1.Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
zhangls@ecust.edu.cn
Scan for full text
Liang-Shun Zhang. Long-Range Ordered Nanostructures of Assembling Macromolecules
Liang-Shun Zhang. Long-Range Ordered Nanostructures of Assembling Macromolecules
Designing the kinetic pathways of assembling macromolecules such as block copolymers and DNA strands is crucial not only for an achievement of thermodynamically equilibrium nanostructures over macroscopic areas, but also for a better understanding of formation process of higher-level superstructures where well-tailored assemblies act as mesoscopic building units. Theoretical analysis and computer simulations provide excellent opportunities to microscopically reveal the kinetics and mechanism of structural evolution as well as the collective behaviors of building units. In this perspective, we summarize our efforts of theoretical and computational modelling to understand the long-range ordering mechanisms and the organization kinetics of assembling macromolecules along designable pathways. First, we present the computational modelling and recent strategies of designable pathways for the achievement of long-range ordering. Then, from the computational views, we give the applications of pathway-designed strategies to explore the ordering mechanism and kinetics in the course of structural evolution, covering the block copolymers and their nanocomposites under zone annealing as well as the hierarchical self-assembly of mesoscopic building units (,e.g., patchy micelles and DNA-functionalized nanoparticles). Finally, we outlook future directions in the field of designable pathways for the achievement of long-range ordered nanostructures. This perspective could promote further efforts towards the wide applications of theoretical and computational modelling in the construction of soft hybrid metamaterials.
Dynamic self-consistent field theoryStructural evolutionBlock copolymersHierarchical self-assemblyPolymerization
Huang, C. H.; Zhu, Y. Y.; Man, X. K . Block copolymer thin films . Phys. Rep. , 2021 . 932 1 -36 . DOI:10.1016/j.physrep.2021.07.005http://doi.org/10.1016/j.physrep.2021.07.005 .
Laramy, C. R.; O’Brien, M. N.; Mirkin, C. A . Crystal engineering with DNA . Nat. Rev. Mater. , 2019 . 4 201 -224 . DOI:10.1038/s41578-019-0087-2http://doi.org/10.1038/s41578-019-0087-2 .
Rogers, W. B.; Shih, W. M.; Manoharan, V. N . Using DNA to program the self-assembly of colloidal nanoparticles and microparticles . Nat. Rev. Mater. , 2016 . 1 16008 DOI:10.1038/natrevmats.2016.8http://doi.org/10.1038/natrevmats.2016.8 .
Cademartiri, L.; Bishop, K. J. M . Programmable self-assembly . Nat. Mater. , 2015 . 14 2 -9 . DOI:10.1038/nmat4184http://doi.org/10.1038/nmat4184 .
Boles, M. A.; Engel, M.; Talapin, D. V . Self-assembly of colloidal nanocrystals: from intricate structures to functional materials . Chem. Rev. , 2016 . 116 11220 -11289 . DOI:10.1021/acs.chemrev.6b00196http://doi.org/10.1021/acs.chemrev.6b00196 .
Müller, M.; de Pablo, J. J . Computational approaches for the dynamics of structure formation in self-assembling polymeric materials . Annu. Rev. Mater. Res. , 2013 . 43 1 -34 . DOI:10.1146/annurev-matsci-071312-121618http://doi.org/10.1146/annurev-matsci-071312-121618 .
Müller, M.; Abetz, V . Nonequilibrium processes in polymer membrane formation: theory and experiment . Chem. Rev. , 2021 . 121 14189 -14231 . DOI:10.1021/acs.chemrev.1c00029http://doi.org/10.1021/acs.chemrev.1c00029 .
Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G . Block copolymer lithography . Macromolecules , 2014 . 47 2 -12 . DOI:10.1021/ma401762nhttp://doi.org/10.1021/ma401762n .
Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M. A . Solvent vapor annealing of block polymer thin films . Macromolecules , 2013 . 46 5399 -5415 . DOI:10.1021/ma400735ahttp://doi.org/10.1021/ma400735a .
Li, W.; Duan, C.; Shi, A. C . Nonclassical spherical packing phases self-assembled from AB-type block copolymers . ACS Macro Lett. , 2017 . 6 1257 -1262 . DOI:10.1021/acsmacrolett.7b00756http://doi.org/10.1021/acsmacrolett.7b00756 .
Zhu, G.; Huang, Z.; Xu, Z.; Yan, L. T . Tailoring interfacial nanoparticle organization through entropy . Acc. Chem. Res. , 2018 . 51 900 -909 . DOI:10.1021/acs.accounts.8b00001http://doi.org/10.1021/acs.accounts.8b00001 .
Lu, Y.; Lin, J.; Wang, L.; Zhang, L.; Cai, C . Self-assembly of copolymer micelles: higher-level assembly for constructing hierarchical structure . Chem. Rev. , 2020 . 120 4111 -4140 . DOI:10.1021/acs.chemrev.9b00774http://doi.org/10.1021/acs.chemrev.9b00774 .
Glaser, J.; Nguyen, T. D.; Anderson, J. A.; Lui, P.; Spiga, F.; Millan, J. A.; Morse, D. C.; Glotzer, S. C . Strong scaling of general-purpose molecular dynamics simulations on GPUs . Comput. Phys. Commun. , 2015 . 192 97 -107 . DOI:10.1016/j.cpc.2015.02.028http://doi.org/10.1016/j.cpc.2015.02.028 .
Zhu, Y. L.; Liu, H.; Li, Z. W.; Qian, H. J.; Milano, G.; Lu, Z. Y . GALAMOST: GPU-accelerated large-scale molecular simulation toolkit . J. Comput. Chem. , 2013 . 34 2197 -2211 . DOI:10.1002/jcc.23365http://doi.org/10.1002/jcc.23365 .
Allen, M. P.; Tildesley D. J. Computer Simulation of Liquid. Oxford University Press: New York, 1989.
Hoogerbrugge, P. J.; Koelman, J. M. V. A . Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics . Europhys. Lett. , 1992 . 19 155 -160 . DOI:10.1209/0295-5075/19/3/001http://doi.org/10.1209/0295-5075/19/3/001 .
Fredrickson, G. H. The Equilibrium Theory of Inhomogeneous Polymers. Oxford University Press: Oxford, 2006.
Fraaije, J. G. E. M.; van Vlimmeren, B. A. C.; Maurits, N. M.; Postma, M.; Evers, O. A.; Hoffmann, C.; Altevogt, P.; Goldbeck-Wood, G . The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts . J. Chem. Phys. , 1997 . 106 4260 -4269 . DOI:10.1063/1.473129http://doi.org/10.1063/1.473129 .
Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K . The effect of temperature gradient on the microdomain orientation of diblock copolymers undergoing an order-disorder transition . Macromolecules , 1999 . 32 952 -954 . DOI:10.1021/ma981249shttp://doi.org/10.1021/ma981249s .
Berry, B. C.; Bosse, A. W.; Douglas, J. F.; Jones, R. L.; Karim, A . Orientational order in block copolymer films zone annealed below the order-disorder transition temperature . Nano Lett. , 2007 . 7 2789 -2794 . DOI:10.1021/nl071354shttp://doi.org/10.1021/nl071354s .
Liu, F.; Goldenfeld, N . Dynamics of phase separation in block copolymer melts . Phys. Rev. A: At., Mol., Opt. Phys. , 1989 . 39 4805 -4910 . DOI:10.1103/PhysRevA.39.4805http://doi.org/10.1103/PhysRevA.39.4805 .
Paquette, G. C . Front propagation in a diblock copolymer Melt . Phys. Rev. A: At., Mol., Opt. Phys. , 1991 . 44 6577 -6599 . DOI:10.1103/PhysRevA.44.6577http://doi.org/10.1103/PhysRevA.44.6577 .
Furukawa, H . Phase separation by directional quenching and morphological transition . Phys. A , 1992 . 180 128 -155 . DOI:10.1016/0378-4371(92)90111-3http://doi.org/10.1016/0378-4371(92)90111-3 .
Zhang, H.; Zhang, J.; Yang, Y.; Zhou, X . Microphase separation of diblock copolymer induced by directional quenching . J. Chem. Phys. , 1997 . 106 784 -792 . DOI:10.1063/1.473165http://doi.org/10.1063/1.473165 .
Bosse, A. W.; Douglas, J. F.; Berry, B. C.; Jones, R. L.; Karim, A . Block-copolymer ordering with a spatiotemporally heterogeneous mobility . Phys. Rev. Lett. , 2007 . 99 216101 DOI:10.1103/PhysRevLett.99.216101http://doi.org/10.1103/PhysRevLett.99.216101 .
Cong, Z.; Zhang, L.; Wang, L.; Lin, J . Understanding the ordering mechanisms of self-assembled nanostructures of block copolymers during zone annealing . J. Chem. Phys. , 2016 . 144 114901 DOI:10.1063/1.4943864http://doi.org/10.1063/1.4943864 .
Wan, X.; Gao, T.; Zhang, L.; Lin, J . Ordering kinetics of lamella-forming block copolymers under the guidance of various external fields studied by dynamic self-consistent field theory . Phys. Chem. Chem. Phys. , 2017 . 19 6707 -6720 . DOI:10.1039/C6CP08726Dhttp://doi.org/10.1039/C6CP08726D .
Gröschel, A. H.; Schacher, F. H.; Schmalz, H.; Borisov, O. V.; Zhulina, E. B.; Walther, A.; Müller, A. H. E . Precise hierarchical self-assembly of multicompartment micelles . Nat. Commun. , 2012 . 3 710 DOI:10.1038/ncomms1707http://doi.org/10.1038/ncomms1707 .
Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schacher, F. H.; Schmalz, H.; Müller, A. H. E . Guided hierarchical co-assembly of soft patchy nanoparticles . Nature , 2013 . 503 247 -251 . DOI:10.1038/nature12610http://doi.org/10.1038/nature12610 .
Ma, X.; Zhou, Y.; Zhang, L.; Lin, J.; Tian, X . Polymerization-like kinetics of the self-assembly of colloidal nanoparticles into supracolloidal polymers . Nanoscale , 2018 . 10 16873 -16880 . DOI:10.1039/C8NR05310Chttp://doi.org/10.1039/C8NR05310C .
Zhang, L.; Liu, L.; Lin, J . Well-ordered self-assembled nanostructures of block copolymer films via synergistic integration of chemoepitaxy and zone annealing . Phys. Chem. Chem. Phys. , 2018 . 20 498 -508 . DOI:10.1039/C7CP06261Chttp://doi.org/10.1039/C7CP06261C .
Yong, D.; Jin, H. M.; Kim, S. O.; Kim, J. U . Laser-directed self-assembly of highly aligned lamellar and cylindrical block copolymer nanostructures: experiment and simulation . Macromolecules , 2018 . 51 1418 -1426 . DOI:10.1021/acs.macromol.7b02645http://doi.org/10.1021/acs.macromol.7b02645 .
Sides, S. W.; Kim, B. J.; Kramer, E. J.; Fredrickson, G. H . Hybrid particle-field simulations of polymer nanocomposites . Phys. Rev. Lett. , 2006 . 96 250601 DOI:10.1103/PhysRevLett.96.250601http://doi.org/10.1103/PhysRevLett.96.250601 .
Gu, J.; Zhang, R.; Zhang, L.; Lin, J . Epitaxial assembly of nanoparticles in diblock copolymer matrix: precise organization of individual nanoparticles into regular arrays . Macromolecules , 2021 . 54 2561 -2573 . DOI:10.1021/acs.macromol.1c00028http://doi.org/10.1021/acs.macromol.1c00028 .
Gu, J.; Zhang, R.; Zhang, L.; Lin, J . Harnessing zone annealing to program directional motion of nanoparticles in diblock copolymers: creating periodically well-ordered nanocomposites . Macromolecules , 2020 . 53 2111 -2122 . DOI:10.1021/acs.macromol.0c00101http://doi.org/10.1021/acs.macromol.0c00101 .
Ma, X.; Gu, M.; Zhang, L.; Lin, J.; Tian, X . Sequence-regulated supracolloidal copolymers via copolymerization-like coassembly of binary mixtures of patchy nanoparticles . ACS Nano , 2019 . 13 1968 -1976 . DOI:10.1021/acsnano.8b08431http://doi.org/10.1021/acsnano.8b08431 .
Yang, C.; Ma, X.; Lin, J.; Wang, L.; Lu, Y.; Cai, C.; Zhang, L.; Gao, L . Supramolecular “step polymerization” of preassembled micelles: a study of “polymerization” kinetics . Macromol. Rapid Commun. , 2018 . 39 1700701 DOI:10.1002/marc.201700701http://doi.org/10.1002/marc.201700701 .
Lu, Y.; Gao, L.; Lin, J.; Wang, L.; Zhang, L.; Cai, C . Supramolecular step-growth polymerization kinetics of pre-assembled triblock copolymer micelles . Polym. Chem. , 2019 . 10 3461 -3468 . DOI:10.1039/C9PY00539Khttp://doi.org/10.1039/C9PY00539K .
McMillan, J. R.; Mirkin, C. A . DNA-functionalized, bivalent proteins . J. Am. Chem. Soc. , 2018 . 140 6776 -6779 . DOI:10.1021/jacs.8b03403http://doi.org/10.1021/jacs.8b03403 .
Knorowski, C.; Burleigh, S.; Travesset, A . Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization . Phys. Rev. Lett. , 2011 . 106 215501 DOI:10.1103/PhysRevLett.106.215501http://doi.org/10.1103/PhysRevLett.106.215501 .
Gu, M.; Ma, X.; Zhang, L.; Lin, J . Reversible polymerization-like kinetics for programmable self-assembly of DNA-encoded nanoparticles with limited valence . J. Am. Chem. Soc. , 2019 . 141 16408 -16415 . DOI:10.1021/jacs.9b07919http://doi.org/10.1021/jacs.9b07919 .
Cai, T.; Zhao, S.; Lin, J.; Zhang, L . Kinetically programming copolymerization-like coassembly of multicomponent nanoparticles with DNA . ACS Nano , 2022 . 16 15907 -15916 . DOI:10.1021/acsnano.2c02867http://doi.org/10.1021/acsnano.2c02867 .
Zhang, R.; Zhang, L.; Lin, J.; Lin, S . Customizing topographical templates for aperiodic nanostructures of block copolymers via inverse design . Phys. Chem. Chem. Phys. , 2019 . 21 7781 -7788 . DOI:10.1039/C9CP00712Ahttp://doi.org/10.1039/C9CP00712A .
0
Views
12
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution