a.Beijing National Laboratory for Molecular Sciences, Joint Laboratory of Polymer Sciences and Materials, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
b.University of Chinese Academy of Sciences, Beijing 100049, China
hxguo@iccas.ac.cn
Scan for full text
Fan Wang, Lu-Kun Feng, Ye-Di Li, et al. Statics, Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts. [J/OL]. Chinese Journal of Polymer Science 411-18(2022)
Fan Wang, Lu-Kun Feng, Ye-Di Li, et al. Statics, Dynamics and Linear Viscoelasticity from Dissipative Particle Dynamics Simulation of Entangled Linear Polymer Melts. [J/OL]. Chinese Journal of Polymer Science 411-18(2022) DOI: 10.1007/s10118-023-2931-5.
Dissipative particle dynamics (DPD) with bond uncrossability shows a great potential in studying entangled polymers, however relatively little is known of applicability range of entangled DPD model to be use as a model for ideal chains and properly describe the full dynamics of entangled melts. Therefore, we perform a comprehensive study on structure, dynamics and linear viscoelasticity of a typical DPD entangled model system, semiflexible linear polymer melt. These polymers obey Flory’s ideality hypothesis in chain dimensions, but their local structure exhibits nonideal behavior due to weak correlated hole effect. Both monomer motion and viscoelasticity relaxation reproduce the full pictures as predicted by reptation theory. The stronger chain length dependent diffusion coefficient and relaxation time as well as dynamic moduli are in close agreement with predictions of modern tube model that accounts for additional relaxation mechanisms besides chain reptation. However, an anomalous sub-diffusive center of mass motion is observed both before and after the intermediate reptation regime and the cross-correlation between chains is not negligible even these polymers obey stress-optical law, indicating limitations of the reptation theory. Hence semiflexible linear entangled DPD model can correctly describe statics and dynamics of entangled polymer melts.
Entangled polymer meltsDynamicsLinear viscoelasticityDissipative particle dynamics
Doi, M.; Edwards, S. F., The theory of polymer dynamics. Oxford: Oxford University Press: 1986.
Wittmer, J. P.; Beckrich, P.; Meyer, H.; Cavallo, A.; Johner, A.; Baschnagel, J . Intramolecular long-range correlations in polymer melts: the segmental size distribution and its moments . Phys. Rev. E , 2007 . 76 011803 .
Fritz, D.; Koschke, K.; Harmandaris, V. A.; van der Vegt, N. F. A.; Kremer, K . Multiscale modeling of soft matter: scaling of dynamics . Phys. Chem. Chem. Phys. , 2011 . 13 10412 -10420 . DOI:10.1039/c1cp20247bhttp://doi.org/10.1039/c1cp20247b .
Kremer, K.; Grest, G. S . Dynamics of entangled linear polymer melts: a molecular-dynamics simulation . J. Chem. Phys. , 1990 . 92 5057 -5086 . DOI:10.1063/1.458541http://doi.org/10.1063/1.458541 .
Likhtman, A. E. Viscoelasticity and molecular rheology. Polym. Sci.: A Compr. Ref. Elsevier, 2012, 1, pp. 133-179.
Flory, P. J. Statistical mechanics of chain molecules. Wiley, New York, 1969.
Beckrich, P.; Johner, A.; Semenov, A. N.; Obukhov, S. P.; Benoît, H.; Wittmer, J. P . Intramolecular form factor in dense polymer systems: systematic deviations from the debye formula . Macromolecules , 2007 . 40 3805 -3814 . DOI:10.1021/ma0626113http://doi.org/10.1021/ma0626113 .
Auhl, R.; Everaers, R.; Grest, G. S.; Kremer, K.; Plimpton, S. J . Equilibration of long chain polymer melts in computer simulations . J. Chem. Phys. , 2003 . 119 12718 -12728 . DOI:10.1063/1.1628670http://doi.org/10.1063/1.1628670 .
Yao, P.; Feng, L. K.; Guo, H. X . Combined molecular dynamics simulation and rouse model analysis of static and dynamic properties of unentangled polymer melts with different chain architectures . Chinese J. Polym. Sci. , 2021 . 39 512 -524 . DOI:10.1007/s10118-020-2489-4http://doi.org/10.1007/s10118-020-2489-4 .
Wittmer, J. P.; Beckrich, P.; Johner, A.; Semenov, A. N.; Obukhov, S. P.; Meyer, H.; Baschnagel, J . Why polymer chains in a melt are not random walks . Europhys. Lett. , 2007 . 77 56003 DOI:10.1209/0295-5075/77/56003http://doi.org/10.1209/0295-5075/77/56003 .
Wittmer, J. P.; Meyer, H.; Baschnagel, J.; Johner, A.; Obukhov, S.; Mattioni, L.; Muller, M.; Semenov, A. N . Long range bond-bond correlations in dense polymer solutions . Phys. Rev. Lett. , 2004 . 93 147801 DOI:10.1103/PhysRevLett.93.147801http://doi.org/10.1103/PhysRevLett.93.147801 .
Hsu, H. P.; Kremer, K . Static and dynamic properties of large polymer melts in equilibrium . J. Chem. Phys. , 2016 . 144 154907 DOI:10.1063/1.4946033http://doi.org/10.1063/1.4946033 .
Jabbari-Farouji, S . Static and dynamic scaling behavior of a polymer melt model with triple-well bending potential . J. Polym. Sci.; Part B: Polym. Phys. , 2018 . 56 1376 -1392 . DOI:10.1002/polb.24721http://doi.org/10.1002/polb.24721 .
Harmandaris, V. A.; Adhikari, N. P.; Vegt, N. F. A. v. d.; Kremer, K . Hierarchical modeling of polystyrene: from atomistic to coarse-grained simulations . Macromolecules , 2006 . 39 6708 -6719 . DOI:10.1021/ma0606399http://doi.org/10.1021/ma0606399 .
Svaneborg, C.; Everaers, R . Characteristic time and length scales in melts of kremer-grest bead-spring polymers with wormlike bending stiffness . Macromolecules , 2020 . 53 1917 -1941 . DOI:10.1021/acs.macromol.9b02437http://doi.org/10.1021/acs.macromol.9b02437 .
de Gennes, P. G . Reptation of a polymer chain in the presence of fixed obstacles . J. Chem. Phys. , 1971 . 55 572 -579 . DOI:10.1063/1.1675789http://doi.org/10.1063/1.1675789 .
Doi, M.; Edwards, S. F . Dynamics of concentrated polymer systems. Part 1.—Brownian motion in the equilibrium state . J. Chem. Soc. Faraday Trans. 2 , 1978 . 74 1789 -1801 . DOI:10.1039/f29787401789http://doi.org/10.1039/f29787401789 .
Doi, M.; Edwards, S. F . Dynamics of concentrated polymer systems. Part 2.—Molecular motion under flow . J. Chem. Soc. Faraday Trans. 2 , 1978 . 74 1802 -1817 . DOI:10.1039/f29787401802http://doi.org/10.1039/f29787401802 .
Doi, M.; Edwards, S. F . Dynamics of concentrated polymer systems. Part 3.—The constitutive equation . J. Chem. Soc. Faraday Trans. 2 , 1978 . 74 1818 -1832 . DOI:10.1039/f29787401818http://doi.org/10.1039/f29787401818 .
Doi, M.; Edwards, S. F . Dynamics of concentrated polymer systems. Part 4.—Rheological properties . J. Chem. Soc. Faraday Trans. 2 , 1979 . 75 38 -54 . DOI:10.1039/f29797500038http://doi.org/10.1039/f29797500038 .
Moreira, L. A.; Zhang, G.; Müller, F.; Stuehn, T.; Kremer, K . Direct equilibration and characterization of polymer melts for computer simulations . Macromol. Theory Simul. , 2015 . 24 419 -431 . DOI:10.1002/mats.201500013http://doi.org/10.1002/mats.201500013 .
Wang, Z.; Likhtman, A. E.; Larson, R. G . Segmental dynamics in entangled linear polymer melts . Macromolecules , 2012 . 45 3557 -3570 . DOI:10.1021/ma202759vhttp://doi.org/10.1021/ma202759v .
Hall, K. W.; Sirk, T. W.; Klein, M. L.; Shinoda, W . A coarse-grain model for entangled polyethylene melts and polyethylene crystallization . J. Chem. Phys. , 2019 . 150 244901 DOI:10.1063/1.5092229http://doi.org/10.1063/1.5092229 .
Salerno, K. M.; Agrawal, A.; Perahia, D.; Grest, G. S . Resolving dynamic properties of polymers through coarse-grained computational studies . Phys. Rev. Lett. , 2016 . 116 058302 DOI:10.1103/PhysRevLett.116.058302http://doi.org/10.1103/PhysRevLett.116.058302 .
Peters, B. L.; Salerno, K. M.; Ge, T.; Perahia, D.; Grest, G. S . Viscoelastic response of dispersed entangled polymer melts . Macromolecules , 2020 . 53 8400 -8405 . DOI:10.1021/acs.macromol.0c01403http://doi.org/10.1021/acs.macromol.0c01403 .
Lodge, T. P . Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers . Phys. Rev. Lett. , 1999 . 83 3218 -3221 . DOI:10.1103/PhysRevLett.83.3218http://doi.org/10.1103/PhysRevLett.83.3218 .
Watanabe, H . Viscoelasticity and dynamics of entangled polymers . Prog. Polym. Sci. , 1999 . 24 1253 -1403 . DOI:10.1016/S0079-6700(99)00029-5http://doi.org/10.1016/S0079-6700(99)00029-5 .
McLeish, T. C. B . Tube theory of entangled polymer dynamics . Adv. Phys. , 2002 . 51 1379 -1527 . DOI:10.1080/00018730210153216http://doi.org/10.1080/00018730210153216 .
Feng, L.; Gao, P.; Guo, H . Retardation on blending in the entangled binary blends of linear polyethylene: a molecular dynamics simulation study . Macromolecules , 2019 . 52 3404 -3416 . DOI:10.1021/acs.macromol.9b00047http://doi.org/10.1021/acs.macromol.9b00047 .
Milner, S. T.; McLeish, T. C. B . Reptation and contour-length fluctuations in melts of linear polymers . Phys. Rev. Lett. , 1998 . 81 725 -728 . DOI:10.1103/PhysRevLett.81.725http://doi.org/10.1103/PhysRevLett.81.725 .
M. Doi, Explanation for the 3.4-power law for viscosity of polymeric liquids on the basis of the tube model. J. Polym. Sci. Part B: Polym. Phys. 1983, 21, 667-684.
Likhtman, A. E.; McLeish, T. C. B . Quantitative theory for linear dynamics of linear entangled polymers . Macromolecules , 2002 . 35 6332 -6343 . DOI:10.1021/ma0200219http://doi.org/10.1021/ma0200219 .
Rubinstein, M.; Colby, R. H . Self-consistent theory of polydisperse entangled polymers: linear viscoelasticity of binary blends . J. Chem. Phys. , 1988 . 89 5291 -5306 . DOI:10.1063/1.455620http://doi.org/10.1063/1.455620 .
Viovy, J. L.; Rubinstein, M.; Colby, R. H . Constraint release in polymer melts: tube reorganization versus tube dilation . Macromolecules , 1991 . 24 3587 -3596 . DOI:10.1021/ma00012a020http://doi.org/10.1021/ma00012a020 .
Ylitalo, C. M.; Kornfield, J. A.; Fuller, G. G.; Pearson, D. S . Molecular weight dependence of component dynamics in bidisperse melt rheology . Macromolecules , 1991 . 24 749 -758 . DOI:10.1021/ma00003a019http://doi.org/10.1021/ma00003a019 .
Graf, R.; Heuer, A.; Spiess, H. W . Chain-order effects in polymer melts probed by 1H double-quantum NMR spectroscopy . Phys. Rev. Lett. , 1998 . 80 5738 -5741 . DOI:10.1103/PhysRevLett.80.5738http://doi.org/10.1103/PhysRevLett.80.5738 .
Cao, J.; Likhtman, A. E . Time-dependent orientation coupling in equilibrium polymer melts . Phys. Rev. Lett. , 2010 . 104 207801 DOI:10.1103/PhysRevLett.104.207801http://doi.org/10.1103/PhysRevLett.104.207801 .
Likhtman, A. E.; Sukumaran, S. K.; Ramirez, J . Linear viscoelasticity from molecular dynamics simulation of entangled polymers . Macromolecules , 2007 . 40 6748 -6757 . DOI:10.1021/ma070843bhttp://doi.org/10.1021/ma070843b .
Masubuchi, Y.; Pandey, A.; Amamoto, Y.; Uneyama, T . Orientational cross correlations between entangled branch polymers in primitive chain network simulations . J. Chem. Phys. , 2017 . 147 184903 DOI:10.1063/1.5001960http://doi.org/10.1063/1.5001960 .
Chappa, V. C.; Morse, D. C.; Zippelius, A.; Muller, M . Translationally invariant slip-spring model for entangled polymer dynamics . Phys Rev Lett , 2012 . 109 148302 DOI:10.1103/PhysRevLett.109.148302http://doi.org/10.1103/PhysRevLett.109.148302 .
Sgouros, A. P.; Megariotis, G.; Theodorou, D. N . Slip-spring model for the linear and nonlinear viscoelastic properties of molten polyethylene derived from atomistic simulations . Macromolecules , 2017 . 50 4524 -4541 . DOI:10.1021/acs.macromol.7b00694http://doi.org/10.1021/acs.macromol.7b00694 .
Masubuchi, Y.; Uneyama, T . Comparison among multi-chain models for entangled polymer dynamics . Soft Matter , 2018 . 14 5986 -5994 . DOI:10.1039/C8SM00948Ahttp://doi.org/10.1039/C8SM00948A .
Behbahani, A. F.; Schneider, L.; Rissanou, A.; Chazirakis, A.; Bačová, P.; Jana, P. K.; Li, W.; Doxastakis, M.; Polińska, P.; Burkhart, C.; Müller, M.; Harmandaris, V. A . Dynamics and rheology of polymer melts via hierarchical atomistic, coarse-grained, and slip-spring simulations . Macromolecules , 2021 . 54 2740 -2762 . DOI:10.1021/acs.macromol.0c02583http://doi.org/10.1021/acs.macromol.0c02583 .
Nikunen, P.; Vattulainen, I.; Karttunen, M . Reptational dynamics in dissipative particle dynamics simulations of polymer melts . Phys. Rev. E , 2007 . 75 036713 DOI:10.1103/PhysRevE.75.036713http://doi.org/10.1103/PhysRevE.75.036713 .
Kumar, S.; Larson, R. G . Brownian dynamics simulations of flexible polymers with spring–spring repulsions . J. Chem. Phys. , 2001 . 114 6937 -6941 . DOI:10.1063/1.1358860http://doi.org/10.1063/1.1358860 .
Padding, J. T.; Briels, W. J . Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242 . J. Chem. Phys. , 2001 . 115 2846 -2859 . DOI:10.1063/1.1385162http://doi.org/10.1063/1.1385162 .
Ouyang, Y.; Hao, L.; Ma, Y.; Guo, H . Dissipative particle dynamics thermostat: a novel thermostat for molecular dynamics simulation of liquid crystals with Gay-Berne potential . Sci. China Chem. , 2014 . 58 694 -707. .
Ruan, Y.; Lu, Y.; An, L.; Wang, Z. G . Nonlinear rheological behaviors in polymer melts after step shear . Macromolecules , 2019 . 52 4103 -4110 . DOI:10.1021/acs.macromol.9b00392http://doi.org/10.1021/acs.macromol.9b00392 .
Ruan, Y.; Lu, Y.; An, L.; Wang, Z. G . Shear banding in entangled polymers: stress plateau, banding location, and lever rule . ACS Macro Lett. , 2021 . 10 1517 -1523 . DOI:10.1021/acsmacrolett.1c00518http://doi.org/10.1021/acsmacrolett.1c00518 .
Mohagheghi, M.; Khomami, B . Molecular processes leading to shear banding in well entangled polymeric melts . ACS Macro Lett. , 2015 . 4 684 -688 . DOI:10.1021/acsmacrolett.5b00238http://doi.org/10.1021/acsmacrolett.5b00238 .
Mohagheghi, M.; Khomami, B . Elucidating the flow-microstructure coupling in the entangled polymer melts. Part I: single chain dynamics in shear flow . J. Rheol. , 2016 . 60 849 -859 . DOI:10.1122/1.4961481http://doi.org/10.1122/1.4961481 .
Mohagheghi, M.; Khomami, B . Elucidating the flow-microstructure coupling in entangled polymer melts. Part II: molecular mechanism of shear banding . J. Rheol. , 2016 . 60 861 -872 . DOI:10.1122/1.4961525http://doi.org/10.1122/1.4961525 .
Mohagheghi, M.; Khomami, B . Molecularly based criteria for shear banding in transient flow of entangled polymeric fluids . Phys. Rev. E , 2016 . 93 062606 DOI:10.1103/PhysRevE.93.062606http://doi.org/10.1103/PhysRevE.93.062606 .
Hoogerbrugge, P. J.; Koelman, J. M. V. A . Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics . EPL , 1992 . 19 155 -160 . DOI:10.1209/0295-5075/19/3/001http://doi.org/10.1209/0295-5075/19/3/001 .
Español, P.; Warren, P . Statistical mechanics of dissipative particle dynamics . EPL , 1995 . 30 191 -196 . DOI:10.1209/0295-5075/30/4/001http://doi.org/10.1209/0295-5075/30/4/001 .
Groot, R. D.; Madden, T. J . Dynamic simulation of diblock copolymer microphase separation . J. Chem. Phys. , 1998 . 108 8713 -8724 . DOI:10.1063/1.476300http://doi.org/10.1063/1.476300 .
Guskova, O. A.; Seidel, C . Mesoscopic simulations of morphological transitions of stimuli-responsive diblock copolymer brushes . Macromolecules , 2011 . 44 671 -682 . DOI:10.1021/ma102349khttp://doi.org/10.1021/ma102349k .
Xu, D.; Shi, R.; Sun, Z. Y.; Lu, Z. Y . Mechanism of periodic field driven self-assembly process . J. Chem. Phys. , 2021 . 154 144904 DOI:10.1063/5.0048072http://doi.org/10.1063/5.0048072 .
Guo, F.; Li, K.; Wu, J.; Wang, Y.; Zhang, L . Sliding dynamics of ring chain on a knotted polymer in rotaxane . Polymer , 2021 . 235 124226 DOI:10.1016/j.polymer.2021.124226http://doi.org/10.1016/j.polymer.2021.124226 .
Bai, Z.; Guo, H . Interfacial properties and phase transitions in ternary symmetric homopolymer-copolymer blends: a dissipative particle dynamics study . Polymer , 2013 . 54 2146 -2157 . DOI:10.1016/j.polymer.2013.02.011http://doi.org/10.1016/j.polymer.2013.02.011 .
Zhang, Z. M.; Guo, H. X . A computer simulation study of the anchoring transitions driven by rod–coil amphiphiles at aqueous-liquid crystal interfaces . Soft Matter , 2012 . 8 5168 -5174 . DOI:10.1039/c2sm07342khttp://doi.org/10.1039/c2sm07342k .
Sumer, Z.; Striolo, A . Manipulating molecular order in nematic liquid crystal capillary bridges via surfactant adsorption: guiding principles from dissipative particle dynamics simulations . Phys. Chem. Chem. Phys. , 2018 . 20 30514 -30524 . DOI:10.1039/C8CP04492Ahttp://doi.org/10.1039/C8CP04492A .
Liu, Y.; Widmer-Cooper, A . A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions . J. Chem. Phys. , 2021 . 154 104120 DOI:10.1063/5.0041285http://doi.org/10.1063/5.0041285 .
Zhou, Y.; Huang, M.; Lu, T.; Guo, H . Nanorods with different surface properties in directing the compatibilization behavior and the morphological transition of immiscible polymer blends in both shear and shear-free conditions . Macromolecules , 2018 . 51 3135 -3148 . DOI:10.1021/acs.macromol.7b02624http://doi.org/10.1021/acs.macromol.7b02624 .
Huang, M.; Guo, H . The intriguing ordering and compatibilizing performance of Janus nanoparticles with various shapes and different dividing surface designs in immiscible polymer blends . Soft Matter , 2013 . 9 7356 -7368 . DOI:10.1039/c3sm50957ehttp://doi.org/10.1039/c3sm50957e .
Chang, H. Y.; Lin, Y. L.; Sheng, Y. J.; Tsao, H. K . Structural characteristics and fusion pathways of onion-like multilayered polymersome formed by amphiphilic comb-like graft copolymers . Macromolecules , 2013 . 46 5644 -5656 . DOI:10.1021/ma400667nhttp://doi.org/10.1021/ma400667n .
Wu, S.; Guo, H . Simulation study of protein-mediated vesicle fusion . J. Phys. Chem. , 2009 . 113 589 -591 . DOI:10.1021/jp808776zhttp://doi.org/10.1021/jp808776z .
Goujon, F.; Malfreyt, P.; Tildesley, D. J . Mesoscopic simulation of entanglements using dissipative particle dynamics: application to polymer brushes . J. Chem. Phys. , 2008 . 129 034902 DOI:10.1063/1.2954022http://doi.org/10.1063/1.2954022 .
Plimpton, S . Fast parallel algorithms for short-range molecular dynamics . J. Comput. Phys. , 1995 . 117 1 -19 . DOI:10.1006/jcph.1995.1039http://doi.org/10.1006/jcph.1995.1039 .
Shanbhag, S.; Kröger, M . Primitive path networks generated by annealing and geometrical methods: insights into differences . Macromolecules , 2007 . 40 2897 -2903 . DOI:10.1021/ma062457khttp://doi.org/10.1021/ma062457k .
Karayiannis, N.; Kroger, M . Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: methodology and performance . Int. J. Mol. Sci. , 2009 . 10 5054 -89 . DOI:10.3390/ijms10115054http://doi.org/10.3390/ijms10115054 .
Hoy, R. S.; Foteinopoulou, K.; Kroger, M . Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length . Phys. Rev. E , 2009 . 80 031803 .
Fujita, H.; Norisuye, T . Some topics concerning the radius of gyration of linear polymer molecules in solution . J. Chem. Phys. , 1970 . 52 1115 -1120 . DOI:10.1063/1.1673106http://doi.org/10.1063/1.1673106 .
Lhuillier, D . A simple model for polymeric fractals in a good solvent and an improved version of the Flory approximation . J. Phys. France , 1988 . 49 705 -710 . DOI:10.1051/jphys:01988004905070500http://doi.org/10.1051/jphys:01988004905070500 .
León, S.; van der Vegt, N.; Delle Site, L.; Kremer, K . Bisphenol A polycarbonate: entanglement analysis from Coarse-grained MD simulations . Macromolecules , 2005 . 38 8078 -8092 . DOI:10.1021/ma050943mhttp://doi.org/10.1021/ma050943m .
Semenov, A. N.; Obukhov, S. P . Fluctuation-induced long-range interactions in polymer systems . J. Phys.: Condens. Matter , 2005 . 17 S1747 -S1775 . DOI:10.1088/0953-8984/17/20/007http://doi.org/10.1088/0953-8984/17/20/007 .
Obukhov, S. P.; Semenov, A. N . Long-range interactions in polymer melts: the anti-Casimir effect . Phys. Rev. Lett. , 2005 . 95 038305 DOI:10.1103/PhysRevLett.95.038305http://doi.org/10.1103/PhysRevLett.95.038305 .
Hsu, H. P . Lattice Monte Carlo simulations of polymer melts . J. Chem. Phys. , 2014 . 141 234901 DOI:10.1063/1.4903506http://doi.org/10.1063/1.4903506 .
Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K . Molecular dynamics simulation study of nonconcatenated ring polymers in a melt. II. Dynamics . J. Chem. Phys. , 2011 . 134 204905 DOI:10.1063/1.3587138http://doi.org/10.1063/1.3587138 .
Smith, G. D.; Paul, W.; Monkenbusch, M.; Richter, D . A comparison of neutron scattering studies and computer simulations of polymer melts . Chem. Phys. , 2000 . 261 61 -74 . DOI:10.1016/S0301-0104(00)00228-7http://doi.org/10.1016/S0301-0104(00)00228-7 .
Paul, W.; Smith, G. D . Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory . Rep. Prog. Phys. , 2004 . 67 1117 -1185 . DOI:10.1088/0034-4885/67/7/R03http://doi.org/10.1088/0034-4885/67/7/R03 .
Farago, J.; Meyer, H.; Semenov, A. N . Anomalous diffusion of a polymer chain in an unentangled melt . Phys. Rev. Lett. , 2011 . 107 178301 DOI:10.1103/PhysRevLett.107.178301http://doi.org/10.1103/PhysRevLett.107.178301 .
Farago, J.; Semenov, A. N.; Meyer, H.; Wittmer, J. P.; Johner, A.; Baschnagel, J . Mode-coupling approach to polymer diffusion in an unentangled melt. I. The effect of density fluctuations . Phys. Rev. E , 2012 . 85 051806 DOI:10.1103/PhysRevE.85.051806http://doi.org/10.1103/PhysRevE.85.051806 .
Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N . Mode-coupling approach to polymer diffusion in an unentangled melt. II. The effect of viscoelastic hydrodynamic interactions . Phys. Rev. E , 2012 . 85 051807 DOI:10.1103/PhysRevE.85.051807http://doi.org/10.1103/PhysRevE.85.051807 .
Farago, J.; Meyer, H.; Baschnagel, J.; Semenov, A. N . Hydrodynamic and viscoelastic effects in polymer diffusion . J. Phys.: Cond. Matter , 2012 . 24 284105 DOI:10.1088/0953-8984/24/28/284105http://doi.org/10.1088/0953-8984/24/28/284105 .
Soddemann, T.; Dunweg, B.; Kremer, K . Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations . Phys. Rev. E , 2003 . 68 046702 DOI:10.1103/PhysRevE.68.046702http://doi.org/10.1103/PhysRevE.68.046702 .
Harmandaris, V. A.; Mavrantzas, V. G.; Theodorou, D. N.; Kröger, M.; Ramírez, J.; Öttinger, H. C.; Vlassopoulos, D . Crossover from the rouse to the entangled polymer melt regime: signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments . Macromolecules , 2003 . 36 1376 -1387 . DOI:10.1021/ma020009ghttp://doi.org/10.1021/ma020009g .
Tsolou, G.; Mavrantzas, V. G.; Theodorou, D. N . Detailed atomistic molecular dynamics simulation of cis-1,4-poly(butadiene) . Macromolecules , 2005 . 38 1478 -1492 . DOI:10.1021/ma0491210http://doi.org/10.1021/ma0491210 .
Yu, W.; Li, R.; Zhou, C . Rheology and phase separation of polymer blends with weak dynamic asymmetry . Polymer , 2011 . 52 2693 -2700 . DOI:10.1016/j.polymer.2011.04.024http://doi.org/10.1016/j.polymer.2011.04.024 .
Watanabe, H.; Chen, Q.; Kawasaki, Y.; Matsumiya, Y.; Inoue, T.; Urakawa, O . Entanglement dynamics in miscible polyisoprene/poly(p-tert-butylstyrene) blends . Macromolecules , 2011 . 44 1570 -1584 . DOI:10.1021/ma102596bhttp://doi.org/10.1021/ma102596b .
Liu, C. Y.; Keunings, R.; Bailly, C . Do deviations from reptation scaling of entangled polymer melts result from single- or many-chain effects . Phys. Rev. Lett. , 2006 . 97 246001 DOI:10.1103/PhysRevLett.97.246001http://doi.org/10.1103/PhysRevLett.97.246001 .
Wang, S. Q . Chain dynamics in entangled polymers: diffusion versus rheology and their comparison . J. Polym. Sci., Part B: Polym. Phys. , 2003 . 41 1589 -1604 . DOI:10.1002/polb.10524http://doi.org/10.1002/polb.10524 .
Yohji K.; W. H.; Takashi U . A note for Kohlrausch-Williams-Watts relaxation function . Nihon Reoroji Gakk. , 2011 . 39 127 -131 . DOI:10.1678/rheology.39.127http://doi.org/10.1678/rheology.39.127 .
Wu, Z.; Milano, G.; Muller-Plathe, F . Combination of hybrid particle-field molecular dynamics and slip-springs for the efficient simulation of Coarse-grained polymer models: static and dynamic properties of polystyrene melts . J. Chem. Theory Comput. , 2021 . 17 474 -487 . DOI:10.1021/acs.jctc.0c00954http://doi.org/10.1021/acs.jctc.0c00954 .
Colby, R. H.; Fetters, L. J.; Graessley, W. W . Melt viscosity-molecular weight relationship for linear polymers . Macromolecules , 1987 . 20 2226 -2237 . DOI:10.1021/ma00175a030http://doi.org/10.1021/ma00175a030 .
Doi, M . Molecular rheology of concentrated polymer systems. I . J. Polym. Sci. Polym. Phys. Ed. , 1980 . 18 1005 -1020. .
Maurel, G.; Schnell, B.; Goujon, F.; Couty, M.; Malfreyt, P . Multiscale modeling approach toward the prediction of viscoelastic properties of polymers . J. Chem. Theory Comput. , 2012 . 8 4570 -4579 . DOI:10.1021/ct300582yhttp://doi.org/10.1021/ct300582y .
Boudara, V. A. H.; Read, D. J.; Ramírez, J . Reptate rheology software: toolkit for the analysis of theories and experiments . J. Rheol. , 2020 . 64 709 -722. .
Li, W.; Jana, P. K.; Behbahani, A. F.; Kritikos, G.; Schneider, L.; Polińska, P.; Burkhart, C.; Harmandaris, V. A.; Müller, M.; Doxastakis, M . Dynamics of long entangled polyisoprene melts via multiscale modeling . Macromolecules , 2021 . 54 8693 -8713 . DOI:10.1021/acs.macromol.1c01376http://doi.org/10.1021/acs.macromol.1c01376 .
Schneider, J.; Fleck, F.; Karimi-Varzaneh, H. A.; Müller-Plathe, F . Simulation of elastomers by slip-spring dissipative particle dynamics . Macromolecules , 2021 . 54 5155 -5166 . DOI:10.1021/acs.macromol.1c00567http://doi.org/10.1021/acs.macromol.1c00567 .
Ramirez, J.; Sukumaran, S. K.; Likhtman, A. E . Significance of cross correlations in the stress relaxation of polymer melts . J. Chem. Phys. , 2007 . 126 244904 DOI:10.1063/1.2746867http://doi.org/10.1063/1.2746867 .
Masubuchi, Y.; Sukumaran, S. K . Cross-correlation contributions to orientational relaxations in primitive chain network simulations . Nihon Reoroji Gakk. , 2013 . 41 1 -6 . DOI:10.1678/rheology.41.1http://doi.org/10.1678/rheology.41.1 .
Masubuchi, Y.; Amamoto, Y . Effect of osmotic force on orientational cross-correlation in primitive chain network simulation . Nihon Reoroji Gakk. , 2016 . 44 219 -222 . DOI:10.1678/rheology.44.219http://doi.org/10.1678/rheology.44.219 .
0
Views
10
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution