1.Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
guojie.zhang@gzhu.edu.cn
Scan for full text
Yao-Xing Chen, Xi-Qin Cai, Guo-Jie Zhang. Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane. [J/OL]. Chinese Journal of Polymer Science 411-11(2022)
Yao-Xing Chen, Xi-Qin Cai, Guo-Jie Zhang. Topological Catenation Enhances Elastic Modulus of Single Linear Polycatenane. [J/OL]. Chinese Journal of Polymer Science 411-11(2022) DOI: 10.1007/s10118-023-2902-x.
Entropic elasticity of single chains underlies many fundamental aspects of mechanical properties of polymers, such as high elasticity of polymer networks and viscoelasticity of polymer liquids. On the other hand, single chain elasticity is further rooted in chain connectivity. Recently, mechanically interlocked polymers, including polycatenanes and polyrotaxanes, which are formed by connecting their building blocks (cyclic and linear chains) through topological bonds (,e.g., entanglements), emerge as a conceptually new kind of polymers. In this work, we employ computer simulations to study linear elasticity of single linear polycatenane (or [,n,]catenane), in which ,n, rings are interlocked through catenation into a chain of linear architecture. Aim of this work is to illuminate the specific role of catenation topology in the elastic moduli of linear polycatenanes by comparing with those of their [,n,]bonded-ring counterparts, which are formed by connecting the same number of rings but via covalent bonds. Simulation results lead to a conclusion that topological catenation makes [,n,]catenanes exhibit larger elastic moduli than their linear and [n],bonded-ring counterparts,i.e., larger elastic moduli in the case of [,n,]catenanes. Furthermore, it is revealed that those [,n,]catenanes composed of a smaller number of rings (smaller ,n,) possesses larger elastic moduli than others of the same total chain lengths. Molecular mechanisms of these findings are discussed based on conformational entropy due to topological constraints.
Single chain elasticityPolycatenaneComputer simulation
Flory, P. J. in Principles of Polymer Chemistry. Cornell University Press, Ithaca, 1953.
de Gennes, P. G. in Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, 1979.
Doi, M.; Edwards, S. F. in The Theory of Polymer Dynamics. Oxford University Press, New York, 1986.
Grosberg, A. Y.; Khokhlov, A. R. in Statistical Physics of Macromolecules. AIP, New York, 1994.
Rubinstein, M.; Colby, R. H. in Polymer Physics. Oxford University Press, New York, 2003.
Wang, Z. G . 50th Anniversary perspective: polymer conformation: a pedagogical review . Macromolecules , 2017 . 50 9073 -9114. .
Treloar, L. R. G. in The Physics of Rubber Elasticity. Oxford University Press, New York, 1975.
Wojtecki, R. J.; Meador, M. A.; Rowan. S. J . Using the dynamic bond to access macroscopically responsive structurally dynamic polymers . Nat. Mater. , 2011 . 10 14 DOI:10.1038/nmat2891http://doi.org/10.1038/nmat2891 .
Lehn. J. M . Perspectives in chemistry aspects of adaptive chemistry and materials . Angew. Chem. Int. Ed. , 2015 . 54 3276 -3289 . DOI:10.1002/anie.201409399http://doi.org/10.1002/anie.201409399 .
Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T . Dynamic covalent polymer networks: from old chemistry to modern day innovations . Adv. Mater. , 2017 . 29 1606100 DOI:10.1002/adma.201606100http://doi.org/10.1002/adma.201606100 .
Chakma, P.; Konkolewicz, D . Dynamic covalent bonds in polymeric materials . Angew. Chem. Int. Ed. , 2019 . 58 9682 -9695 . DOI:10.1002/anie.201813525http://doi.org/10.1002/anie.201813525 .
Aida, T.; Meijer, E. W.; Stupp, S. I . Functional supramolecular polymers . Science , 2012 . 335 813 DOI:10.1126/science.1205962http://doi.org/10.1126/science.1205962 .
Yang, L.; Tan, X.; Wang, Z.; Zhang, X . Supramolecular polymers: historical development, preparation, characterization, and functions . Chem. Rev. , 2015 . 115 7196 -7239 . DOI:10.1021/cr500633bhttp://doi.org/10.1021/cr500633b .
Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R . Supramolecular biomaterials . Nat. Mater. , 2016 . 15 13 DOI:10.1038/nmat4474http://doi.org/10.1038/nmat4474 .
Aida, T.; Meijer, E. W . Supramolecular polymers – we’ve come full circle . Isr. J. Chem. , 2020 . 60 33 -47 . DOI:10.1002/ijch.201900165http://doi.org/10.1002/ijch.201900165 .
Niu, Z.; Gibson, H. W . Polycatenanes . Chem. Rev. , 2009 . 109 6024 -6046 . DOI:10.1021/cr900002hhttp://doi.org/10.1021/cr900002h .
Wu, Q.; Rauscher, P. M.; Lang, X.; Wojtecki, R. J.; de Pablo, J. J.; Hore, M. J. A.; Rowan, S. J . Poly[n]catenanes: synthesis of molecular interlocked chains . Science , 2017 . 358 1434 -1439 . DOI:10.1126/science.aap7675http://doi.org/10.1126/science.aap7675 .
Rauscher, P. M.; Rowan, S. J.; de Pablo, J. J . Topological effects in isolated poly[n]catenanes: molecular dynamics simulations and Rouse mode analysis . ACS Macro Lett. , 2018 . 7 938 -943 . DOI:10.1021/acsmacrolett.8b00393http://doi.org/10.1021/acsmacrolett.8b00393 .
Wu, Z. T.; Zhou, J. J . Mechanical Properties of Interlocked-ring Polymers: A Molecular Dynamics Simulation Study . Chinese J. Polym. Sci. , 2019 . 37 1298 -1304 . DOI:10.1007/s10118-019-2279-zhttp://doi.org/10.1007/s10118-019-2279-z .
Rauscher, P. M.; Schweizer, K. S.; Rowan, S. J.; de Pablo, J. J . Thermodynamics and structure of poly[n]catenane melts . Macromolecules , 2020 . 53 3390 -3408 . DOI:10.1021/acs.macromol.9b02706http://doi.org/10.1021/acs.macromol.9b02706 .
Rauscher, P. M.; Schweizer, K. S.; Rowan, S. J.; de Pablo, J. J . Dynamics of poly[n]catenane melts . J. Chem. Phys. , 2020 . 152 214901 DOI:10.1063/5.0007573http://doi.org/10.1063/5.0007573 .
Zhang, G. J.; Zhang, J. G . Topological catenation induced swelling of ring polymers revealed by molecular dynamics simulation . Polymer , 2020 . 196 122475 DOI:10.1016/j.polymer.2020.122475http://doi.org/10.1016/j.polymer.2020.122475 .
Lei, H. Q.; Zhang, J. G.; Wang, L. M.; Zhang, G. J . Dimensional and shape properties of a single linear polycatenane: effect of catenation topology . Polymer , 2021 . 212 123160 DOI:10.1016/j.polymer.2020.123160http://doi.org/10.1016/j.polymer.2020.123160 .
Gibson, H. W.; Bheda, M. C.; Engen, P. T . Rotaxanes. catenanes, polyrotaxanes, polycatenanes and related materials . Prog. Polym. Sci. , 1994 . 19 843 -945 . DOI:10.1016/0079-6700(94)90034-5http://doi.org/10.1016/0079-6700(94)90034-5 .
Huang, F.; Gibson, H. W . Polypseudorotaxanes and polyrotaxanes . Prog. Polym. Sci. , 2005 . 30 982 -1018 . DOI:10.1016/j.progpolymsci.2005.07.003http://doi.org/10.1016/j.progpolymsci.2005.07.003 .
Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y . Polymericrotaxanes . Chem. Rev. , 2009 . 109 5974 -6023. .
Arunachalam, M.; Gibson, H. W . Recent developments in polypseudorotaxanes and polyrotaxanes . Prog. Polym. Sci. , 2014 . 39 1043 -1073 . DOI:10.1016/j.progpolymsci.2013.11.005http://doi.org/10.1016/j.progpolymsci.2013.11.005 .
Hart, L. F.; Hertzog, J. E.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J . Material properties and applications of mechanically interlocked polymers . Nat. Rev. Mater. , 2021 . 6 508 -530 . DOI:10.1038/s41578-021-00278-zhttp://doi.org/10.1038/s41578-021-00278-z .
Hudson, B.; Vinograd, J . Catenated circular DNA molecules in Hela cell mitochondria . Nature , 1967 . 216 647 -652 . DOI:10.1038/216647a0http://doi.org/10.1038/216647a0 .
Clayton, D. A.; Vinograd, J . Circular dimer and catenate forms of mitochondrial DNA, n-Human leukaemic leucocytes . Nature , 1967 . 216 652 -657 . DOI:10.1038/216652a0http://doi.org/10.1038/216652a0 .
Liang, C.; Mislow, K . Knots in proteins . J. Am. Chem. Soc. , 1994 . 116 11189 -11190 . DOI:10.1021/ja00103a057http://doi.org/10.1021/ja00103a057 .
Wikoff, W. R.; Liljas, L.; Duda, R. L.; Tsuruta, H.; Hendrix, R. W.; Johnson, J. E . Topologically linked protein rings in the bacteriophage HK97 capsid . Science , 2000 . 289 2129 -2133 . DOI:10.1126/science.289.5487.2129http://doi.org/10.1126/science.289.5487.2129 .
Zhou, H. X . Effect of catenation on protein folding stability . J. Am. Chem. Soc. , 2003 . 125 9280 -9281 . DOI:10.1021/ja0355978http://doi.org/10.1021/ja0355978 .
Lee, B. I.; Kim, K. H.; Park, S. J.; Eom, S. H.; Song, H. K.; Suh, S. W . Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair . EMBO J. , 2004 . 23 2029 -2038 . DOI:10.1038/sj.emboj.7600222http://doi.org/10.1038/sj.emboj.7600222 .
Cao, Z.; Roszak, A. W.; Gourlay, L. J.; Lindsay, J. G.; Isaacs, N. W . Bovine mitochondrial peroxiredoxin III forms a two-ring catenane . Structure , 2005 . 13 1661 -1664 . DOI:10.1016/j.str.2005.07.021http://doi.org/10.1016/j.str.2005.07.021 .
Boutz, D. R.; Cascio, D.; Whitelegge, J.; Perry, L. J.; Yeates, T. O . Discovery of a thermophilic protein complex stabilized by topologically interlinked chains . J. Mol. Biol. , 2007 . 368 1332 -1344 . DOI:10.1016/j.jmb.2007.02.078http://doi.org/10.1016/j.jmb.2007.02.078 .
Zimanyi, C. M.; Ando, N.; Brignole, E. J.; Asturias, F. J.; Stubbe, J.; Drennan, C. L . Tangled up in knots: structures of inactivated forms of E. coli class Ia ribonucleotide reductase . Structure , 2012 . 20 1374 -1383 . DOI:10.1016/j.str.2012.05.009http://doi.org/10.1016/j.str.2012.05.009 .
van Eldijk, M. B.; van Leeuwen, I.; Mikhailov, V. A.; Neijenhuis, L.; Harhangi, H. R.; van Hest, J. C. M.; Jetten, M. S. M.; den Camp, H. J. M. O.; Robinson, C. V.; Mecinovic, J . Evidence that the catenane form of CS2 hydrolase is not an artefact . Chem. Commun. , 2013 . 49 7770 DOI:10.1039/c3cc43219jhttp://doi.org/10.1039/c3cc43219j .
Aguirre, C.; Goto, Y.; Costas, M . Thermal and chemical unfolding pathways of PaSdsA1 sulfatase. A homo-dimer with topologically interlinked chains . FEBS Lett. , 2016 . 590 202 -214. .
Pieters, B. J.; van Eldijk, M. B.; Nolte, R. J.; Mecinovic, J . Natural supramolecular protein assemblies . Chem. Soc. Rev. , 2016 . 45 24 -39 . DOI:10.1039/C5CS00157Ahttp://doi.org/10.1039/C5CS00157A .
Dominguez-Gil, T.; Molina, R.; Dik, D. A.; Spink, E.; Mobashery, S.; Hermoso, J. A . X-ray structure of catenated lytic transglycosylase SltB1 . Biochemistry , 2017 . 56 6317 -6320 . DOI:10.1021/acs.biochem.7b00932http://doi.org/10.1021/acs.biochem.7b00932 .
Wang, X. W.; Zhang, W. B . Protein catenation enhances both the stability and activity of folded structural domains . Angew. Chem. Int. Ed. , 2017 . 56 13985 -13989 . DOI:10.1002/anie.201705194http://doi.org/10.1002/anie.201705194 .
Zhao, Y.; Cieplak, M . Stability of structurally entangled protein dimers . Proteins , 2018 . 86 945 -955 . DOI:10.1002/prot.25526http://doi.org/10.1002/prot.25526 .
Hoffman, B. D.; Grashoff, C.; Schwartz. M. A . Dynamic molecular processes mediate cellular mechanotransduction . Nature , 2011 . 475 316 DOI:10.1038/nature10316http://doi.org/10.1038/nature10316 .
Hsua, H. P. and Binder, K . Stretching semiflexible polymer chains: evidence for the importance of excluded volume effects from Monte Carlo simulation . J. Chem. Phys. , 2012 . 136 024901 .
Saleh, O. A . Perspective: single polymer mechanics across the force regimes . J. Chem. Phys , 2015 . 142 194902 DOI:10.1063/1.4921348http://doi.org/10.1063/1.4921348 .
Pincus, P . Excluded volume effects and stretched polymer chains . Macromolecules , 1976 . 9 386 DOI:10.1021/ma60051a002http://doi.org/10.1021/ma60051a002 .
Marko, J. F.; Siggia, E. D . Stretching DNA . Macromolecules , 1995 . 28 8759 DOI:10.1021/ma00130a008http://doi.org/10.1021/ma00130a008 .
Bustamante, C.; Marko, J. F.; Siggia, E. D.; Smith, S . Entropic elasticity of X-phage DNA . Science , 1994 . 265 1599 DOI:10.1126/science.8079175http://doi.org/10.1126/science.8079175 .
Dutta, S. and Sing, C. E . Two stretching regimes in the elasticity of bottlebrush polymers . Macromolecules , 2020 . 53 6946 -6955 . DOI:10.1021/acs.macromol.0c01184http://doi.org/10.1021/acs.macromol.0c01184 .
Pakula, T.; Jeszka, K . Simulation of single complex macromolecules. 1. Structure and dynamics of catenanes . Macromolecules , 1999 . 32 6821 -6830 . DOI:10.1021/ma990248chttp://doi.org/10.1021/ma990248c .
Liu, G.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J . Polycatenanes: synthesis, characterization, and physical understanding . Chem. Soc. Rev. , 2022 . 51 4928 DOI:10.1039/D2CS00256Fhttp://doi.org/10.1039/D2CS00256F .
Li, J.; Gu, F.; Yao, N.; Wang, H.; Liao, Q . Double asymptotic structures of topologically interlocked molecules . ACS Macro Lett. , 2021 . 10 1094 -1098 . DOI:10.1021/acsmacrolett.1c00259http://doi.org/10.1021/acsmacrolett.1c00259 .
Chiarantoni, P. and Micheletti, C . Effect of ring rigidity on the statics and dynamics of linear catenanes . Macromolecules , 2022 . 55 4523 -4532 . DOI:10.1021/acs.macromol.1c02542http://doi.org/10.1021/acs.macromol.1c02542 .
Hagita, K.; Murashima, T.; and Sakata, N . Mathematical classification and rheological properties of ring catenane structures . Macromolecules , 2022 . 55 166 -177 . DOI:10.1021/acs.macromol.1c01705http://doi.org/10.1021/acs.macromol.1c01705 .
Kremer, K.; Grest, G. S . Dynamics of entangled linear polymer melts: a molecular-dynamics simulation . J. Chem. Phys. , 1990 . 92 5057 DOI:10.1063/1.458541http://doi.org/10.1063/1.458541 .
Zhang, G. J.; Moreira, L. A.; Stuehn, T.; Daoulas, K. Ch.; Kremer, K . Equilibration of high molecular weight polymer melts:a hierarchical strategy . ACS Macro Lett. , 2014 . 3 198 -203 . DOI:10.1021/mz5000015http://doi.org/10.1021/mz5000015 .
Zhang, G. J.; Stuehn, T.; Daoulas, K. Ch.; Kremer, K . Communication:one size fits all: Equilibrating chemically different polymer liquids through universal long-wavelength description . J. Chem. Phys. , 2015 . 142 221102 DOI:10.1063/1.4922538http://doi.org/10.1063/1.4922538 .
Moreira, L. A.; Zhang, G. J.; Muller, F.; Stuehn, T.; Kremer, K . Direct equilibration and characterization of polymer melts for computer simulations . Macromol. Theory Simul. , 2015 . 24 419 -431 . DOI:10.1002/mats.201500013http://doi.org/10.1002/mats.201500013 .
Zhang, G. J.; Chazirakis, A.; Harmandaris, V. A.; Stuehn, T.; Daoulas, K. Ch.; Kremer, K . Hierarchical modelling of polystyrene melts: from soft blobs to atomistic resolution . Soft Matter , 2019 . 15 289 DOI:10.1039/C8SM01830Hhttp://doi.org/10.1039/C8SM01830H .
Smrek, J.; Kremer, K.; Rosa, A . Threading of unconcatenated ring polymers at high concentrations: double-folded vs time-equilibrated structures . ACS Macro Lett. , 2019 . 8 155 -160 . DOI:10.1021/acsmacrolett.8b00828http://doi.org/10.1021/acsmacrolett.8b00828 .
Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K . Molecular dynamics simulation study of non-concatenated ring polymers in a melt. I. Statics . J. Chem. Phys. , 2011 . 134 204904 DOI:10.1063/1.3587137http://doi.org/10.1063/1.3587137 .
Halverson, J. D. ; Lee, W. B. ; Grest, G. S. ; Grosberg, A. Y. ; Kremer, K . Molecular dynamics simulation study of non-concatenated ring polymers in a melt. II. Dynamics . J. Chem. Phys. , 2011 . 134 204905 DOI:10.1063/1.3587138http://doi.org/10.1063/1.3587138 .
Cai, X. ; Liang, C. ; Liu, H. ; Zhang, G. J . Conformation and structure of ring polymers in semidilute solutions: A molecular dynamics simulation study . Polymer , 2022 . 253 124953 DOI:10.1016/j.polymer.2022.124953http://doi.org/10.1016/j.polymer.2022.124953 .
Recently, Dutta and Benetatos considered an interesting question, whether results from these two ensemble simulations for single chain elasticity, i.e., constant-force simulation and constant-extension simulation are equivalent, finally concluded that there is an inequivalence of the constant-force and the constant-extension ensembles for studying single chain elasticity of polymers . A possible reason underlying this finding could be lack of a well-defined thermodynamic limit for the single chain systems . while it is not a problem in the conventional macroscopic systems. Dutta, S. ; Benetatos, P. Soft Matter , 2018 . 14 6857 .
Strobl, G. in The Physics of Polymers. Springer, 2007.
0
Views
9
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution