, Q. L.; Mi, H. Y.; Li, H.; Guo, R. H.; Wang, Y.; Liu, C. T.; Shen, C. Y. Strain-hardening, impact protective and self-healing supramolecular polyurethane nanocomposites enabled by quadruple H-bonding, disulfide bonds and nanoparticles.Chem. Eng. J.2023,467, 143434..
Li, Q. Y.; Xu, Z. Y.; Zhang, D. F.; Yang, J. H.; Liu, W. G. T-shaped trifunctional crosslinker-toughening hydrogels.Sci. China Technol. Sci.2020,63, 1721−1729..
Yao, Y.; Xu, Z. Y.; Liu, B.; Xiao, M.; Yang, J. H.; Liu, W. G. Multiple H-bonding chain extender-based ultrastiff thermoplastic polyurethanes with autonomous self-healability, solvent-free adhesiveness, and AIE fluorescence.Adv. Funct. Mater.2021,31, 2006944..
Xiao, M.; Yao, Y.; Liu, W. G. Durable and stretchable nanocomposite ionogels with high thermoelectric property for low-grade heat harvesting.Sci. China Technol. Sci.2023,66, 267−280..
Ye, T.; Liu, J. Y.; Sun, J. J.; Tan, J. L.; Chen, X.; Yin, Y. J.; Wang, C. X. Healable, luminescent, notch-insensitive waterborne polyurethanevianoncovalent crosslinking with hydrogen bonds and ionic interactions.Chem. Eng. J.2023,475, 146393..
Chen, K.; Zhu, H. X.; Zhang, Z. Y.; Shao, Y. Q.; Yu, Q. H.; Cao, X. L.; Pan, S. Y.; Mu, X.; Gao, Z. H.; Wang, D.; Wei, S. Y.; Han, S. Y. Self-healing polyurethane coatings based on dynamic chemical bond synergy under conditions of photothermal response.Chem. Eng. J.2023,474, 145811..
Yao, Y.; Liu, B.; Xu, Z. Y.; Yang, J. H.; Liu, W. G. An unparalleled H-bonding and ion-bonding crosslinked waterborne polyurethane with super toughness and unprecedented fracture energy.Mater. Horiz.2021,8, 2742−2749..
Xiao, M.; Yao, Y.; Fan, C. C.; Xu, Z. Y.; Liu, Y.; Liu, B.; Li, J.; Zhang, X. P.; Jin, X.; Yang, J. M.; Yang, J. H.; Liu, W. G. Multiple H-bonding chain extender-based polyurethane: Ultrastiffness, hot-melt adhesion, and 3D printing finger orthosis.Chem. Eng. J.2022,433, 133260..
0
Views
27
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution