1.State Key Lab of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
wbhu@nju.edu.cn
Scan for full text
Wen-Bing Hu. Polymer Features in Crystallization. [J]. Chinese Journal of Polymer Science 40(6):545-555(2022)
Wen-Bing Hu. Polymer Features in Crystallization. [J]. Chinese Journal of Polymer Science 40(6):545-555(2022) DOI: 10.1007/s10118-022-2710-8.
Macromolecular features in polymer crystallization offer the products high performances in the mechanical properties and specific functions.
This review firstly gives an overview on the importance of crystallization in natural and synthetic polymers/macromolecules. Then it introduces the typical features that have been raised by chain-like macromolecules in crystallization, including anisotropic interactions in the thermodynamic driving forces, chain folding in the crystal morphologies, chemical confinement in the copolymer crystallization, and mechanical enhancement in the stretching processes. Four features separately cover the thermodynamics and the kinetics of polymer crystallization, as well as the crystallinity and the mechanical properties of semicrystalline polymers. The review ends up with how these features enhance specific functions of crystalline polymers, which demonstrates polymer crystallization as a challenging yet promising field in the future.
CrystallizationMacromoleculesPropertyFunction
Holme, D . A description of a property of caoutchouc, or Indian rubber; with some reflections on the cause of the elasticity of this substance . Philos. Mag. , 1806 . 24 39 -43 . DOI:10.1080/14786440608563329http://doi.org/10.1080/14786440608563329 .
https://www.thoughtco.com/history-of-plastics-1992322
Katz, J. R. Röntgenspektrographische Untersuchungen am gedehnten Kautschuk und ihre mögliche Bedeutung für das Problem der Dehnungseigenschaften dieser Substanz. Naturwissenschaften 1925, 19, 410-416.
Mark, H.; von Susich, G . Ueber geregelte Mizellarstrukturen von Kautschuk . Kolloid Z. , 1928 . 46 11 -21 . DOI:10.1007/BF01423666http://doi.org/10.1007/BF01423666 .
Staudinger, H . Über polymerisation . Ber. dtsch. Chem. Ges. A/B , 1920 . 53 1073 -1085 . DOI:10.1002/cber.19200530627http://doi.org/10.1002/cber.19200530627 .
Astbury, W. T.; Woods, H. J . The X-ray interpretation of the structure and elastic properties of hair keratin . Nature , 1930 . 126 913 -914 . DOI:10.1038/126913b0http://doi.org/10.1038/126913b0 .
https://www.thoughtco.com/wallace-carothers-history-of-nylon-1992197
Storks, K. H . An electron diffraction examination of some linear high polymers . J. Am. Chem. Soc. , 1938 . 60 1753 -1761 . DOI:10.1021/ja01275a013http://doi.org/10.1021/ja01275a013 .
Abitz, W.; Gerngross, O.; Herrmann, K . Zur rontgenographischen strukturforschung des gelatinemicells . Naturwissenschaften , 1930 . 18 754 -755. .
Keller, A . A note on single crystals in polymers: evidence for a folded chain configuration . Philos. Mag. , 1957 . 2 1171 -1175 . DOI:10.1080/14786435708242746http://doi.org/10.1080/14786435708242746 .
Geil, P. H. Polymer Single Crystals. Interscience Publishers, New York, 1963.
Wunderlich, B. Macromolecular physics. Vol. 1: Crystal structure, morphology, defects. Academic, New York, 1973.
Wunderlich, B. Macromolecular Physics. Vol. 2: Crystal nucleation, growth, annealing. Academic Press, New York, 1976.
Tadokoro, H. Structure of crystalline polymers. Wiley-Interscience, New York, 1979.
Wunderlich, B. Macromolecular physics. Vol. 3: Crystal Melting. Academic, New York, 1980.
Bassett, D. C. Principles of polymer morphology. Cambridge University Press, Cambridge, 1981.
Woodward, A. E. Atlas of polymer morphology. Hanser, Munich, 1989.
Schultz, J. M. Polymer crystallization. Oxford University Press, Oxford, 2001.
Mandelkern, L. Crystallization of polymers. Vol. 1: Equilibrium concepts. Cambridge University Press, Cambridge, 2004.
Mandelkern, L. Crystallization of polymers. Vol. 2: Kinetics and mechanisms. Cambridge University Press, Cambridge, 2004.
Cheng, S. Z. D. Phase transitions in polymers, the role of metastable states. Elsevier, Berlin, 2008.
de Rosa, C.; Auriemma, F. Crystals and crystallinity in polymers: diffraction analysis of ordered and disordered crystals. John Wiley & Sons, Hoboken, 2014.
Hu, W. B. Principles of polymer crystallization (in Chinese). Chemical Technology Publisher, Beijing, 2015.
Flory, P. J. Principle of polymer chemistry. Cornell University Press, Ithaca, 1953.
de Gennes, P. G. Scaling concept in polymer physics. Cornell University, Ithaca, 1979.
Doi, M.; Edwards, S. F. The theory of polymer dynamics. Clarendon Press, Oxford, 1986.
Rubinstein, M.; Colby, R. H. Polymer physics. Oxford University Press, Oxford, 2003.
Sperling, L. H. Introduction to Physical Polymer Science. Wiley-Interscience, New York, 1986.
Gedde, U. W. Polymer physics. Springer, Dordrecht, 1995.
Strobl, G. The physics of polymers: concepts for understanding their structures and behavior. Springer, Berlin, 1996.
Hu, W. B. Polymer physics: a molecular approach. Springer-Verlag, Vienna, 2013.
https://www.webofscience.com/wos/alldb/basic-search
Li, C. Y . The rise of semicrystalline polymers and why are they still interesting . Polymer , 2020 . 211 123150 DOI:10.1016/j.polymer.2020.123150http://doi.org/10.1016/j.polymer.2020.123150 .
Hu, W. B . Growth rate equations of lamellar polymer crystals . Polym. Cryst. , 2018 . 1 e25831 .
Meyer, K. H.; Mark, H . Über den Bau des krystallisierten Anteils der Cellulose . Berichte der deutschen chemischen Gesellschaft (A and B Series) , 1928 . 61 593 -614 . DOI:10.1002/cber.19280610402http://doi.org/10.1002/cber.19280610402 .
Natta, G.; Corradini, P . Structure and properties of isotactic polypropylene . Nuovo Cimento Suppl. , 1960 . 15 40 -67 . DOI:10.1007/BF02731859http://doi.org/10.1007/BF02731859 .
Hu, W. B.; Frenkel, D. Polymer crystallization driven by anisotropic interactions. In: Allegra G. (eds) Interphases and Mesophases in Polymer Crystallization III. Advances in Polymer Science, Vol. 191. Springer, Berlin, Heidelberg, 2005.
Hu, W. B . The melting point of chain polymers . J. Chem. Phys. , 2000 . 113 3901 -3908 . DOI:10.1063/1.1288002http://doi.org/10.1063/1.1288002 .
Hu, W. B.; Mathot, V. B. F.; Frenkel, D . Lattice model study of the thermodynamic interplay of polymer crystallization and liquid-liquid demixing . J. Chem. Phys. , 2003 . 118 10343 -10348 . DOI:10.1063/1.1572462http://doi.org/10.1063/1.1572462 .
Hu, W. B . Statistical thermodynamics of polymer crystallization . Front. Chem. China , 2010 . 5 29 -32 . DOI:10.1007/s11458-009-0110-zhttp://doi.org/10.1007/s11458-009-0110-z .
Hu, W. B.; Zha, L. Y. Theoretical Aspects of Polymer Crystallization. In: Mitchell G., Tojeira A. (eds) Controlling the morphology of polymers. Springer, Cham, 2016.
Hu, W. B.; Zha, L. Y. Thermodynamics and kinetics of polymer crystallization. In Polymer morphology. Wiley, New York, 2016.
Hu, W. B.; Mathot, V. B. F . Liquid-liquid demixing in a polymer blend driven solely by the component-selective crystallizability . J. Chem. Phys. , 2003 . 119 10953 -10957 . DOI:10.1063/1.1619935http://doi.org/10.1063/1.1619935 .
Hu, W. B. Interplay of liquid-liquid demixing and polymer crystallization. In: Hu, W. B.; Shi, A. C. (eds) Understanding soft condensed matter via modeling and computation. World Scientific Publisher, Singapore, 2010. p. 179.
Liu, Q.; Gao, H. H.; Zha, L. Y.; Hu, Z. M.; Ma, Y.; Yu, M. H.; Chen, L.; Hu, W. B . Tuning bio-inspired skin-core structure of nascent fiber via interplay of polymer phase transitions . Phys. Chem. Chem. Phys. , 2014 . 16 15152 -15157 . DOI:10.1039/C4CP00792Ahttp://doi.org/10.1039/C4CP00792A .
http://www.biologie.uni-hamburg.de/b-online/e17/cona.htm
Pennings, A. J . Bundle-like nucleation and longitudinal growth of fibrillar polymer crystals from flowing solutions . J. Polym. Sci., Part C: Polym. Symp. , 1977 . 59 55 -86. .
Khoury, F.; Passaglia, E. The morphology of crystalline synthetic polymers, in Treatise on solid state chemistry. N. B. Hannay, Editor, Plenum Press, New York, 1976, Vol. 3, pp: 335—496.
Hu, W. B . The physics of polymer chain-folding . Phys. Reps. , 2018 . 747 1 -50 . DOI:10.1016/j.physrep.2018.04.004http://doi.org/10.1016/j.physrep.2018.04.004 .
Hu, W. B. Intramolecular Crystal Nucleation. In: Reiter, G.; Strobl G. R. (eds) Progress in understanding of polymer crystallization. Lect. Notes Phys., Vol. 714. Springer, Berlin, 2007.
Hu, W. B.; Frenkel, D.; Mathot, V. B. F . Intramolecular nucleation model for polymer crystallization . Macromolecules , 2003 . 36 8178 -8183 . DOI:10.1021/ma0344285http://doi.org/10.1021/ma0344285 .
Hu, W. B . Molecular segregation in polymer melt crystallization: simulation evidence and unified-scheme interpretation . Macromolecules , 2005 . 38 8712 -8718 . DOI:10.1021/ma050988nhttp://doi.org/10.1021/ma050988n .
Ren, Y. J.; Ma, A. Q.; Li, J.; Jiang, X. M.; Ma, Y.; Toda, A.; Hu, W. B . Melting of polymer single crystals studied by dynamic Monte Carlo simulations . Eur. Phys. J. E , 2010 . 33 189 -202 . DOI:10.1140/epje/i2010-10661-8http://doi.org/10.1140/epje/i2010-10661-8 .
Jiang, X. M.; Reiter, G.; Hu, W. B . How chain-folding crystal growth determines thermodynamic stability of polymer crystals . J. Phys. Chem. B , 2016 . 120 566 -571 . DOI:10.1021/acs.jpcb.5b09324http://doi.org/10.1021/acs.jpcb.5b09324 .
Xu, J. J.; Ma, Y.; Hu, W . B.; Rehahn, M.; Reiter, G. Cloning polymer single crystals via self-seeding . Nat. Mater. , 2009 . 8 348 -353 . DOI:10.1038/nmat2405http://doi.org/10.1038/nmat2405 .
Reiter, G . Some unique features of polymer crystallization . Chem. Soc. Rev. , 2014 . 43 2055 -2065 . DOI:10.1039/C3CS60306Ghttp://doi.org/10.1039/C3CS60306G .
Hu, W. B; Mathot, V. B. F.; Alamo, R. G.; Gao, H. H., Chen, X. Crystallization of Statistical Copolymers. In: Auriemma F., Alfonso G., de Rosa C. (eds) Polymer Crystallization I. Adv. Polym. Sci., Vol. 276. Springer, Cham, 2016.
Ma, Y.; Li, C.; Cai, T.; Li, J.; Hu, W.-B . Role of block junctions in the interplay of phase transitions of two-component polymeric systems . J. Phys. Chem. B , 2011 . 115 8853 -8857 . DOI:10.1021/jp201665uhttp://doi.org/10.1021/jp201665u .
Zha, L.; Hu, W. B. Molecular simulations of confined crystallization in microdomains of diblock copolymers. Prog. Polym. Sci. 2016, 54-55, 232-258.
Michell, M.; Müller, A. J. Confined crystallization of polymeric materials. Prog. Polym. Sci. 2016, 54-55, 183-213.
Liu, G.; Müller, A. J.; Wang, D . Confined crystallization of polymers within nanopores . Acc. Chem. Res. , 2021 . 54 3028 -3038 . DOI:10.1021/acs.accounts.1c00242http://doi.org/10.1021/acs.accounts.1c00242 .
de Gennes, P. G . Weak segregation in molten statistical copolymers . Macromol. Symp. , 2003 . 191 7 -10 . DOI:10.1002/masy.200390016http://doi.org/10.1002/masy.200390016 .
Hu, W. B.; Mathot, V. B. F.; Frenkel, D . Phase transitions of bulk statistical copolymers studied by dynamic Monte Carlo simulations . Macromolecules , 2003 . 36 2165 -2175 . DOI:10.1021/ma0213854http://doi.org/10.1021/ma0213854 .
Hu, W. B.; Mathot, V. B. F . Sequence-length segregation during crystallization and melting of a model homogeneous copolymer . Macromolecules , 2004 . 37 673 -675 . DOI:10.1021/ma034755chttp://doi.org/10.1021/ma034755c .
Tao, H. C.; Gao, F.; Gao, H. H.; Hu, W. B . Free energy change of crystallization in single copolymers . Mol. Phys. , 2018 . 116 3020 -3026 . DOI:10.1080/00268976.2018.1481541http://doi.org/10.1080/00268976.2018.1481541 .
Keating, M. Y.; McCord, E. F . Evaluation of the comonomer distribution in ethylene copolymers using DSC fractionation . Thermochim. Acta , 1994 . 243 129 -145 . DOI:10.1016/0040-6031(94)85048-8http://doi.org/10.1016/0040-6031(94)85048-8 .
Müller, A. J.; Arnal, M. L . Thermal fractionation of polymers . Prog. Polym. Sci. , 2005 . 30 559 -603 . DOI:10.1016/j.progpolymsci.2005.03.001http://doi.org/10.1016/j.progpolymsci.2005.03.001 .
Reid, B. O.; Vadlamudi, M.; Mamun, A.; Janani, H.; Gao, H. H.; Hu, W. B.; Alamo, R . Strong memory effect of crystallization above the equilibrium melting point of random copolymers . Macromolecules , 2013 . 46 6485 -6497 . DOI:10.1021/ma400839dhttp://doi.org/10.1021/ma400839d .
Gao, H. H.; Vadlamudi, M; Alamo, R.; Hu, W. B . Monte Carlo simulations of strong memory effect of crystallization in random copolymers . Macromolecules , 2013 . 46 6498 -6506 . DOI:10.1021/ma400842hhttp://doi.org/10.1021/ma400842h .
Wild, L.; Glöckner, G. Temperature rising elution fractionation. In: Separation techniques thermodynamics liquid crystal polymers. Adv. Polym. Sci., Vol. 98. Springer, Berlin, 1990.
Xu, J. T. Feng, L. X . Application of temperature rising elution fractionation in polyolefins . Eur. Polym. J. , 2000 . 36 867 -878 . DOI:10.1016/S0014-3057(99)00143-3http://doi.org/10.1016/S0014-3057(99)00143-3 .
Flory, P. J. Thermodynamics of crystallization in high polymers. I . Crystallization induced by stretching . J. Chem. Phys. , 1947 . 15 397 -408 . DOI:10.1063/1.1746537http://doi.org/10.1063/1.1746537 .
Nie, Y. J.; Gao, H. H.; Wu, Y. X.; Hu, W. B . Thermodynamics of strain-induced crystallization of random copolymers . Soft Matter , 2014 . 10 343 -347 . DOI:10.1039/C3SM52465Ehttp://doi.org/10.1039/C3SM52465E .
Zha, L. Y.; Wu, Y. X.; Hu, W. B . Multi-component thermodynamics of strain-induced polymer crystallization . J. Phys. Chem. B , 2016 . 120 6890 -6896 . DOI:10.1021/acs.jpcb.6b05404http://doi.org/10.1021/acs.jpcb.6b05404 .
Cui, K.; Ma, Z.; Tian, N.; Su, F.; Liu, D.; Li, L . Multiscale and multistep ordering of flow-induced nucleation of polymers . Chem. Rev. , 2018 . 118 1840 -1886 . DOI:10.1021/acs.chemrev.7b00500http://doi.org/10.1021/acs.chemrev.7b00500 .
Wang, S. Q . The tip of iceberg in nonlinear polymer rheology: Entangled liquids are “solids” . J. Polym. Sci., Part B: Polym. Phys. , 2008 . 46 2660 -2665 . DOI:10.1002/polb.21588http://doi.org/10.1002/polb.21588 .
Nie, Y. J.; Zhao, Y. F.; Matsuba, G.; Hu, W. B . Shish-Kebab crystallites initiated by shear fracture in bulk polymers . Macromolecules , 2018 . 51 480 -487 . DOI:10.1021/acs.macromol.7b02357http://doi.org/10.1021/acs.macromol.7b02357 .
Rhoades, A. M.; Gohn, A. M.; Seo, J.; Androsch, R.; Colby, R. H . Sensitivity of polymer crystallization to shear at low and high supercooling of the melt . Macromolecules , 2018 . 51 2785 -2795 . DOI:10.1021/acs.macromol.8b00195http://doi.org/10.1021/acs.macromol.8b00195 .
Nie, Y. J.; Gao, H. H.; Yu, M. H.; Hu, Z. M.; Reiter, G.; Hu, W. B . Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers . Polymer , 2013 . 54 3402 -3407 . DOI:10.1016/j.polymer.2013.04.047http://doi.org/10.1016/j.polymer.2013.04.047 .
Nie, Y. J.; Gao, H. H.; Hu, W. B . Variable trends of chain-folding in separate stages of strain-induced crystallization of bulk polymers . Polymer , 2014 . 55 1267 -1272 . DOI:10.1016/j.polymer.2014.01.034http://doi.org/10.1016/j.polymer.2014.01.034 .
Men, Y.; Rieger, J.; Strobl, G . Role of the entangled amorphous network in tensile deformation of semicrystalline polymers . Phys. Rev. Lett. , 2003 . 91 095502 .
Liu, K.; Song, Y.; Feng, W.; Liu, N. N.; Zhang, W. K.; Zhang, X . Extracting a single polyethylene oxide chain from a single crystal by a combination of atomic force microscopy imaging and single molecule force spectroscopy: toward the investigation of molecular interactions in their condensed states . J. Am. Chem. Soc. , 2011 . 133 3226 -3229 . DOI:10.1021/ja108022hhttp://doi.org/10.1021/ja108022h .
Porter, D.; Vollrath, F . Silk as a biomimetic ideal for structural polymers . Adv. Mater. , 2009 . 21 487 -492 . DOI:10.1002/adma.200801332http://doi.org/10.1002/adma.200801332 .
Smith, P.; Lemstra, P. J.; Pijper, J. P. L.; Kiel, A. M . Ultra-drawing of high molecular weight polyethylene cast from solution . Colloid Polym. Sci. , 1981 . 259 1070 -1080 . DOI:10.1007/BF01524892http://doi.org/10.1007/BF01524892 .
Sawatari, C.; Matsuo, M . Elastic modulus of polyethylene in the crystal chain direction as measured by X-ray diffraction . Macromolecules , 1986 . 19 2036 -2040 . DOI:10.1021/ma00161a042http://doi.org/10.1021/ma00161a042 .
Lovinger, A. J . Ferroelectric polymers . Science , 1983 . 220 1115 -1121 . DOI:10.1126/science.220.1115http://doi.org/10.1126/science.220.1115 .
Wei, J.; Zhu, L . Intrinsic polymer dielectrics for high energy density and low loss electric energy storage . Prog. Polym. Sci. , 2020 . 106 101254 DOI:10.1016/j.progpolymsci.2020.101254http://doi.org/10.1016/j.progpolymsci.2020.101254 .
Katsouras, I.; Asadi, K.; Li, M.; van Driel T. B.; Kjaer, K. S.; Zhao, D.; Lenz, T.; Gu, Y.; Blom, P. W. M.; Damjanovic, D.; Nielsen, M. M.; de Leeuw, D. M . The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride) . Nat. Mater. , 2016 . 15 78 -84 . DOI:10.1038/nmat4423http://doi.org/10.1038/nmat4423 .
Liu, Y., Aziguli, H., Zhang, B., Xu, W., Lu, W.; Bernholc, J.; Wang, Q . Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary . Nature , 2018 . 562 96 -100 . DOI:10.1038/s41586-018-0550-zhttp://doi.org/10.1038/s41586-018-0550-z .
Liu, Y.; Zhang, B.; Xu, W.;Haibibu, A.; Han, Z.; Lu, W.; Bernholc, J.; Wang, Q . Chirality-induced relaxor properties in ferroelectric polymers . Nat. Mater. , 2020 . 19 1169 -1174 . DOI:10.1038/s41563-020-0724-6http://doi.org/10.1038/s41563-020-0724-6 .
Chen, X.; Qin, H.; Qian, X.; Zhu, W.; Li, B.; Zhang, B.; Lu, W.; Li, R.; Zhang, S.; Zhu, L.; Santos, F. D. Bernholc, J.; Zhang, Q. M . Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field . Science , 2022 . 375 1418 -1422 . DOI:10.1126/science.abn0936http://doi.org/10.1126/science.abn0936 .
Neese, B.; Chu, B.; Lu, S. G.; Wang, Y.; Furman, E.; Zhang, Q. M . Large electrocaloric effect in ferroelectric polymers near room temperature . Science , 2008 . 321 821 -823 . DOI:10.1126/science.1159655http://doi.org/10.1126/science.1159655 .
Qian, X.; Han, D.; Zheng, L.; Chen, J.; Tyagi, M.; Li, Q.; Du, F.; Zheng, S.; Huang, X.; Zhang, S.; Shi, J.; Huang, H.; Shi, X.; Chen, J.; Qin, H.; Bernholc, J.; Chen, X.; Chen, L.; Hong, L.; Zhang, Q. M . High-entropy polymer produces a giant electrocaloric effect at low fields . Nature , 2021 . 600 664 -669 . DOI:10.1038/s41586-021-04189-5http://doi.org/10.1038/s41586-021-04189-5 .
Wang, R.; Fan, S.; Xiao, Y.; Gao, E.; Jiang, N.; Li, Y.; Mou, L.; Shen, Y.; Zhao, W.; Li, S . Torsional refrigeration by twisted, coiled, and supercoiled fibers . Science , 2019 . 366 216 -221 . DOI:10.1126/science.aax6182http://doi.org/10.1126/science.aax6182 .
Greibich, F.; Schwödiauer, R.; Mao, G.; Wirthl, D.; Drack, M.; Baumgartner, R.; Kogler, A.; Stadlbauer, J.; Bauer, S.; Arnold, N.; Kaltenbrunner, M . Elastocaloric heat pump with specific cooling power of 20. 9 W g–1 exploiting snap-through instability and strain-induced crystallization . Nat. Energy , 2021 . 6 260 -267 . DOI:10.1038/s41560-020-00770-whttp://doi.org/10.1038/s41560-020-00770-w .
Henry, A.; Chen, G . High thermal conductivity of single polyethylene chains using molecular dynamics simulations . Phys. Rev. Lett. , 2008 . 101 235502 DOI:10.1103/PhysRevLett.101.235502http://doi.org/10.1103/PhysRevLett.101.235502 .
Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G . Polyethylene nanofibres with very high thermal conductivities . Nat. Nanotech. , 2010 . 5 251 -255 . DOI:10.1038/nnano.2010.27http://doi.org/10.1038/nnano.2010.27 .
Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.; Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; Li, X.; Chen, G . Nanostructured polymer films with metal-like thermal conductivity . Nat. Commun. , 2019 . 10 1771 DOI:10.1038/s41467-019-09697-7http://doi.org/10.1038/s41467-019-09697-7 .
Song, H.; Fang, Z.; Jin, B.; Pan, P.; Zhao, Q.; Xie, T . Synergetic chemical and physical programming for reversible shape memory effect in a dynamic covalent network with two crystalline phases . ACS Macro Lett. , 2019 . 8 682 -686 . DOI:10.1021/acsmacrolett.9b00291http://doi.org/10.1021/acsmacrolett.9b00291 .
Lei, C.; Xu, R.; Tian, Z.; Huang, H.; Xie, J.; Zhu, X . Stretching-induced uniform micropores formation: an in situ SAXS/WAXS study . Macromolecules , 2018 . 51 3433 -3442 . DOI:10.1021/acs.macromol.7b02335http://doi.org/10.1021/acs.macromol.7b02335 .
Kang, G. D.; Cao, Y. M . Application and modification of poly(vinylidene fluoride) (PVDF) membranes – a review . J. Membr. Sci. , 2014 . 463 145 -165 . DOI:10.1016/j.memsci.2014.03.055http://doi.org/10.1016/j.memsci.2014.03.055 .
Wang, H.; Keum, J. K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski. A . Confined crystallization of polyethylene oxide in nanolayer assemblies . Science , 2009 . 323 757 -760 . DOI:10.1126/science.1164601http://doi.org/10.1126/science.1164601 .
Cheng, S.; Smith, D. M.; Li, C. Y . How does nanoscale crystalline structure affect ion transport in solid polymer electrolytes . Macromolecules , 2014 . 47 3978 -3986 . DOI:10.1021/ma500734qhttp://doi.org/10.1021/ma500734q .
Yang, X.; Loos, J.; Veenstra, S. C.; Verhees, W. J.; Wienk, M. M.; Kroon, J. M.; Michels, M. A.; Janssen, R. A . Nanoscale morphology of high-performance polymer solar cells . Nano Lett. , 2005 . 5 579 -583 . DOI:10.1021/nl048120ihttp://doi.org/10.1021/nl048120i .
Ding, Z.; Liu, D.; Zhao, K.; Han, Y . Optimizing morphology to trade off charge transport and mechanical properties of stretchable conjugated polymer films . Macromolecules , 2021 . 54 3907 -3926 . DOI:10.1021/acs.macromol.1c00268http://doi.org/10.1021/acs.macromol.1c00268 .
Sin, L. T.; Rahmat, A. R.; Rahman, W. A. Polylactic acid: PLA biopolymer technology and applications. Elsevier, Oxford, 2012.
Hartl, F . U.; Bracher, A.; Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis . Nature , 2011 . 475 324 -332 . DOI:10.1038/nature10317http://doi.org/10.1038/nature10317 .
Chen, J. F.; Zha, L. Y.; Hu, W. B . Effect of solvent selectivity on crystallization-driven fibril growth kinetics of diblock copolymers . Polymer , 2018 . 138 359 -362 . DOI:10.1016/j.polymer.2018.01.074http://doi.org/10.1016/j.polymer.2018.01.074 .
Sevigny, J.; Chiao, P.; Bussière, T.; Weinreb, P, H.; Williams, L.; Maier, M.; Dunstan, R.; Salloway, S.; Chen, T.; Ling, Y.; O’Gorman, J.; Qian, F.; Arastu, M.; Li, M.; Chollate, S.; Brennan, M. S.; Quintero-Monzon, O.; Scannevin, R. H.; Moore Arnold, H.; Engber, T.; Rhodes, K.; Ferrero, J.; Hang, Y.; Mikulskis, A.; Grimm, J.; Hock, C.; Nitsch, R. M.; Sandrock, A . The antibody aducanumab reduces Aβ plaques in Alzheimer's disease . Nature , 2016 . 537 50 -56 . DOI:10.1038/nature19323http://doi.org/10.1038/nature19323 .
0
Views
53
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution