FOLLOWUS
a.School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi’an Jiaotong University, Xi’an 710049, China
b.State Key Lab for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics Xi’an Jiaotong University, Xi’an 710049, China
yanfengzhang@mail.xjtu.edu.cn
Published:01 October 2024,
Published Online:27 August 2024,
Received:20 May 2024,
Revised:25 June 2024,
Accepted:26 June 2024
Scan QR Code
Chen, K. X.; Cui, C. H.; Li, Z.; Xu, T.; Teng, H. Q.; He, Z. Y.; Guo, Y. Z.; Ming, X. Q.; Ge, Z. S.; Zhang, Y. F.; Wang, T. J. Dynamic sulfur-rich polymers from elemental sulfur and epoxides. Chinese J. Polym. Sci. 2024, 42, 1479–1487
Ke-Xiang Chen, Chen-Hui Cui, Zhen Li, et al. Dynamic Sulfur-Rich Polymers from Elemental Sulfur and Epoxides. [J]. Chinese Journal of Polymer Science 42(10):1479-1487(2024)
Chen, K. X.; Cui, C. H.; Li, Z.; Xu, T.; Teng, H. Q.; He, Z. Y.; Guo, Y. Z.; Ming, X. Q.; Ge, Z. S.; Zhang, Y. F.; Wang, T. J. Dynamic sulfur-rich polymers from elemental sulfur and epoxides. Chinese J. Polym. Sci. 2024, 42, 1479–1487 DOI: 10.1007/s10118-024-3182-9.
Ke-Xiang Chen, Chen-Hui Cui, Zhen Li, et al. Dynamic Sulfur-Rich Polymers from Elemental Sulfur and Epoxides. [J]. Chinese Journal of Polymer Science 42(10):1479-1487(2024) DOI: 10.1007/s10118-024-3182-9.
Dynamic polysulfide polymers were synthesized from elemental sulfur and epoxide via a mild one-pot strategy. The dynamic polysulfide polymer exhibited multiple dynamic behaviors
including polysulfide metathesism
polysulfide-thiol exchange
and potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers via a mild synthesis route.
Sulfur-containing dynamic polymers had attracted significant attention due to their unique chemical structures with high reversibility. Utilizating sulfur
an inexpensive industrial waste product
to synthesize dynamic polysulfide polymers through reverse vulcanization has been a notable approach. However
this method required high temperatures and resulted in the release of unpleasant oders. In this study
we presented a robust method for the preparation of sulfur-rich polymers with dynamic polysulfide bonds from elemental sulfur and inexpensive epoxide monomers
via
a one-pot strategy at the mild room temp
erature. Different types of polysulfide molecules and polymers were synthesized by reacting various epoxide compounds with sulfur
along with the investigation of their structures and dynamic behaviors. It was noteworthy that the obatined polymers prepared from
m
-(2
3-epoxypropoxy)-
N
N
-bis(2
3-epoxypropyl)aniline and elemental sulfur exhibit multiple dynamic behaviors
including polysulfide metathesis and polysulfide-thiol exchange
enabling their rapid stress relaxation
self-healing
reprocessing and degradable properties of the cross-linked polymer. More importantly
the hydroxyl groups at the side chains from epoxide ring opening exhibited potential transesterification. This work provided a facile strategy for designing dynamic sulfur-rich polymers
via
a mild synthesis route.
Elemental sulfurSulfur-containing polymerDynamic covalent bondDynamic polymer
Scheutz, G. M.; Lessard, J. J.; Sims, M. B.; Sumerlin, B. S. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets.J. Am. Chem. Soc.2019,141, 16181−16196..
Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self-healing.Chem. Rev.2021,121, 1716−1745..
Shi, Q.; Jin, C.; Chen, Z.; An, L.; Wang, T. On the welding of vitrimers: chemistry, mechanics and applications.Adv. Funct. Mater.2023,33, 2300288..
Chen, X. X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. B.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material.Science2002,295, 1698−1702..
Orrillo, A. G.; Furlan, R. L. E. Sulfur in dynamic covalent chemistry.Angew. Chem. Int. Ed.2022,61, e2022011..
Canadell, J.; Goossens, H.; Klumperman, B. Self-healing materials based on disulfide links.Macromolecules2011,44, 2536−2541..
de Luzuriaga, A. R.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites.Mater. Horiz.2016,3, 241−247..
Takahashi, A.; Goseki, R.; Ito, K.; Otsuka, H. Thermally Healable and reprocessable bis(hindered amino)disulfide-cross-linked polymethacrylate networks.ACS Macro Lett.2017,6, 1280−1284..
Wang, C.; Mavila, S.; Worrell, B. T.; Xi, W. X.; Goldman, T. M.; Bowman, C. N. Productive exchange of thiols and thioesters to form dynamic polythioester-based polymers.ACS Macro Lett.2018,7, 1312−1316..
Bongiardina, N. J.; Long, K. F.; Podgórski, M.; Bowman, C. N. Substituted thiols in dynamic thiol-thioester reactions.Macromolecules2021,54, 8341−8351..
Hernandez, J. J.; Dobson, A. L.; Carberry, B. J.; Kuenstler, A. S.; Shah, P. K.; Anseth, K. S.; White, T. J.; Bowman, C. N. Controlled degradation of cast and 3D printed photocurable thioester networksviathiol-thioester exchange.Macromolecules2022,55, 1376−1385..
Cui, C. H.; Chen, X. X.; Ma, L.; Zhong, Q. Y.; Li, Z.; Mariappan, A.; Zhang, Q.; Cheng, Y. L.; He, G.; Chen, X. M.; Dong, Z.; An, L.; Zhang, Y. F. Polythiourethane covalent adaptable networks for strong and reworkable adhesives and fully recyclable carbon fiber-reinforced composites.ACS Appl. Mater. Interfaces2020,12, 47975−47983..
Cui, C. H.; An, L.; Zhang, Z. L.; Ji, M. K.; Chen, K.; Yang, Y. X.; Su, Q.; Wang, F.; Cheng, Y. L.; Zhang, Y. F. Reconfigurable 4D printing of reprocessable and mechanically strong polythiourethane covalent adaptable networks.Adv. Funct. Mater.2022,32, 2203720..
Feng, H. J.; Sheng, Y.; Chen ,G. C.; Jin, B. J.; Fang, Z. Z.; Yang, B.; Zhou, X. R.; Wu, W. X.; Xie, T.; Zheng, N. Ultratough yet dynamic crystalline poly(thiourethane) network directly from low viscosity precursors.CCS Chem.2024,6, 682−692..
Zeng, H.; Tang, Z. H.; Duan, Y.; Wu, S. W.; Guo, B. C. Recyclable crosslinked elastomer based on dynamic dithioacetals.Polymer2021,229, 124007..
Jin, Y.; Hu, C. C.; Wang, J.; Ding, Y. L.; Shi, J. J.; Wang, Z. K.; Xu, S. C.; Yuan, L. Thiol-aldehyde polycondensation for bio-based adaptable and degradable phenolic polymers.Angew. Chem. Int. Ed.2023,62, e20230567..
Chen, K. X.; Cui, C. H.; Li, Z.; Song, Z.; Zhang, Q.; Wu, Y. S.; Ge, Z. S.; Cheng, Y. L.; Zhang, Y. F. Thioaminal covalent adaptable networksviathiol-aldehyde-amine multicomponent polymerization.ACS Macro Lett.2023,12, 543−548..
Mutlu, H.; Ceper, E. B.; Li, X. H.; Yang, J. M.; Dong, W. Y.; Ozmen, M. M.; Theato, P. Sulfur chemistry in polymer and materials science.Macromol. Rapid Commun.2019,40, 1800650..
Griebel, J. J.; Glass, R. S.; Char, K.; Pyun, J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense.Prog. Polym. Sci.2016,58, 90−125..
Zhang, Y. Y.; Glass, R. S.; Char, K.; Pyun, J. Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional chalcogenide hybrid inorganic/organic polymers (CHIPs).Polym. Chem.2019,10, 4078−4105..
Plajer, A. J.; Williams, C. K. Heterocycle/Heteroallene ring-opening copolymerization: selective catalysis delivering alternating copolymers.Angew. Chem. Int. Ed.2022,61, e202104495..
Zhang, J.; Ye, F.; Huo, J. L.; Peng, J. W.; Hu, R. R.; Tang, B. Z. Diamines, CS2and monoisocyanide-participated polymerizations for large-scale synthesis of polythioureas and thioformamide.Chinese. J. Polym. Sci.2023,41, 1563−1576..
Zhang, C. J.; Zhang, X. H. Recent progress on COS-derived polymers.Chinese. J. Polym. Sci.2019,37, 951−958..
Wang, Y.; Zhang, C. J.; Wang, Z. W.; Zhang, X, H. Alternating copolymerization of carbonyl sulfide and epichlorohydrin catalyzed by organic lewis pairs.Acta Polymerica Sinica(in Chinese)2021,52(5): 499−504..
Kim, D. H.; Jang, W.; Choi, K.; Choi, J. S.; Pyun, J.; Lim, J.; Char, K.; Im, S. G. One-step vapor-phase synthesis of transparent high refractive index sulfur-containing polymers.Sci. Adv.2020,6, eabb5320..
Kleine, T. S.; Nguyen, N. A.; Anderson, L. E.; Namnabat, S.; LaVilla, E. A.; Showghi, S. A.; Dirlam, P. T.; Arrington, C. B.; Manchester, M. S.; Schwiegerling, J.; Glass, R. S.; Char, K.; Norwood, R. A.; Mackay, M. E.; Pyun, J. High refractive index copolymers with improved thermomechanical properties via the inverse vulcanization of sulfur and 1,3,5-Triisopropenylbenzene.ACS Macro Lett.2016,5, 1152−1156..
Jin, Y.; Hu, C. C.; Wang, Z. X.; Xia, Z. Q.; Li, R.; Shi, S.; Xu, S. C.; Yuan, L. Bio-based reprocessable and degradable epoxy resins via inverse vulcanization.ACS Sustain. Chem. Eng.2023,11, 11259−11268..
Yan, P. Y.; Zhao, W.; Zhang, B. W.; Jiang, L.; Petcher, S.; Smith, J. A.; Parker, D. J.; Cooper, A. I.; Lei, J. X.; Hasell, T. Inverse vulcanized polymerswith shape memory, enhanced mechanical properties, and vitrimer behavior.Angew. Chem. Int. Ed.2020,59, 13371−13378..
Yan, P. Y.; Zhao, W.; Tonkin, S. J.; Chalker, J. M.; Schiller, T. L.; Hasell, T. Stretchable and durable inverse vulcanized polymers with chemical and thermal recycling.Chem. Mater.2022,34, 1167−1178..
Lundquist, N. A.; Worthington, M. J. H.; Adamson, N.; Gibson, C. T.; Johnston, M. R.; Ellis, A. V.; Chalker, J. M. Polysulfides made from re-purposed waste are sustainable materials for removing iron from water.RSC Adv.2018,8, 1232−1236..
Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar, R.; Hasell, T. Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture.J. Mater. Chem. A2017,5, 11682−11692..
Shen, H.; Qiao, H. W.; Zhang, H. G. Sulfur-urushiol copolymer: A material synthesized through inverse vulcanization from renewable resources and its latent application as self-repairable and antimicrobial adhesive.Chem. Eng. J.2022,450, 137905..
Yan, P. Y.; Zhao, W.; McBride, F.; Cai, D. N.; Dale, J.; Hanna, V.; Hasell, T. Mechanochemical synthesis of inverse vulcanized polymers.Nat. Commun.2022,13, 4824..
Jia, J. H.; Liu, J. J.; Wang, Z. Q.; Liu, T.; Yan, P. Y.; Gong, X. Q.; Zhao, C. X.; Chen, L. J.; Miao, C. C.; Zhao, W.; Cai, S. S.; Wang, X. C.; Cooper, A. I.; Wu, X. F.; Hasell, T.; Quan, Z. J. Photoinduced inverse vulcanization.Nat. Chem.2022,14, 1249−1257..
Chao, J. Y.; Yue, T. J.; Ren, B. H.; Gu, G. G.; Lu, X. B.; Ren, W. M. Controlled disassembly of elemental sulfur: an approach to the precise synthesis of polydisulfides.Angew. Chem. Int. Ed.2022,61, e20211595..
Wreczycki, J.; Bielinski, D. M.; Kozanecki, M.; Strzelec, K.; Mloston, G. An efficient ring-opening copolymerization of thiiranes with elemental sulfur in the presence of the fluoride anion.Polymer 2023 ,267..
Hu, Y.; Zhang, L. H.; Wang, Z.; Hu, R. R.; Tang, B. Z. Economical synthesis of functional aromatic polythioamides from KOH-assisted multicomponent polymerizations of sulfur, aromatic diamines and dialdehydes.Polym. Chem.2023,14, 2617−2623..
Liu, S. R.; Li, F. T.; Cao, W. X.; Hu, R. R.; Tang, B. Z. Functional hyperbranched polythioamides synthesized from catalyst-free multicomponent polymerization of elemental sulfur.Chinese J. Chem.2022,40, 725−733..
Zhang, L. H.; Hu, Y.; Hu, R. R.; Tang, B. Z. Room temperature synthesis of polythioamides from multicomponent polymerization of sulfur, pyridine-activated alkyne, and amines.Chem. Commun.2022,58, 1994−1997..
Yu, B.; Huo, J. L.; Hu, R. R.; Tang, B. Z., Multicomponent tandem polymerizations of sulfur, diisocyanides and dithiols toward polydithiocarbamates.Acta Polymerica Sinica (in Chinese) 2023 ,54, 1509-1520..
Gallizioli, C.; Battke, D.; Schlaad, H.; Deglmann, P.; Plajer, A. J. Ring-opening terpolymerisation of elemental sulfur waste with propylene oxide and carbon disulfide via lithium catalysis.Angew. Chem. Int. Ed.2024,63, e202319810..
Nakabayashi, K.; Takahashi,T.; Watanabe, K.; Lo, C. T.; Mori, H. Synthesis of sulfur-rich nanoparticles using self-assembly of amphiphilic block copolymer and a site-selective cross-linking reaction.Polymer2017,126, 188−195..
Arslan, M. Sulfur-rich polymers from elemental sulfur-derived polysulfide salts and bisepoxides.Eur. Polym. J. 2023 ,194..
Wang, X. N.; Xu, S. L.; Tang, Y. H.; Lear, M. J.; He, W. X.; Li, J. Nitroalkanes as thioacyl equivalents to access thioamides and thiopeptides.Nat. Commun.2023,14, 4626..
Bao, J. H.; Martin, K. P.; Cho, E. K. Y.; Kang, K. S.; Glass, R. S.; Coropceanu, V.; Bredas, J. L.; Parker, W. O.; Njardarson, J. T.; Pyun, J. On the mechanism of the inverse vulcanization of elemental sulfur: structural characterization of poly(sulfur-(1,3-diisopropenylbenzene)).J. Am. Chem. Soc.2023,145, 12386−12397..
Yang, H. J.; Huang, J. F.; Song, Y. Y.; Yao, H. X.; Huang, W. Y.; Xue, X. Q.; Jiang, L.; Jiang, Q. M.; Jiang, B. B.; Zhang, G. Z. Anionic hybrid copolymerization of sulfur with acrylate: strategy for synthesis of high-performance sulfur-based polymers.J. Am. Chem. Soc.2023,145, 14539−14547..
Griebel, J. J.; Nguyen, N. A.; Astashkin, A. V.; Glass, R. S.; Mackay, M. E.; Char, K.; Pyun, J. Preparation of dynamic covalent polymers via inverse vulcanization of elemental Sulfur.ACS Macro Lett.2014,3, 1258−1261..
Feng, L.; Cui, C. H.; Li, Z.; Zhang, M. Y.; Gao, S. H.; Z, Q.; W, Y. S.; Ge, Z. S.; Cheng, Y. L.; Zhang, Y. F. Kinetics of catalyzed thermal degradation of polylactide and its application as sacrificial templatesChin. J. Chem. 2022 ,40, 2801-2807.
0
Views
23
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution