Fig 1 Synthetic routes to siloxane-functionalized polymers.
Scan for full text
Cite this article
Incorporation of siloxane-functionalized units into polymers backbone has proven to be an efficient strategy to improve photovoltaic performance. In this work, a low-cost siloxane-containing unit was developed to construct a series of terpolymers, and the effects of siloxane on the polymer performance were systematically studied. Different contents of thiophene containing siloxane-functionalized side chain were introduced into PM6 to obtain a series of polymers (PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30). The siloxane-functionalized side chains in polymers have only a slight effect on the absorption behavior and frontier molecular orbitals. However, when the siloxane content increased, the terpolymers’ aggregation property decreased and the temperature-dependency increased, leading to improved donor-acceptor compatibility. The power conversion efficiency (PCE) based on PM6:Y6, PM6-SiO-20:Y6 and PM6-SiO-30:Y6 devices was 15.64%, 16.03% and 15.82%, respectively. In comparison, the active layer based on PM6-SiO-10:Y6 exhibits the most appropriate phase separation morphology, resulting in effective exciton dissociation, more balanced hole-electron transport and less recombination. Consequently, the highest PCE of 16.69% with an outstanding short-circuit current density of 26.96 mA·cm−2 was obtained, which are one of the highest values for siloxane-functionalized polymer-based devices. This work demonstrates that finely controlling the content of siloxane-functionalized thiophene is beneficial for obtaining high-performance terpolymer donors and provides a novel and low-cost method to improve photovoltaic performance.
Organic solar cells;
Terpolymers;
Siloxane-functionalized unit;
Low-cost;
Morphology
Due to the lightweight, low cost, ability to be processed through solution methods, and suitability for flexible roll-to-roll production, organic solar cells (OSCs) are considered as a promising next-generation photovoltaic technology.[
PM6 is currently one of the best performing and most universal polymer donor, which has attracted great attentions due to its appropriate energy level, strong crystallinity and a face-on dominated molecular orientation.[
The siloxane-functionalized side chain is a unique solubilizing side chain, which supplies a branch point far from the conjugated main chain and the bulky with steric hindrance effect to provide sufficient solubility for the polymer. Bao et al. utilized the particularity of the siloxane-functionalized side chains to decrease the π-π stacking distance of isoindigo-based polymer, thereby improved the lateral mobility.[
In this work, different contents (0%, 10%, 20% and 30%) of thiophene with siloxane-functionalized side chain were introduced into the PM6 skeleton to obtain a series of polymers (PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30). Thiophene as siloxane-functionalized side chain connection unit, which not only reduces the cost of siloxanization synthesis, but also makes full use of the branch point of the siloxane-functionalized side chain away from the conjugated main chain and the bulky with steric hindrance effect to adjust the crystallinity of the terpolymers. Grazing incidence wide angle X-ray scattering (GIWAXS) results indicated that when 10% thiophene with siloxane-functionalized side chain units incorporated into PM6, the crystal coherence length (CCL) of (010) out-of-plane (OOP) peak significantly decreased, which mainly due to the introduction of the third unit by terpolymerization destroying the original ordered molecular arrangement. However, the CCL of the π-π stacking increased as the content of siloxane-functionalized thiophene units further increased, indicating that siloxane can inhibit the disorder in molecular arrangement due to random copolymerization. On the other hand, the side chain density decreases with the increase of the content of siloxane-functionalized thiophene, which affects the crystallinity and the nanoscale interpenetration network of the polymer chain. When Y6 was employed as the acceptor, PM6-SiO-10 based device obtained the highest PCE of 16.69% with an open-circuit voltage (VOC) of 0.850 V, a JSC of 26.96 mA·cm−2, and an FF of 72.84%. While the PM6, PM6-SiO-20 and PM6-SiO-30-based devices showed PCEs of 15.64%, 16.03%, and 15.82%, respectively. Our work demonstrates that the introduction of an appropriate unit of siloxane-functionalized unit is effective and feasible in constructing high-performance polymers for OSCs.
6-Bromo-1-hexene, Mg, I2, NBS, Ni(dppp)2Cl2, chloroform, PEDOT:PSS, Ag (99.999%) were purchased from Beijing Innochem Technology Co., Ltd., and used without further purification.
A detailed synthesis route of thiophene with siloxane-functionalized side chain (compound 4) is shown in
Fig 1 Synthetic routes to siloxane-functionalized polymers.
The devices were fabricated in the structure of ITO/PEDOT:PSS/active layer/PDINO/Ag. ITO-coated glass was sequentially sonically stirred in detergent, deionized water, acetone, dichloromethane and isopropanol. Then plasma treatment for 30 min. The PEDOT:PSS was spin-cast on the ITO glass with 4000 r/min for 30 s and annealed in air at 150 °C for 20 min. Subsequent operation of the device was done in a glove box filled with N2. Chloroform dissolved the active layer material (PM6:Y6 weight ratio is 1:1.2) at a concentration of 16 mg·mL−1 with 0.5% 1-chloronaphthalene. The active layer solution was stirred at 40 °C for 3 h, then the active layer solution was spin-casted on the matrices with 3000 r/min. The thermal annealing of blend film is 100 °C for 10 min. Finally, 3 mg·mL−1 PDINO in methanol was spin-coated on the active layer. The device fabrication was accomplished by depositing 100 nm Ag in a vacuum chamber of 10−7 Torr. The device area of a typical cells is defined by a metal mask with an aperture aligned with the device area, which is 0.04 mm2 in this experiment. The terploymer:Y6 devices were prepared similar to that of PM6:Y6 device, except for the difference in weight ratio of donnor:acceptor (terploymer:Y6=1:1, W:W). The optimize device parameters of PM6-SiO-10:Y6 are summarized in Table S1 (in ESI).
Ground state geometry optimization of PM6, PM6-SiO and PSiO was calculated by density function theory (DFT) at B3LYP/6-31g(d, p) level,[
Fig 2 Computational simulations of top view, side view, LUMO and HOMO for PM6, PM6-SiO and PSiO dimers.
The absorption spectra of PM6 and terpolymers in chloroform solution and thin film are shown in Fig. S9 (in ESI),
Donor | Mn/PDI a (kDa/−) | λmax b/λmax c(nm) | λonset c(nm) | Eg d (eV) | HOMO/LUMO e (eV) | I0-0/I0-1 | FWHM (nm) |
---|---|---|---|---|---|---|---|
PM6 | 35.35/2.04 | 618/622 | 674 | 1.84 | −5.54/−3.70 | 1.05 | 141 |
PM6-SiO-10 | 30.51/2.23 | 616/622 | 674 | 1.84 | −5.54/−3.70 | 1.05 | 146 |
PM6-SiO-20 | 35.95/2.18 | 612/618 | 674 | 1.84 | −5.55/−3.71 | 1.04 | 152 |
PM6-SiO-30 | 34.94/2.19 | 612/618 | 674 | 1.84 | −5.55/−3.71 | 1.04 | 152 |
a Determined by GPC at 150 °C (eluent: 1,2,4-trichlorobenzene); b Normalized maximum absorption peak in solutions; c Normalized maximum absorption peak and onset absorption in films; d Calculated from the formula: Eg = 1240/λonset; e Obtained from cyclic voltammetry (CV) method, ELUMO = EHOMO + Eg.
Fig 3 (a) The absorption spectra in pure film of the polymers; The absorption spectra of (b) PM6, (c) PM6-SiO-10, (d) PM6-SiO-20 and (e) PM6-SiO-30 in chlorobenzene from 95 °C to 15 °C as indicated, arrows indicate the spectral trend with increasing temperature; (f) The energy level diagram of the polymers and Y6.
The HOMO energy levels of the four polymers were measured by cyclic voltammetry (CV) measurement, as shown in Fig. S11 (in ESI). The HOMO levels of PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30 were calculated to be −5.54, −5.54, −5.55 and −5.55 eV, respectively. The LUMO levels of PM6, PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30 were −3.70, −3.70, −3.71 and −3.71 eV, respectively, which calculated from the HOMO energy level and the corresponding optical band gap, as shown in
To investigate the effect of siloxane-functionalized unit on the photovoltaic performance of polymers, OSCs with device structure of ITO/PEDOT:PSS/Polymer:Y6/PDINO/Ag were prepared, and the corresponding preparation process was presented in ESI.
Fig 4 (a) Current density versus voltage (J-V) curves of organic solar cells based on terpolymers and PM6; (b) A brief summary of PCE versus JSC for binary OSCs of siloxane-functionalized polymers in this work and literatures; (c) EQE spectra and relevant integrated JSC; The dependence of JSC (d) and VOC (e) on the light intensity; Jph-Veff curves (f), plots for the measurements of electron mobilities (g) and hole mobilities (h), the determined carrier mobilities (i) of PM6:Y6, PM6-SiO-10:Y6 PM6-SiO-20:Y6 and PM6-SiO-30:Y6-based devices.
Active layer | VOC (V) | JSC (mA·cm−2) | FF (%) | PCE a (%) |
---|---|---|---|---|
PM6:Y6 | 0.848(0.849±0.005) | 25.57(25.61±0.30) | 72.13(71.84±0.22) | 15.64(15.32±0.32) |
PM6-SiO-10:Y6 | 0.850(0.853±0.005) | 26.96(26.60±0.42) | 72.84(73.26±0.53) | 16.69(16.24±0.45) |
PM6-SiO-20:Y6 | 0.852(0.853±0.006) | 26.07(25.72±0.40) | 72.16(72.04±0.26) | 16.03(15.79±0.38) |
PM6-SiO-30:Y6 | 0.853(0.853±0.008) | 25.72(25.66±0.27) | 72.15(71.93±0.25) | 15.82(15.58±0.34) |
a Average PCEs in brackets for over 20 devices.
We further studied the thermal and light stability of PM6:Y6, PM6-SiO-10:Y6, PM6-SiO-20:Y6 and PM6-SiO-30:Y6 device. Through the stability testing of the optimal OSCs devices, we found that the thermal and light stability of PM6-Si0-10:Y6-based device both improved compared with PM6:Y6 counterpart, as shown in Fig. S13 and Fig. S14 (in ESI), respectively. Moreover, there is a tendency for higher siloxane content to correspond to improved stability. We inferred that the following two reasons may lead to its increased stability. First, the presence of bulky siloxane groups with steric hindrance effects limits chain migration, hinders thermal motion, and results in improved thermal stability. Second, The bond energy of Si―O is greater than that of C―C, which helps to resist radiation and obtain better light stability. This can improve the intrinsic stability of the material, and thus improving the stability of the corresponding device.
The J-V curve was measured at different light intensities to study the charge recombination behaviors of the devices. The JSC depend on light intensity curve were shown in
To better understand the exciton dissociation and charge collection characteristics in these devices, the effective photocurrent density (Jph) versus effective voltage (Veff) curve was plotted,[
The siloxane-functionalized polymer also affects the charge transport characteristics, thus we further investigated the charge carrier mobility of the blended film by using the space charge limited current (SCLC) model, and the results were shown in
Fig 5 The steady-state fluorescence spectra of the corresponding blend films at the excitation wavelength of 570 nm (a−d) and the excitation wavelength of 830 nm (e−h).
To further understand polymer aggregation properties in the film, the grazing-incidence wide-angle X-ray scattering (GIWAXS) of PM6, PM6-SiO-10, PM6-SiO-20, PM6-SiO-30 pure films and blend films were conducted, as shown in
Fig 6 Two-dimensional GIWAXS images of the (a) PM6, (b) PM6-SiO-10, (c) PM6-SiO-20, (d) PM6-SiO-30, (e) PM6:Y6, (f) PM6-SiO-10:Y6, (g) PM6-SiO-20:Y6, and (h) PM6-SiO-30:Y6; (i) Corresponding one-dimensional intensity profiles in the in plane (IP) and out of plane (OOP) direction.
Material | In plane (lamellar) | Out of plane (π-π) | |||||
---|---|---|---|---|---|---|---|
100 (Å−1) | d (Å) | CCL (Å) | 010 (Å−1) | d (Å) | CCL (Å) | ||
PM6 | 0.285 | 22.04 | 44.93 | 1.655 | 3.79 | 18.25 | |
PM6-SiO-10 | 0.283 | 22.19 | 43.10 | 1.657 | 3.79 | 5.03 | |
PM6-SiO-20 | 0.280 | 22.43 | 42.94 | 1.644 | 3.82 | 8.93 | |
PM6-SiO-30 | 0.277 | 22.67 | 42.63 | 1.639 | 3.83 | 12.30 | |
PM6:Y6 | 0.299 | 21.00 | 73.10 | 1.744 | 3.60 | 25.39 | |
PM6-SiO-10:Y6 | 0.295 | 21.29 | 69.94 | 1.728 | 3.63 | 24.34 | |
PM6-SiO-20:Y6 | 0.294 | 21.29 | 69.94 | 1.727 | 3.64 | 24.85 | |
PM6-SiO-30:Y6 | 0.292 | 21.51 | 63.00 | 1.726 | 3.64 | 25.17 |
To further elucidate the impact of siloxane-functionalized side chains on the film-forming process, we conducted color mapping of in situ UV-Vis absorption spectra while varying the spin-coating time. This was performed using high-boiling chlorobenzene as the solvent. As shown in Fig. S16 (in ESI), the film-forming time of PM6 and PM6-SiO-10 are almost the same, at 15.72 s and 15.63 s, respectively. However, their diffusion rates differ, with PM6 diffusing more faster than PM6-SiO-10, illustrating their different morphology of the active layer. To gain deep insights into the effect of siloxane-functionalized on the phase separation in active layer, water and diiodomethane biphasic contact angle of PM6, PM6-SiO-10, PM6-SiO-20, PM6-SiO-30 and Y6 were performed. As shown in
Fig 7 (a) Water and (b) CH2I2 contact angle of PM6, PM6-SiO-10, PM6-SiO-20, PM6-SiO-30 and Y6. (c−f) AFM and (g−j) TEM images of blend films based on siloxane-functionalized polymers and PM6.
In conclusion, a novel siloxane-functionalized thiophene unit was developed and incorporated into the PM6 backbone to obtain a series of terpolymers (PM6-SiO-10, PM6-SiO-20 and PM6-SiO-30) by random polymerization. The siloxane-functionalized unit has negligible effect on energy level and absorption of the polymer, while significantly influence the molecular aggregation and thereby could change the active layer morphology and device performance. Interestingly, the unique structure of siloxane, located away from the main chain's branch point and having a bulky nature, enhances the π-π interaction within the polymer chain and suppresses the disorder caused by random copolymerization. When the content of siloxane-functionalized units over 10%, the π-π stacking in OOP direction increased along with the lamellar interaction in the IP direction weakened, illustrating the improvement of face-on orientation of the terpolymers, which is favorable for charge transport. Compared to PM6-SiO-20:Y6 and PM6-SiO-30:Y6 system, PM6-SiO-10:Y6 based device exhibited large and more balanced hole and electron mobility, more efficient charge collection and less charge recombination. As a result, the PM6-SiO-10:Y6 based device exhibited the highest PCE of 16.69% with a VOC of 0.850 V, a JSC of 26.96 mA·cm−2 and an FF of 72.84%. This work offers new possibilities for fine-tuning the crystallinity and morphology of polymers in OSCs, providing valuable insights for future research.
Yu,G.;Gao,J.;Hummelen,J.C.;Wudl,F.;Heeger,A.J.Polymerphotovoltaiccells:enhancedefficiencies viaanetworkofinternaldonor-acceptorheterojunctions.Science1995, 270,1789−1791.. [Baidu Scholar]
Zhang,G.;Lin,F.R.;Qi,F.;Heumüller,T.;Distler,A.;Egelhaaf,H.J.;Li,N.;Chow,P.C.Y.;Brabec,C.J.;Jen,A.K.Y.;Yip,H.L.Renewedprospectsfororganicphotovoltaics.Chem. Rev.2022, 122,14180−14274.. [Baidu Scholar]
Li,S.;Li,Z.;Wan,X.;Chen,Y.Recentprogressinflexibleorganicsolarcells.eScience2023, 3,100085.. [Baidu Scholar]
Xie,Q.;Liu,Y.;Liao,X.;Cui,Y.;Huang,S.;Hu,L.;He,Q.;Chen,L.;Chen,Y.Isomericeffectofwidebandgappolymerdonorswithhighcrystallinitytoachieveefficientpolymersolarcells.Macromol. Rapid Commun.2020, 41,e2000454.. [Baidu Scholar]
Cui,Y.;Zhu,P.;Xia,X.;Lu,X.;Liao,X.;Chen,Y.Carbazolebis(thiadiazole)-corebasednon-fusedringelectronacceptorsforefficientorganicsolarcells.Chin. Chem. Lett.2023, 34,107902.. [Baidu Scholar]
Xu,G.;Hu,X.;Liao,X.;Chen,Y.Bending-stabilityinterfaciallayerasdualelectrontransportlayerforflexibleorganicphotovoltaics.Chinese J. Polym. Sci.2021, 39,1441−1447.. [Baidu Scholar]
Wu,M.;Shi,L.;Hu,Y.;Chen,L.;Hu,T.;Zhang,Y.;Yuan,Z.;Chen,Y.Additive-freenon-fullereneorganicsolarcellswithrandomcopolymersasdonorsover9%powerconversionefficiency.Chin. Chem. Lett.2019, 30,1161−1167.. [Baidu Scholar]
Yuan,J.;Zhang,Y.;Zhou,L.;Zhang,G.;Yip,H.L.;Lau,T.K.;Lu,X.;Zhu,C.;Peng,H.;Johnson,P.A.;Leclerc,M.;Cao,Y.;Ulanski,J.;Li,Y.;Zou,Y.Single-junctionorganicsolarcellwithover15%efficiencyusingfused-ringacceptorwithelectron-deficientcore.Joule2019, 3,1140−1151.. [Baidu Scholar]
Jiang,K.;Wei,Q.;Lai,J.;Peng,Z.;Kim,H.;Yuan,J.;Ye,L.;Ade,H.;Zou,Y.;Yan,H.Alkylchaintuningofsmallmoleculeacceptorsforefficientorganicsolarcells.Joule2019, 3,3020−3033.. [Baidu Scholar]
Wang,J.L.;Wang,L.;An,Q.;Yan,L.;Bai,H.R.;Jiang,M.;Mahmood,A.;Yang,C.;Zhi,H.Non-fullereneacceptorswithhetero-dihalogenatedterminalsinducesignificantdifferenceinsinglecrystallographyandenablebinaryorganicsolarcellswith17.5%efficiency.Energy Environ. Sci.2022, 15,320−333.. [Baidu Scholar]
Luo,Z.;Ma,R.;Chen,Z.;Xiao,Y.;Zhang,G.;Liu,T.;Sun,R.;Zhan,Q.;Zou,Y.;Zhong,C.;Chen,Y.;Sun,H.;Chai,G.;Chen,K.;Guo,X.;Min,J.;Lu,X.;Yang,C.;Yan,H.Alteringthepositionsofchlorineandbrominesubstitutionontheendgroupenableshigh-performanceacceptorandefficientorganicsolarcells.Adv. Energy Mater.2020, 10,2002649.. [Baidu Scholar]
Cheng,F.;Cui,Y.;Ding,F.;Chen,Z.;Xie,Q.;Xia,X.;Zhu,P.;Lu,X.;Zhu,H.;Liao,X.;Chen,Y.Terpolymerizationandregioisomerizationstrategytoconstructefficientterpolymerdonorsenablinghigh-performanceorganicsolarcells.Adv. Mater. 2023 ,e2300820.. [Baidu Scholar]
Liu,Y.;Liu,B.;Ma,C.Q.;Huang,F.;Feng,G.;Chen,H.;Hou,J.;Yan,L.;Wei,Q.;Luo,Q.;Bao,Q.;Ma,W.;Liu,W.;Li,W.;Wan,X.;Hu,X.;Han,Y.;Li,Y.;Zhou,Y.;Zou,Y.;Chen,Y.;Li,Y.;Chen,Y.;Tang,Z.;Hu,Z.;Zhang,Z.G.;Bo,Z.Recentprogressinorganicsolarcells(PartImaterialscience).Sci. China Chem.2021, 65,224−268.. [Baidu Scholar]
Xu,X.;Zhang,G.;Yu,L.;Li,R.;Peng,Q.P3HT-basedpolymersolarcellswith8.25%efficiencyenabledbyamatchedmolecularacceptorandsmartgreen-solventprocessingtechnology.Adv. Mater.2019, 31,e1906045.. [Baidu Scholar]
Xu,X.;Li,Y.;Peng,Q.Ternaryblendorganicsolarcells:understandingthemorphologyfromrecentprogress.Adv. Mater.2022, 34,e2107476.. [Baidu Scholar]
Zhu,L.;Zhang,M.;Xu,J.;Li,C.;Yan,J.;Zhou,G.;Zhong,W.;Hao,T.;Song,J.;Xue,X.;Zhou,Z.;Zeng,R.;Zhu,H.;Chen,C.C.;MacKenzie,R.C.I.;Zou,Y.;Nelson,J.;Zhang,Y.;Sun,Y.;Liu,F.Single-junctionorganicsolarcellswithover19%efficiencyenabledbyarefineddouble-fibrilnetworkmorphology.Nat. Mater.2022, 21,656−663.. [Baidu Scholar]
Zheng,Z.;Wang,J.;Bi,P.;Ren,J.;Wang,Y.;Yang,Y.;Liu,X.;Zhang,S.;Hou,J.Tandemorganicsolarcellwith20.2%efficiency.Joule2022, 6,171−184.. [Baidu Scholar]
Xu,X.;Yu,L.;Meng,H.;Dai,L.;Yan,H.;Li,R.;Peng,Q.Polymersolarcellswith18.74%efficiency:frombulkheterojunctiontointerdigitatedbulkheterojunction.Adv. Funct. Mater.2021, 32,2108797.. [Baidu Scholar]
Pang,B.;Liao,C.;Xu,X.;Peng,S.;Xia,J.;Guo,Y.;Xie,Y.;Chen,Y.;Duan,C.;Wu,H.;Li,R.;Peng,Q.B-Nbondembeddedtripletterpolymerswithsmallsinglet-tripletenergygapsforsuppressingnon-radiativerecombinationandimprovingblendmorphologyinorganicsolarcells.Adv. Mater. 2023 ,e2211871.. [Baidu Scholar]
Lu,H.;Liu,W.;Jin,H.;Huang,H.;Tang,Z.;Bo,Z.High-efficiencyorganicsolarcellswithreducednonradiativevoltagelossenabledbyahighlyemissivenarrowbandgapfusedringacceptor.Adv. Funct. Mater.2021, 32,2107756.. [Baidu Scholar]
Chong,K.;Xu,X.;Meng,H.;Xue,J.;Yu,L.;Ma,W.;Peng,Q.Realizing19.05%efficiencypolymersolarcellsbyprogressivelyimprovingchargeextractionandsuppressingchargerecombination.Adv. Mater.2022, 34,e2109516.. [Baidu Scholar]
Zhang,Z.G.;Bai,Y.;Li,Y.Benzotriazolebased2D-conjugatedpolymerdonorsforhighperformancepolymersolarcells.Chinese J. Polym. Sci.2021, 39,1−13.. [Baidu Scholar]
Chen,S.;Yao,H.;Li,Z.;Awartani,O.M.;Liu,Y.;Wang,Z.;Yang,G.;Zhang,J.;Ade,H.;Yan,H.Surprisingeffectsuponinsertingbenzeneunitsintoaquaterthiophene-basedD-Apolymer-improvingnon-fullereneorganicsolarcellsviadonorpolymerdesign.Adv. Energy Mater.2017, 7,1602304.. [Baidu Scholar]
Li,S.;Ye,L.;Zhao,W.;Yan,H.;Yang,B.;Liu,D.;Li,W.;Ade,H.;Hou,J.Awidebandgappolymerwithadeephighestoccupiedmolecularorbitallevelenables14.2%efficiencyinpolymersolarcells.J. Am. Chem. Soc.2018, 140,7159−7167.. [Baidu Scholar]
Zhang,M.;Guo,X.;Ma,W.;Ade,H.;Hou,J.Alarge-bandgapconjugatedpolymerforversatilephotovoltaicapplicationswithhighperformance.Adv. Mater.2015, 27,4655−4660.. [Baidu Scholar]
Zheng,Z.;Yao,H.;Ye,L.;Xu,Y.;Zhang,S.;Hou,J.PBDB-Tanditsderivatives:afamilyofpolymerdonorsenablesover17%efficiencyinorganicphotovoltaics.Mater. Today2020, 35,115−130.. [Baidu Scholar]
Liu,D.;Wang,J.;Gu,C.;Li,Y.;Bao,X.;Yang,R.Stirringupacceptorphaseandcontrollingmorphology viachoosingappropriaterigidarylringsasleverarmsinsymmetry-breakingbenzodithiopheneforhigh-performancefullereneandfullerene-freepolymersolarcells.Adv. Mater.2018, 30,1705870.. [Baidu Scholar]
Jin,K.;Xiao,Z.;Ding,L.D18,aneximioussolarpolymer!J. Semicond. 2021 ,42,010502.. [Baidu Scholar]
Jiang,H.;Qin,G.;Zhang,L.;Pan,F.;Wu,Z.;Wang,Q.;Wen,G.;Zhang,W.;Cao,Y.;Chen,J.Dithienobenzoxadiazole-basedwidebandgapdonorpolymerswithstrongaggregationpropertiesforthepreparationofefficientas-castnon-fullerenepolymersolarcellsprocessedusinganon-halogenatedsolvent.J. Mater. Chem. C2021, 9,249−259.. [Baidu Scholar]
Xie,R.;Ying,L.;An,K.;Zhong,W.;Yin,Q.;Liao,S.;Huang,F.;Cao,Y.Efficientnon-fullereneorganicsolarcellsbasedonawide-bandgappolymerdonorcontaininganalkylthiophenyl-substitutedbenzodithiophenemoiety.ChemPhysChem2019, 20,2668−2673.. [Baidu Scholar]
Guo,H.;Huang,B.;Zhang,L.;Chen,L.;Xie,Q.;Liao,Z.;Huang,S.;Chen,Y.Doubleacceptorblock-containingcopolymerswithdeepHOMOlevelsfororganicsolarcells:adjustingcarboxylatesubstituentpositionforplanarity.ACS Appl. Mater. Interfaces2019, 11,15853−15860.. [Baidu Scholar]
Cho,H.W.;An,N.G.;Park,S.Y.;Shin,Y.S.;Lee,W.;Kim,J.Y.;Song,S.Thermallydurablenonfullereneacceptorwithnonplanarconjugatedbackboneforhigh-performanceorganicsolarcells.Adv. Energy Mater.2020, 10,1903585.. [Baidu Scholar]
Chao,P.;Chen,H.;Zhu,Y.;Lai,H.;Mo,D.;Zheng,N.;Chang,X.;Meng,H.;He,F.Abenzo[1,2-b:4,5- c']dithiophene-4,8-dione-basedpolymerdonorachievinganefficiencyover16.Adv. Mater.2020, 32,e1907059.. [Baidu Scholar]
Zeng,A.;Ma,X.;Pan,M.;Chen,Y.;Ma,R.;Zhao,H.;Zhang,J.;Kim,H.K.;Shang,A.;Luo,S.;Angunawela,I.C.;Chang,Y.;Qi,Z.;Sun,H.;Lai,J.Y.L.;Ade,H.;Ma,W.;Zhang,F.;Yan,H.Achlorinateddonorpolymerachievinghigh-performanceorganicsolarcellswithawiderangeofpolymermolecularweight.Adv. Funct. Mater.2021, 31,2102413.. [Baidu Scholar]
Fan,Q.;Zhu,Q.;Xu,Z.;Su,W.;Chen,J.;Wu,J.;Guo,X.;Ma,W.;Zhang,M.;Li,Y.Chlorinesubstituted2D-conjugatedpolymerforhigh-performancepolymersolarcellswith13.1%efficiencyviatolueneprocessing.Nano Energy2018, 48,413−420.. [Baidu Scholar]
Wu,J.;Guo,X.;Xiong,M.;Xia,X.;Li,Q.;Fang,J.;Yan,X.;Liu,Q.;Lu,X.;Wang,E.;Yu,D.;Zhang,M.Modulatingthenanoscalemorphologyoncarboxylate-pyrazinecontainingterpolymertoward17.8%efficiencyorganicsolarcellswithenhancedthermalstability.Chem. Eng. J.2022, 446,137424.. [Baidu Scholar]
Qiu,J.;Liu,M.;Wang,Y.;Xia,X.;Liu,Q.;Guo,X.;Lu,X.;Zhang,M.Linearregulatingofpolymeracceptoraggregationwithshortalkylchainunitsenhancesall-polymersolarcells’efficiency.Macromol. Rapid Commun.2022, 44,2200753.. [Baidu Scholar]
Wu,J.;Li,G.;Fang,J.;Guo,X.;Zhu,L.;Guo,B.;Wang,Y.;Zhang,G.;Arunagiri,L.;Liu,F.;Yan,H.;Zhang,M.;Li,Y.Randomterpolymerbasedonthiophene-thiazolothiazoleunitenablingefficientnon-fullereneorganicsolarcells.Nat. Commun.2020, 11,4612.. [Baidu Scholar]
Mei,J.;Kim,D.H.;Ayzner,A.L.;Toney,M.F.;Bao,Z.Siloxane-terminatedsolubilizingsidechains:bringingconjugatedpolymerbackbonescloserandboostingholemobilitiesinthin-filmtransistors.J. Am. Chem. Soc.2011, 133,20130−20133.. [Baidu Scholar]
Wang,Q.;Hu,Z.;Wu,Z.;Lin,Y.;Zhang,L.;Liu,L.;Ma,Y.;Cao,Y.;Chen,J.Introductionofsiloxane-terminatedsidechainsintosemiconductingpolymerstotunephaseseparationwithnonfullereneacceptorforpolymersolarcells.ACS Appl. Mater. Interfaces2020, 12,4659−4672.. [Baidu Scholar]
Feng,S.;Liu,C.;Xu,X.;Liu,X.;Zhang,L.;Nian,Y.;Cao,Y.;Chen,J.Siloxane-terminatedsidechainengineeringofacceptorpolymersleadingtoover7%powerconversionefficienciesinall-polymersolarcells.ACS Macro Lett.2017, 6,1310−1314.. [Baidu Scholar]
Yin,Z.;Guo,X.;Wang,Y.;Zhu,L.;Chen,Y.;Fan,Q.;Wang,J.;Su,W.;Liu,F.;Zhang,M.;Li,Y.Siloxane-functionalsmallmoleculeacceptorforhigh-performanceorganicsolarcellswith16.6%efficiency.Chem. Eng. J.2022, 442,136018.. [Baidu Scholar]
Jiang,H.;Pan,F.;Zhang,L.;Zhou,X.;Wang,Z.;Nian,Y.;Liu,C.;Tang,W.;Ma,Q.;Ni,Z.;Chen,M.;Ma,W.;Cao,Y.;Chen,J.Impactofthesiloxane-terminatedsidechainonphotovoltaicperformancesofthedithienylbenzodithiophene-difluorobenzotriazole-basedwidebandgappolymerdonorinnon-fullerenepolymersolarcells.ACS Appl. Mater. Interfaces2019, 11,29094−29104.. [Baidu Scholar]
Fan,B.;Zhong,W.;Ying,L.;Zhang,D.;Li,M.;Lin,Y.;Xia,R.;Liu,F.;Yip,H.L.;Li,N.;Ma,Y.;Brabec,C.J.;Huang,F.;Cao,Y.Surpassingthe10%efficiencymilestonefor1-cm2all-polymersolarcells.Nat. Commun.2019, 10,4100.. [Baidu Scholar]
Fan,B.;Zhu,P.;Xin,J.;Li,N.;Ying,L.;Zhong,W.;Li,Z.;Ma,W.;Huang,F.;Cao,Y.High-performancethick-filmall-polymersolarcellscreated viaternaryblendingofanovelwide-bandgapelectron-donatingcopolymer.Adv. Energy Mater.2018, 8,1703085.. [Baidu Scholar]
Zhao,F.;Yuan,Y.;Ding,Y.;Wang,Y.;Wang,X.;Zhang,G.;Gu,X.;Qiu,L.Tamingchargetransportandmechanicalpropertiesofconjugatedpolymerswithlinearsiloxanesidechains.Macromolecules2021, 54,5440−5450.. [Baidu Scholar]
Jing,J.;Dou,Y.;Chen,S.;Zhang,K.;Huang,F.Solutionsequentialdepositedorganicphotovoltaics:frommorphologycontroltolarge-areamodules.eScience 2023 .DOI:10.1016/j.esci.2023.100142.. [Baidu Scholar]
Chen,X.;Liu,B.;Zou,Y.;Xiao,L.;Guo,X.;He,Y.;Li,Y.Anewbenzo[1,2- b:4,5- b′]difuran-basedcopolymerforefficientpolymersolarcells.J. Mater. Chem.2012, 22,17724−17731.. [Baidu Scholar]
Kyaw,A.K.K.;Wang,D.H.;Gupta,V.;Leong,W.L.;Ke,L.;Bazan,G.C.;Heeger,A.J.Intensitydependenceofcurrent–voltagecharacteristicsandrecombinationinhigh-efficiencysolution-processedsmall-moleculesolarcells.ACS Nano2013, 7,4569−4577.. [Baidu Scholar]
Riedel,I.;Parisi,J.;Dyakonov,V.;Lutsen,L.;Vanderzande,D.;Hummelen,J.C.Effectoftemperatureandilluminationontheelectricalcharacteristicsofpolymer-fullerenebulk-heterojunctionsolarcells.Adv. Funct. Mater.2004, 14,38−44.. [Baidu Scholar]
Gao,W.;Liu,T.;Zhong,C.;Zhang,G.;Zhang,Y.;Ming,R.;Zhang,L.;Xin,J.;Wu,K.;Guo,Y.;Ma,W.;Yan,H.;Liu,Y.;Yang,C.Asymmetricalsmallmoleculeacceptorenablingnonfullerenepolymersolarcellwithfillfactorapproaching79%.ACS Energy Lett.2018, 3,1760−1768.. [Baidu Scholar]
Liao,X.;Xie,Q.;Guo,Y.;He,Q.;Chen,Z.;Yu,N.;Zhu,P.;Cui,Y.;Ma,Z.;Xu,X.;Zhu,H.;Chen,Y.Inhibitingexcessivemolecularaggregationtoachievehighlyefficientandstabilizedorganicsolarcellsbyintroducingastar-shapednitrogenheterocyclic-ringacceptor.Energy Environ. Sci.2022, 15,384−394.. [Baidu Scholar]
Xu,G.;Rao,H.;Liao,X.;Zhang,Y.;Wang,Y.;Xing,Z.;Hu,T.;Tan,L.;Chen,L.;Chen,Y.ReducingenergylossandmorphologyoptimizationManipulatedbymoleculargeometryengineeringforhetero-junctionorganicsolarcells.Chin. J. Chem.2020, 38,1553−1559.. [Baidu Scholar]
Liao,X.;He,Q.;Zhou,G.;Xia,X.;Zhu,P.;Xing,Z.;Zhu,H.;Yao,Z.;Lu,X.;Chen,Y.Regulatingfavorablemorphologyevolutionbyasimpleliquid-crystallinesmallmoleculeenablesorganicsolarcellswithover17%efficiencyandaremarkable Jscof26.56mA/cm2.Chem. Mater.2021, 33,430−440.. [Baidu Scholar]
212
Views
389
Downloads
0
CSCD
Related Articles
Related Author
Related Institution