a.School of Energy, Materials and Chemical Engineering, Hefei University, Hefei 230601, China
b.Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U. K.
c.Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China
yangwei@hfuu.edu.cn (W.Y.)
luhdo@hfuu.edu.cn (H.L.)
Scan for full text
Wei, C.; Gao, T.; Xu, Y.; Yang, W.; Dai, G.; Li, R.; Zhu, S.; Yuen, R. K. K.; Yang, W.; Lu, H. Synthesis of bio-based epoxy containing phosphine oxide as a reactive additive toward highly toughened and fire-retarded epoxy resins. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-023-2932-4
Chunxiang Wei, Tianyu Gao, Yu Xu, et al. Synthesis of Bio-based Epoxy Containing Phosphine Oxide as a Reactive Additive Toward Highly Toughened and Fire-retarded Epoxy Resins. [J/OL]. Chinese Journal of Polymer Science 411-14(2022)
Wei, C.; Gao, T.; Xu, Y.; Yang, W.; Dai, G.; Li, R.; Zhu, S.; Yuen, R. K. K.; Yang, W.; Lu, H. Synthesis of bio-based epoxy containing phosphine oxide as a reactive additive toward highly toughened and fire-retarded epoxy resins. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-023-2932-4 DOI:
Chunxiang Wei, Tianyu Gao, Yu Xu, et al. Synthesis of Bio-based Epoxy Containing Phosphine Oxide as a Reactive Additive Toward Highly Toughened and Fire-retarded Epoxy Resins. [J/OL]. Chinese Journal of Polymer Science 411-14(2022) DOI: 10.1007/s10118-023-2932-4.
The integration of high mechanical toughness, impact strength as well as excellent flame-retardant properties toward epoxy resins (EPs) have always been a dilemma. The inadequate overall performance of EPs severely restricts their sustainable utilization in engineering aspects over long-term. Herein, a new bio-based agent (diglycidyl ether of magnolol phosphine oxide, referred as DGEMP) derived from magnolol (classified as lignan), extracted from natural plants Magnolia officinalis, was successfully synthesized and further employed as a flame-retardant reactive additive to diglycidyl ether of bisphenol A (DGEBA). As demonstration, the composite resin, DGEBA/15DGEMP (15 wt% DGEMP), achieved an Underwriters Laboratories-94 V-0 rating with a high limiting oxygen index (LOI) value (41.5%). In cone calorimeter tests, it showed that heat release and smoke production were effectively inhibited during combustion, wherein the peak heat release rate (PHRR) value of DGEBA/15DGEMP was reduced by 50% compared to neat DGEBA. Additionally, it exhibited a superior tensile strength (82.8 MPa), toughness (5.11 MJ/m,3,) and impact strength (36.5 kJ/m,2,), much higher than that of neat DGEBA (49.7 MPa, 2.05 MJ/m,3, and 20.9 kJ/m,2,). Thus, it is highly anticipated that DGEMP imparts significantly improved mechanical and fire-retarded properties to conventional EPs, which holds a great potential to address the pressing challenges in EP thermosets industry.
Epoxy resinMagnololPhosphine oxideToughnessFlame retardant
Jin, F. L.; Li, X.; Park, S. J . Synthesis and application of epoxy resins: A review . J. Ind. Eng. Chem. , 2015 . 29 1 -11 . DOI:10.1016/j.jiec.2015.03.026http://doi.org/10.1016/j.jiec.2015.03.026 .
May, C. Epoxy resins: chemistry and technology. Routledge: 2018.
Gao, T. Y.; Wang, F. D.; Xu, Y.; Wei, C. X.; Zhu, S. E.; Yang, W.; Lu, H. D . Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties . Chem. Eng. J. , 2022 . 428 131173 DOI:10.1016/j.cej.2021.131173http://doi.org/10.1016/j.cej.2021.131173 .
Kong, Q.; Zhu, H.; Huang, S.; Wu, T.; Zhu, F.; Zhang, Y.; Wang, Y.; Zhang, J . Influence of multiply modified FeCu-montmorillonite on fire safety and mechanical performances of epoxy resin nanocomposites . Thermochim. Acta , 2022 . 707 179112 DOI:10.1016/j.tca.2021.179112http://doi.org/10.1016/j.tca.2021.179112 .
Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P . Biobased thermosetting epoxy: present and future . Chem. Rev. , 2014 . 114 1082 -1115 . DOI:10.1021/cr3001274http://doi.org/10.1021/cr3001274 .
Mi, X.; Liang, N.; Xu, H.; Wu, J.; Jiang, Y.; Nie, B.; Zhang, D . Toughness and its mechanisms in epoxy resins . Prog. Mater. Sci. , 2022 . 130 100977 DOI:10.1016/j.pmatsci.2022.100977http://doi.org/10.1016/j.pmatsci.2022.100977 .
Ye, G.; Huo, S.; Wang, C.; Shi, Q.; Yu, L.; Liu, Z.; Fang, Z.; Wang, H . A novel hyperbranched phosphorus-boron polymer for transparent, flame-retardant, smoke-suppressive, robust yet tough epoxy resins . Compos. Part B: Eng. , 2021 . 227 109395 DOI:10.1016/j.compositesb.2021.109395http://doi.org/10.1016/j.compositesb.2021.109395 .
Wang, X.; Zhou, S.; Guo, W. W.; Wang, P. L.; Xing, W.; Song, L.; Hu, Y . Renewable cardanol-based phosphate as a flame retardant toughening agent for epoxy resins . ACS Sustain. Chem. Eng. , 2017 . 5 3409 -3416 . DOI:10.1021/acssuschemeng.7b00062http://doi.org/10.1021/acssuschemeng.7b00062 .
Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V. S.; Liu, L.; Fang, Z.; Wang, H . Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives . Prog. Polym. Sci. , 2021 . 114 101366 DOI:10.1016/j.progpolymsci.2021.101366http://doi.org/10.1016/j.progpolymsci.2021.101366 .
Mendis, G. P.; Weiss, S. G.; Korey, M.; Boardman, C. R.; Dietenberger, M.; Youngblood, J. P.; Howarter, J. A . Phosphorylated lignin as a halogen-free flame retardant additive for epoxy composites . Green Mater. , 2016 . 4 150 -159 . DOI:10.1680/jgrma.16.00008http://doi.org/10.1680/jgrma.16.00008 .
Velencoso, M. M.; Battig, A.; Markwart, J. C.; Schartel, B.; Wurm, F. R . Molecular firefighting—how modern phosphorus chemistry can help solve the challenge of flame retardancy . Angew. Chem. Int. Ed. , 2018 . 57 10450 -10467 . DOI:10.1002/anie.201711735http://doi.org/10.1002/anie.201711735 .
Huo, S.; Zhou, Z.; Jiang, J.; Sai, T.; Ran, S.; Fang, Z.; Song, P.; Wang, H . Flame-retardant, transparent, mechanically-strong and tough epoxy resin enabled by high-efficiency multifunctional boron-based polyphosphonamide . Chem. Eng. J. , 2022 . 427 131578 DOI:10.1016/j.cej.2021.131578http://doi.org/10.1016/j.cej.2021.131578 .
Xue, T.; Fan, W.; Zhang, X.; Zhao, X.; Yang, F.; Liu, T . Layered double hydroxide/graphene oxide synergistically enhanced polyimide aerogels for thermal insulation and fire-retardancy . Compos. Part B: Eng. , 2021 . 219 108963 DOI:10.1016/j.compositesb.2021.108963http://doi.org/10.1016/j.compositesb.2021.108963 .
Chu, F.; Qiu, S.; Zhou, Y.; Zhou, X.; Cai, W.; Zhu, Y.; He, L.; Song, L.; Hu, W . Novel glycerol-based polymerized flame retardants with combined phosphorus structures for preparation of high performance unsaturated polyester resin composites . Compos. Part B: Eng. , 2022 . 233 109647 DOI:10.1016/j.compositesb.2022.109647http://doi.org/10.1016/j.compositesb.2022.109647 .
Liu, M.; Peng, B.; Su, G.; Fang, M . Reactive flame retardants: are they safer replacements . Environ. Sci. Technol. , 2021 . 55 14477 -14479 . DOI:10.1021/acs.est.1c06355http://doi.org/10.1021/acs.est.1c06355 .
Guo, W.; Liang, F.; Chen, S.; Yu, K.; Sun, J.; Pang, Z.; Fei, B . Magnolol-derived thiol-ene photo-polymerized membranes with intrinsic anti-flammability and high transparency . Compos. Part B: Eng. , 2022 . 242 110074 DOI:10.1016/j.compositesb.2022.110074http://doi.org/10.1016/j.compositesb.2022.110074 .
Teng, N.; Yang, S.; Dai, J.; Wang, S.; Zhao, J.; Zhu, J.; Liu, X . Making benzoxazine greener and stronger: renewable resource, microwave irradiation, green solvent, and excellent thermal properties . ACS Sustain. Chem. Eng. , 2019 . 7 8715 -8723 . DOI:10.1021/acssuschemeng.9b00607http://doi.org/10.1021/acssuschemeng.9b00607 .
Qi, Y.; Weng, Z.; Zhang, K.; Wang, J.; Zhang, S.; Liu, C.; Jian, X . Magnolol-based bio-epoxy resin with acceptable glass transition temperature, processability and flame retardancy . Chem. Eng. J. , 2020 . 387 124115 DOI:10.1016/j.cej.2020.124115http://doi.org/10.1016/j.cej.2020.124115 .
Cao, Q.; Weng, Z.; Qi, Y.; Li, J.; Liu, W.; Liu, C.; Zhang, S.; Wei, Z.; Chen, Y.; Jian, X . Achieving higher performances without an external curing agent in natural magnolol-based epoxy resin . Chin. Chem. Lett. , 2022 . 33 2195 -2199 . DOI:10.1016/j.cclet.2021.09.025http://doi.org/10.1016/j.cclet.2021.09.025 .
Yang, H.; Song, L.; Tai, Q.; Wang, X.; Yu, B.; Yuan, Y.; Hu, Y.; Yuen, R. K . Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly(butylene succinate) composites . Polym. degrad. stab. , 2014 . 105 248 -256 . DOI:10.1016/j.polymdegradstab.2014.04.021http://doi.org/10.1016/j.polymdegradstab.2014.04.021 .
Braun, U.; Balabanovich, A. I.; Schartel, B.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J. K.; Altstädt, V . Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites . Polymer , 2006 . 47 8495 -8508 . DOI:10.1016/j.polymer.2006.10.022http://doi.org/10.1016/j.polymer.2006.10.022 .
Luo, Q.; Liu, M.; Xu, Y.; Ionescu, M.; Petrović, Z. S . Thermosetting allyl resins derived from soybean oil . Macromolecules , 2011 . 44 7149 -7157 . DOI:10.1021/ma201366ehttp://doi.org/10.1021/ma201366e .
Jian, R. K.; Ai, Y. F.; Xia, L.; Zhang, Z. P.; Wang, D. Y . Organophosphorus heteroaromatic compound towards mechanically reinforced and low-flammability epoxy resin . Compos. Part B: Eng. , 2019 . 168 458 -466 . DOI:10.1016/j.compositesb.2019.03.052http://doi.org/10.1016/j.compositesb.2019.03.052 .
Ma, C.; Li, J . Synthesis of an organophosphorus flame retardant derived from daidzein and its application in epoxy resin . Compos. Part B: Eng. , 2019 . 178 107471 DOI:10.1016/j.compositesb.2019.107471http://doi.org/10.1016/j.compositesb.2019.107471 .
Yu, M.; Zhang, T.; Li, J.; Tan, J.; Zhang, M.; Zhou, Y.; Zhu, X . Facile synthesis of eugenol-based phosphorus/silicon-containing flame retardant and its performance on fire retardancy of epoxy resin . ACS Appl. Polym. Mater. , 2022 . 4 1794 -1804 . DOI:10.1021/acsapm.1c01622http://doi.org/10.1021/acsapm.1c01622 .
Qi, Y.; Weng, Z.; Kou, Y.; Li, J.; Cao, Q.; Wang, J.; Zhang, S.; Jian, X . Facile synthesis of bio-based tetra-functional epoxy resin and its potential application as high-performance composite resin matrix . Compos. Part B: Eng. , 2021 . 214 108749 DOI:10.1016/j.compositesb.2021.108749http://doi.org/10.1016/j.compositesb.2021.108749 .
Dai, J.; Teng, N.; Liu, J.; Feng, J.; Zhu, J.; Liu, X . Synthesis of bio-based fire-resistant epoxy without addition of flame retardant elements . Compos. Part B: Eng. , 2019 . 179 107523 DOI:10.1016/j.compositesb.2019.107523http://doi.org/10.1016/j.compositesb.2019.107523 .
Liu, X. F.; Xiao, Y. F.; Luo, X.; Liu, B. W.; Guo, D. M.; Chen, L.; Wang, Y. Z . Flame-retardant multifunctional epoxy resin with high performances . Chem. Eng. J. , 2022 . 427 132031 DOI:10.1016/j.cej.2021.132031http://doi.org/10.1016/j.cej.2021.132031 .
Liu, J.; Dai, J.; Wang, S.; Peng, Y.; Cao, L.; Liu, X . Facile synthesis of bio-based reactive flame retardant from vanillin and guaiacol for epoxy resin . Compos. Part B: Eng. , 2020 . 190 107926 DOI:10.1016/j.compositesb.2020.107926http://doi.org/10.1016/j.compositesb.2020.107926 .
Xu, Y.; Yang, W. J.; Zhou, Q. K.; Gao, T. Y.; Xu, G. M.; Tai, Q. L.; Zhu, S. E.; Lu, H. D.; Yuen, R. K. K.; Yang, W.; Wei, C. X . Highly thermo-stable resveratrol-based flame retardant for enhancing mechanical and fire safety properties of epoxy resins . Chem. Eng. J. , 2022 . 450 138475 DOI:10.1016/j.cej.2022.138475http://doi.org/10.1016/j.cej.2022.138475 .
Zhao, D.; Wang, J.; Wang, X. L.; Wang, Y. Z . Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures . Chem. Eng. J. , 2018 . 344 419 -430 . DOI:10.1016/j.cej.2018.03.102http://doi.org/10.1016/j.cej.2018.03.102 .
Wei, C.; Esposito, D.; Tauer, K . Thermal properties of thermoplastic polymers: influence of polymer structure and procedure of radical polymerization . Polym. Degrad. Stabil. , 2016 . 131 157 -168 . DOI:10.1016/j.polymdegradstab.2016.07.016http://doi.org/10.1016/j.polymdegradstab.2016.07.016 .
Ma, X.; Guo, W.; Xu, Z.; Chen, S.; Cheng, J.; Zhang, J.; Miao, M.; Zhang, D . Synthesis of degradable hyperbranched epoxy resins with high tensile, elongation, modulus and low-temperature resistance . Compos. Part B: Eng. , 2020 . 192 108005 DOI:10.1016/j.compositesb.2020.108005http://doi.org/10.1016/j.compositesb.2020.108005 .
Huo, S.; Sai, T.; Ran, S.; Guo, Z.; Fang, Z.; Song, P.; Wang, H . A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins . Compos. Part B: Eng. , 2022 . 234 109701 DOI:10.1016/j.compositesb.2022.109701http://doi.org/10.1016/j.compositesb.2022.109701 .
Fei, X.; Wei, W.; Tang, Y.; Zhu, Y.; Luo, J.; Chen, M.; Liu, X . Simultaneous enhancements in toughness, tensile strength, and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester . Eur. Polym. J. , 2017 . 90 431 -441 . DOI:10.1016/j.eurpolymj.2017.03.022http://doi.org/10.1016/j.eurpolymj.2017.03.022 .
Hu, G.; Zhang, X.; Bu, M.; Lei, C . Toughening and strengthening epoxy resins with a new bi-DOPO biphenyl reactive flame retardant . Eur. Polym. J. , 2022 . 178 111488 DOI:10.1016/j.eurpolymj.2022.111488http://doi.org/10.1016/j.eurpolymj.2022.111488 .
Luo, Q.; Sun, Y.; Yu, B.; Li, C.; Song, J.; Tan, D.; Zhao, J . Synthesis of a novel reactive type flame retardant composed of phenophosphazine ring and maleimide for epoxy resin . Polym. Degrad. Stabil. , 2019 . 165 137 -144 . DOI:10.1016/j.polymdegradstab.2019.05.008http://doi.org/10.1016/j.polymdegradstab.2019.05.008 .
Jian, R. K.; Ai, Y. F.; Xia, L.; Zhao, L. J.; Zhao, H. B . Single component phosphamide-based intumescent flame retardant with potential reactivity towards low flammability and smoke epoxy resins . J. Hazard. Mater. , 2019 . 371 529 -539 . DOI:10.1016/j.jhazmat.2019.03.045http://doi.org/10.1016/j.jhazmat.2019.03.045 .
Liu, Y.; Liu, B.; Sun, Z.; Zhang, H.; Men, Y.; Hu, W.; Shao, Z . Bioinspired mono-component lignin endowing epoxy resin with simultaneously improving flame retardancy and mechanical properties . Compos. Commun. , 2022 . 35 101306 DOI:10.1016/j.coco.2022.101306http://doi.org/10.1016/j.coco.2022.101306 .
Li, S.; Zhao, X.; Liu, X.; Yang, X.; Yu, R.; Zhang, Y.; Huang, W.; Deng, K . Cage–ladder-structure, phosphorus-containing polyhedral oligomeric silsesquinoxanes as promising reactive-type flame retardants for epoxy resin . J. Appl. Polym. Sci. , 2019 . 136 47607 DOI:10.1002/app.47607http://doi.org/10.1002/app.47607 .
Ma, C.; Qian, L.; Li, J . Effect of functional groups of magnolol-based cyclic phosphonate on structure and properties of flame retardant epoxy resin . Polym. Degrad. Stabil. , 2021 . 190 109630 DOI:10.1016/j.polymdegradstab.2021.109630http://doi.org/10.1016/j.polymdegradstab.2021.109630 .
Wang, P.; Yang, F.; Li, L.; Cai, Z . Flame retardancy and mechanical properties of epoxy thermosets modified with a novel DOPO-based oligomer . Polym. Degrad. Stabil. , 2016 . 129 156 -167 . DOI:10.1016/j.polymdegradstab.2016.04.005http://doi.org/10.1016/j.polymdegradstab.2016.04.005 .
Yan, H.; Li, N.; Fang, Z.; Wang, H . Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flame retardant ramie fabrics . J. Appl. Polym. Sci. , 2017 . 134 44795 DOI:10.1002/app.44795http://doi.org/10.1002/app.44795 .
Li, Y. C.; Mannen, S.; Morgan, A. B.; Chang, S.; Yang, Y. H.; Condon, B.; Grunlan, J. C . Intumescent all-polymer multilayer nanocoating capable of extinguishing flame on fabric . Adv. Mater. , 2011 . 23 3926 -3931 . DOI:10.1002/adma.201101871http://doi.org/10.1002/adma.201101871 .
Jiang, G.; Xiao, Y.; Qian, Z.; Yang, Y.; Jia, P.; Song, L.; Hu, Y.; Ma, C.; Gui, Z . A novel phosphorus-, nitrogen- and sulfur-containing macromolecule flame retardant for constructing high-performance epoxy resin composites . Chem. Eng. J. , 2023 . 451 137823 DOI:10.1016/j.cej.2022.137823http://doi.org/10.1016/j.cej.2022.137823 .
Pol, V. G.; Motiei, M.; Gedanken, A.; Calderon-Moreno, J.; Yoshimura, M . Carbon spherules: synthesis, properties and mechanistic elucidation . Carbon , 2004 . 42 111 -116 . DOI:10.1016/j.carbon.2003.10.005http://doi.org/10.1016/j.carbon.2003.10.005 .
Wu, J. N.; Chen, L.; Fu, T.; Zhao, H. B.; Guo, D. M.; Wang, X. L.; Wang, Y. Z . New application for aromatic Schiff base: high efficient flame-retardant and anti-dripping action for polyesters . Chem. Eng. J. , 2018 . 336 622 -632 . DOI:10.1016/j.cej.2017.12.047http://doi.org/10.1016/j.cej.2017.12.047 .
Chen, H. R.; Meng, W. M.; Wang, R. Y.; Chen, F. L.; Li, T.; Wang, D. D.; Wang, F.; Zhu, S. E.; Wei, C. X.; Lu, H. D.; Yang, W . Engineering highly graphitic carbon quantum dots by catalytic dehydrogenation and carbonization of Ti3C2Tx-MXene wrapped polystyrene spheres . Carbon , 2022 . 190 319 -328 . DOI:10.1016/j.carbon.2022.01.028http://doi.org/10.1016/j.carbon.2022.01.028 .
Wang, X.; Xing, W.; Feng, X.; Yu, B.; Song, L.; Hu, Y . Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism . Polym. Chem. , 2014 . 5 1145 -1154 . DOI:10.1039/C3PY00963Ghttp://doi.org/10.1039/C3PY00963G .
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution