a.Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
b.Department of Chemistry, Wuhan University, Wuhan 430072, China
lizhen@whu.edu.cn
Scan for full text
Man-Man Fang, Jie Yang, Zhen Li. Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. [J]. Chinese Journal of Polymer Science 37(4):383-393(2019)
Man-Man Fang, Jie Yang, Zhen Li. Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. [J]. Chinese Journal of Polymer Science 37(4):383-393(2019) DOI: 10.1007/s10118-019-2218-z.
Room temperature phosphorescence (RTP) has drawn increasing attention for its great potential in practical applications. Polymers with large molecular weights and long chains tend to form coil, which can endow them with a high degree of possible rigidity and result in the much restricted non-radiative transition. Also, the intertwined structure of polymers could isolate the oxygen and humidity effectively, thus reducing the consumption of triplet excitons. In consideration of these points, organic polymers would be another kind of ideal platform to realize RTP effect. This short review summarized the design strategy of the purely organic room temperature phosphorescence polymers, mainly focusing on the building forms of polymers and the corresponding inherent mechanisms, and also gives some outlooks on the further exploration of this field at the end of this paper.
Room temperature phosphorescencePolymersNon-radiative transition
Mukherjee, S.; Thilagar, P . Recent advances in purely organic phosphorescent materials . Chem. Commun. , 2015 . 51 10988 -11003 . DOI:10.1039/C5CC03114Ahttp://doi.org/10.1039/C5CC03114A .
Xu, S.; Chen, R.; Zheng, C.; Huang, W . Excited state modulation for organic afterglow: Materials and applications . Adv. Mater. , 2016 . 28 9920 -9940 . DOI:10.1002/adma.201602604http://doi.org/10.1002/adma.201602604 .
Hirata, S . Recent advances in materials with room-temperature phosphorescence: Photophysics for triplet exciton stabilization . Adv. Optical Mater. , 2017 . 1700116 DOI:10.1002/adom.201700116http://doi.org/10.1002/adom.201700116 .
Kabe, R.; Notsuka, N.; Yoshida, K.; Adachi, C . Afterglow organic light-emitting diode . Adv. Mater. , 2016 . 28 655 -660 . DOI:10.1002/adma.201504321http://doi.org/10.1002/adma.201504321 .
Yang, J. Zhen, X.; Wang, B.; Gao, X.; Ren, Z.; Wang, J.; Xie, J.; Li. J.; Peng, Q.; Pu, K.; Li, Z . The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens . Nat. Commun. , 2018 . 9 840 DOI:10.1038/s41467-018-03236-6http://doi.org/10.1038/s41467-018-03236-6 .
Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z . Elucidating the excited state of mechanoluminescence in organic luminogens with room-temperature phosphorescence . Angew. Chem. Int. Ed. , 2017 . 56 15299 -15303 . DOI:10.1002/anie.201708119http://doi.org/10.1002/anie.201708119 .
Chai, Z.; Wang, C.; Wang, J.; Liu, F.; Xie, Y.; Zhang, Y.; Li, J.; Li, Q.; Li, Z . Abnormal room temperature phosphorescence of purely organic boron-containing compounds: The relationship between the emissive behavior and the molecular packing, and the potential related applications . Chem. Sci. , 2017 . 8 8336 -8344 . DOI:10.1039/C7SC04098Ahttp://doi.org/10.1039/C7SC04098A .
Xie, Y.; Ge, Y.; Peng, Q.; Li, C.; Li, Q.; Li, Z . How the molecular packing affects the room temperature phosphorescence in pure organic compounds: Ingenious molecular design, detailed crystal analysis, and rational theoretical calculations . Adv. Mater. , 2017 . 1606829 DOI:10.1002/adma.201606829http://doi.org/10.1002/adma.201606829 .
Xie, Y.; Li, Z . Thermally activated delayed fluorescent polymers . J. Polym. Sci., Part A: Polym. Chem. , 2017 . 55 575 -584 . DOI:10.1002/pola.28448http://doi.org/10.1002/pola.28448 .
Fang, X.; Yan, D . White-light emission and tunable room temperature phosphorescence of dibenzothiophene . Sci. China Chem. , 2018 . 61 397 -401 . DOI:10.1007/s11426-017-9183-9http://doi.org/10.1007/s11426-017-9183-9 .
Li, K.; Zhao, L.; Gong, Y.; Yuan, W.; Zhang, Y . A gelable pure organic luminogen with fluorescence-phosphorescence dual emission . Sci. China Chem. , 2017 . 60 806 -812 . DOI:10.1007/s11426-016-0460-8http://doi.org/10.1007/s11426-016-0460-8 .
Mutlu, S.; Watanab, K.; Takahara, S.; Arsu, N . Thioxanthone—anthracene-9-carboxylic acid as radical photoinitiator in the presence of atmospheric air . J. Polym. Sci., Part A: Polym. Chem. , 2018 . 56 1878 -1883 . DOI:10.1002/pola.29072http://doi.org/10.1002/pola.29072 .
Kimura, T.; Watanabe, S.; Sawada, S.; Shibasaki, Y.; Oishi, Y . Preparation and optical properties of polyimide films linked with porphyrinato Pd(II) and Pt(II) complexes through a triazine ring and application toward oxygen sensors . J. Polym. Sci., Part A: Polym. Chem. , 2017 . 55 1086 -1094 . DOI:10.1002/pola.v55.6http://doi.org/10.1002/pola.v55.6 .
Shimizu, M.; Kinoshita, T.; Shigitani, R.; Miyake, Y.; Tajima, K . Use of silylmethoxy groups as inducers of efficient room temperature phosphorescence from precious-metal-free organic luminophores . Mater. Chem. Front. , 2018 . 2 347 -354 . DOI:10.1039/C7QM00524Ehttp://doi.org/10.1039/C7QM00524E .
Liu, H.; Gao, Y.; Cao, J.; Li, T.; Wen, Y.; Ge, Y.; Zhang, L.; Pan, G.; Zhou, T.; Yang, B . Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: Folding-induced spin-orbit coupling enhancement . Mater. Chem. Front. , 2018 . 2 1853 -1858 . DOI:10.1039/C8QM00320Chttp://doi.org/10.1039/C8QM00320C .
Tao, S; Lu, S; Geng, Y.; Zhu, S.; Redfern, S. A. T.; Song, Y.; Feng, T.; Xu, W.; Yang, B . Design of metal-free polymer carbon dots: A new class of room-temperature phosphorescent materials . Angew. Chem. Int. Ed. , 2018 . 57 2393 -2398 . DOI:10.1002/anie.201712662http://doi.org/10.1002/anie.201712662 .
Ma, X.; Xu, C.; Wang, J.; Tian, H . Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission . Angew. Chem. Int. Ed. , 2018 . 130 11020 -11024 . DOI:10.1002/ange.201803947http://doi.org/10.1002/ange.201803947 .
Fermi, A.; Bergamini, G.; Roy, M.; Gingras, M.; Ceroni, P . Turn-on phosphorescence by metal coordination to a multivalent terpyridine ligand: A new paradigm for luminescent sensors . J. Am. Chem. Soc. , 2014 . 136 6395 -6400 . DOI:10.1021/ja501458shttp://doi.org/10.1021/ja501458s .
Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X . Recent progress in metal-organic complexes for optoelectronic applications . Chem. Soc. Rev. , 2014 . 43 3259 -3302 . DOI:10.1039/C3CS60449Ghttp://doi.org/10.1039/C3CS60449G .
Baroncini, M.; Bergamini G.; Ceroni, P . Rigidification or interaction-induced phosphorescence of organic molecules . Chem. Commun. , 2017 . 53 2081 -2093 . DOI:10.1039/C6CC09288Hhttp://doi.org/10.1039/C6CC09288H .
Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z . AIEgen with fluorescence-phosphorescence dual mechanoluminescence at room temperature . Angew. Chem. Ind. Ed. , 2017 . 129 898 -902 . DOI:10.1002/ange.201610453http://doi.org/10.1002/ange.201610453 .
Menning, S.; Krämer, M.; Coombs, B.; Rominger, F.; Beeby, A.; Dreuw, A.; Bunz, U . Twisted tethered tolanes: Unanticipated long-lived phosphorescence at 77 K . J. Am. Chem. Soc. , 2013 . 135 2160 -2163 . DOI:10.1021/ja400416rhttp://doi.org/10.1021/ja400416r .
Gong, Y.; Chen, G.; Peng, Q.; Yuan, W.; Xie, Y.; Li, S.; Zhang, Y.; Tang, B. Z . Achieving persistent room temperature phosphorescence and remarkable mechanochromism from pure organic luminogens . Adv. Mater. , 2015 . 27 6195 -6201 . DOI:10.1002/adma.201502442http://doi.org/10.1002/adma.201502442 .
He, Z.; Zhao, W.; Lam, J.; Peng, Q.; Ma, H.; Liang, G.; Shuai, Z.; Tang, B. Z . White light emission from a single organic molecule with dual phosphorescence at room temperature . Nat. Commun. , 2017 . 8 416 DOI:10.1038/s41467-017-00362-5http://doi.org/10.1038/s41467-017-00362-5 .
Zhao, W; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Z . Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence . Chem , 2016 . 1 592 -602 . DOI:10.1016/j.chempr.2016.08.010http://doi.org/10.1016/j.chempr.2016.08.010 .
Bolton, O.; Lee, K.; Kim, H.; Lin, K.; Kim, J . Activating efficient phosphorescence from purely organic materials by crystal design . Nat. Chem. , 2011 . 3 205 -210 . DOI:10.1038/nchem.984http://doi.org/10.1038/nchem.984 .
An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W . Stabilizing triplet excited states for ultralong organic phosphorescence . Nat. Mater. , 2015 . 14 685 -690 . DOI:10.1038/nmat4259http://doi.org/10.1038/nmat4259 .
Gan, N.; Shi, H.; An, Z.; Huang, W . Recent advances in polymer-based metal-free room-temperature phosphorescent materials . Adv. Funct. Mater. , 2018 . 1802657 DOI:10.1002/adfm.201802657http://doi.org/10.1002/adfm.201802657 .
Wu, W.; Tang, R.; Li, Q.; Li, Z . Functional hyperbranched polymers with advanced optical, electrical and magnetic properties . Chem. Soc. Rev. , 2015 . 44 3997 -4022 . DOI:10.1039/C4CS00224Ehttp://doi.org/10.1039/C4CS00224E .
Yuan, W.; Zhang, Y . Nonconventional macromolecular luminogens with aggregation-induced emission characteristics . J. Polym. Sci., Part A: Polym. Chem. , 2017 . 55 560 -574 . DOI:10.1002/pola.28420http://doi.org/10.1002/pola.28420 .
Zhou, Q.; Cao, B.; Zhu, C.; Xu, S.; Gong, Y.; Yuan, W.; Zhang, Y . Clustering-triggered emission of nonconjugated polyacrylonitrile . Small , 2016 . 12 6586 -6592 . DOI:10.1002/smll.v12.47http://doi.org/10.1002/smll.v12.47 .
Gong, Y.; Tan, Y.; Mei, J.; Zhang, Y.; Yuan. W.; Zang, Y.; Sun, J.; Tang, B. Z . Room temperature phosphorescence from natural products: Crystallization matters . Sci. China Chem. , 2013 . 56 1178 -1182 . DOI:10.1007/s11426-013-4923-8http://doi.org/10.1007/s11426-013-4923-8 .
Reineke, S.; Seidler, N.; Yost, S.; Prins, F.; Tisdale, W.; Baldo, M . Highly efficient, dual state emission from an organic semiconductor . Appl. Phys. Lett. , 2013 . 103 093302 DOI:10.1063/1.4819444http://doi.org/10.1063/1.4819444 .
Reineke, S.; Baldo, M . Room temperature triplet state spectroscopy of organic semiconductors . Sci. Rep. , 2014 . 4 3797 DOI:10.1038/srep03797http://doi.org/10.1038/srep03797 .
Redondo, C.; Kleine, P.; Roszeitis, K.; Achenbach, T.; Kroll, M.; Thomschke, M.; Reineke, S . Interplay of fluorescence and phosphorescence in organic biluminescent emitters . J. Phys. Chem. C , 2017 . 121 14946 DOI:10.1021/acs.jpcc.7b04529http://doi.org/10.1021/acs.jpcc.7b04529 .
Mieno, H.; Kabe, R.; Notsuka, N.; Allendorf, M.; Adachi, C . Long-lived room-temperature phosphorescence of coronene in zeolitic imidazolate framework ZIF‐8 . Adv. Opt. Mater. , 2016 . 4 1015 -1021 . DOI:10.1002/adom.201600103http://doi.org/10.1002/adom.201600103 .
Joshi, R.; Meitei, O.; Jadhao, M.; Kumar, H.; Ghosh, S . Conformation controlled turn on-turn off phosphorescence in a metal-free biluminophore: Thriving the paradox that exists for organic compounds . Phys. Chem. Chem. Phys. , 2016 . 18 27910 -27920 . DOI:10.1039/C6CP04336Dhttp://doi.org/10.1039/C6CP04336D .
Kwon, M.; Lee, D.; Seo, S.; Jung, J.; Kim, J . Tailoring intermolecular interactions for efficient room-temperature phosphorescence from purely organic materials in amorphous polymer matrices . Angew. Chem. Int. Ed. , 2014 . 53 11177 -11181 . DOI:10.1002/anie.201404490http://doi.org/10.1002/anie.201404490 .
Su, Y. Phua, S.; Li, Y.; Zhou, X.; Jana, D.; Liu, G.; Lim, W. Q.; Ong, W.; Yang, C.; Zhao, Y . Ultralong room temperature phosphorescence from amorphous organic materials toward confidential information encryption and decryption . Sci. Adv. , 2018 . 4 eaas9732 DOI:10.1126/sciadv.aas9732http://doi.org/10.1126/sciadv.aas9732 .
Kabe, R.; Adachi, C . Organic long persistent luminescence . Nature , 2017 . 550 384 -387 . DOI:10.1038/nature24010http://doi.org/10.1038/nature24010 .
Jinnai, K.; Kabe, R.; Adachi, C . Wide-range tuning and enhancement of organic long persistent luminescence using emitter dopants . Adv. Mater. , 2018 . 1800365 DOI:10.1002/adma.201800365http://doi.org/10.1002/adma.201800365 .
Lin, Z.; Kabe, R.; Nishimura, N.; Jinnai, K.; Adachi, C . Organic long-persistent luminescence from a flexible and transparent doped polymer . Adv. Mater. , 2018 . 1803713 DOI:10.1002/adma.201803713http://doi.org/10.1002/adma.201803713 .
Zhang, G.; Evans, R.; Campbell, K.; Fraser, C. L . Role of boron in the polymer chemistry and photophysical properties of difluoroboron-dibenzoylmethane polylactide . Macromolecules , 2009 . 42 8627 -8633 . DOI:10.1021/ma9019043http://doi.org/10.1021/ma9019043 .
Samonina-Kosicka, J.; Derosa, C.; Morris, W.; Fan, Z.; Fraser, C . Dual-emissive difluoroboron naphthyl-phenyl β-diketonate polylactide materials: Effects of heavy atom placement and polymer molecular weight . Macromolecules , 2014 . 47 3736 DOI:10.1021/ma5006606http://doi.org/10.1021/ma5006606 .
Derosa, C.; Samonina-Kosicka, J.; Fan, Z.; Hendargo, H.; Weitzel, D.; Palmer, G.; Fraser, C . Oxygen sensing difluoroboron dinaphthoylmethane polylactide . Macromolecules , 2015 . 48 2967 DOI:10.1021/acs.macromol.5b00394http://doi.org/10.1021/acs.macromol.5b00394 .
Chen, X.; Xu, C.; Wang, T.; Zhou, C.; Du, J.; Wang, Z.; Xu, H.; Xie, T.; Bi, G.; Jiang, J.; Zhang, X.; Demas, J.; Trindle, C.; Luo, Y.; Zhang, G . Versatile room-temperature-phosphorescent materials prepared from N-substituted naphthalimides: Emission enhancement and chemical conjugation . Angew. Chem. Int. Ed. , 2016 . 55 9872 -9876 . DOI:10.1002/anie.201601252http://doi.org/10.1002/anie.201601252 .
Sun, X.; Wang, X.; Li, X.; Ge, J.; Zhang, Q.; Jiang, J.; Zhang, G . Polymerization-enhanced intersystem crossing: New strategy to achieve long-lived excitons . Macromol. Rapid Commun. , 2015 . 36 298 -303 . DOI:10.1002/marc.201400529http://doi.org/10.1002/marc.201400529 .
Zhang, G.; Chen, J.; Payne, S.; Kooi, S.; Demas, J.; Fraser, C . Multi-emissive difluoroboron dibenzoylmethane polylactide exhibiting intense fluorescence and oxygen-sensitive room-temperature phosphorescence . J. Am. Chem. Soc. , 2007 . 129 8942 -8943 . DOI:10.1021/ja0720255http://doi.org/10.1021/ja0720255 .
DeRosa, C.; Kerr, C.; Fan, Z.; Kolpaczynska, M.; Mathew, A.; Evans, R.; Zhang, G.; Fraser, C . Tailoring oxygen sensitivity with halide substitution in difluoroboron dibenzoylmethane polylactide materials . ACS Appl. Mater. Interfaces , 2015 . 7 23633 -23643 . DOI:10.1021/acsami.5b07126http://doi.org/10.1021/acsami.5b07126 .
Zhang, T.; Chen, H.; Ma, X.; Tian, H . Amorphous 2-bromocarbazole copolymers with efficient room-temperature phosphorescent emission and applications as encryption ink . Ind. Eng. Chem. Res. , 2017 . 56 3123 DOI:10.1021/acs.iecr.7b00149http://doi.org/10.1021/acs.iecr.7b00149 .
Chen, H.; Xu, L.; Ma, X.; Tian, H . Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness . Polym. Chem. , 2016 . 7 3989 -3992 . DOI:10.1039/C6PY00703Ahttp://doi.org/10.1039/C6PY00703A .
Chen, H.; Yao, X.; Ma, X.; Tian, H . Amorphous, efficient, room-temperature phosphorescent metal-free polymers and their applications as encryption ink . Adv. Opt. Mater. , 2016 . 4 1397 -1401 . DOI:10.1002/adom.201600427http://doi.org/10.1002/adom.201600427 .
Ogoshi, T.; Tsuchida, H.; Kakuta, T.; Yamagishi, T.; Taema, A.; Ono, T.; Sugimoto, M.; Motohiro, M . Ultralong room-temperature phosphorescence from amorphous polymer poly(styrene sulfonic acid) in air in the dry solid state . Adv. Funct. Mater. , 2018 . 28 1707369 DOI:10.1002/adfm.v28.16http://doi.org/10.1002/adfm.v28.16 .
Kanosue, K.; Ando, S . Polyimides with heavy halogens exhibiting room-temperature phosphorescence with very large Stokes shifts . ACS Macro Lett. , 2016 . 5 1301 -1305 . DOI:10.1021/acsmacrolett.6b00642http://doi.org/10.1021/acsmacrolett.6b00642 .
Wang, T.; Zhang, X.; Deng, Y.; Sun, W.; Wang, Q.; Xu, F.; Huang, X . Dual-emissive waterborne polyurethanes prepared from naphthalimide derivative . Polymers , 2017 . 9 411 DOI:10.3390/polym9090411http://doi.org/10.3390/polym9090411 .
Wang, T.; Zhou, C.; Zhang, X.; Xu, D . Waterborne polyurethanes prepared from benzophenone derivatives with delayed fluorescence and room-temperature phosphorescence . Polym. Chem. , 2018 . 9 1303 -1308 . DOI:10.1039/C7PY01995Ehttp://doi.org/10.1039/C7PY01995E .
Zhou, C.; Xie, T.; Zhou, R.; Trindle, C.; Tikman, Y.; Zhang, X.; Zhang, G . Waterborne polyurethanes with tunable fluorescence and room-temperature phosphorescence . ACS Appl. Mater. Interfaces , 2015 . 7 17209 -17216 . DOI:10.1021/acsami.5b04075http://doi.org/10.1021/acsami.5b04075 .
Chen, X.; He, Z.; Kausar, F.; Chen, G.; Zhang, Y.; Yuan, W . Aggregation-induced dual emission and unusual luminescence beyond excimer emission of poly(ethylene terephthalate) . Macromolecules , 2018 . 51 9035 -9042 . DOI:10.1021/acs.macromol.8b01743http://doi.org/10.1021/acs.macromol.8b01743 .
Ma, X.; Xu, C; Wang, J.; Tian, H . Amorphous pure organic polymers for heavy-atom-free efficient room-temperature phosphorescence emission . Angew. Chem. Int. Ed. , 2018 . 57 10854 -11024 . DOI:10.1002/anie.201803947http://doi.org/10.1002/anie.201803947 .
Kwon, M.; Yu, Y.; Coburn, C.; Phillips, A.; Chung, K.; Shanker, K.; Jung, J.; Kim, G.; Pipe, K.; Forrest, S.; Youk, J.; Gierschner, J.; Kim, J . Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials . Nat. Commun. , 2015 . 6 8947 DOI:10.1038/ncomms9947http://doi.org/10.1038/ncomms9947 .
Yu, Y.; Kwon, M.; Jung, J.; Zeng, Y.; Kim, M.; Chung, K.; Gierschner, J.; Youk, J.; Borisov, S.; Kim, J . Room-temperature-phosphorescence-based dissolved oxygen detection by core-shell polymer nanoparticles containing metal-free organic phosphors . Angew. Chem. Int. Ed. , 2017 . 56 16207 -16211 . DOI:10.1002/anie.201708606http://doi.org/10.1002/anie.201708606 .
Li, Q.; Tang, Y.; Hu, W.; Li, Z . Fluorescence of nonaromatic organic systems and room temperature phosphorescence of organic luminogens: The intrinsic principle and recent progress . Small , 2018 . 1801560 DOI:10.1002/smll.201801560http://doi.org/10.1002/smll.201801560 .
Wang Y.; Bin, X.; Chen, X.; Zheng, S.; Zhang, Y.; Yuan, W . Emission and emissive mechanism of nonaromatic oxygen clusters . Macromol. Rapid Commun. , 2018 . 39 1800528 DOI:10.1002/marc.v39.21http://doi.org/10.1002/marc.v39.21 .
Dou, X.; Zhou, Q.; Chen, X.; Tan, Y.; He, X.; Lu, P.; Sui, K.; Tang, B.; Zhang, Y.; Yuan, W . Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate . Biomacromolecules , 2018 . 19 2014 -2022 . DOI:10.1021/acs.biomac.8b00123http://doi.org/10.1021/acs.biomac.8b00123 .
Zhou, Q.; Wang, Z.; Dou, X.; Wang, Y.; Liu, S.; Zhang, Y.; Yuan, W . Emission mechanism understanding and tunable persistent room temperature phosphorescence of amorphous nonaromatic polymers . Mater. Chem. Front. , 2018 . DOI: 10.1039/c8qm00528a DOI:10.1039/c8qm00528ahttp://doi.org/10.1039/c8qm00528a .
Chen, X.; Luo, W.; Ma, H.; Peng, Q.; Yuan. W.; Zhang, Y . Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids) . Sci. China Chem. , 2018 . 61 351 -359 . DOI:10.1007/s11426-017-9114-4http://doi.org/10.1007/s11426-017-9114-4 .
Fang, M.; Yang, J.; Xiang, X.; Xie, Y.; Dong, Y.; Peng, Q.; Li, Q.; Li, Z . Unexpected room-temperature phosphorescence from a non-aromatic, low molecular weight, pure organic molecule through the intermolecular hydrogen bond . Mater. Chem. Front. , 2018 . 2 2124 -2129 . DOI:10.1039/C8QM00396Chttp://doi.org/10.1039/C8QM00396C .
0
Views
0
Downloads
11
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution