Citation: Li, H. X.; Russell, T. P.; Wang, D. Nanomechanical and chemical mapping of the structure and interfacial properties in immiscible ternary polymer systems. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2567-2 doi: 10.1007/s10118-021-2567-2 shu

Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems

  • Corresponding author: Dong Wang, E-mail: dwang@mail.buct.edu.cn
  • Received Date: 2020-11-22
    Available Online: 2021-03-16

Figures(6) / Tables(2)

  • It is a challenge to identify each phase in a multi-component polymer system and uniquely determine the interfacial properties between the different phases. Using atomic force microscopy nanomechanical mapping (AFM-NM) and AFM-based infrared spectroscopy (AFM-IR), we identify each phase, visualize structural developments, and determine the interfacial properties in a blend of three polymers: high-density polyethylene (HDPE), polyamide (PA6) and poly(styrene-b-ethylene-co-butylene-b-styrene) (SEBS). Each phase can be identified from the Young’s modulus, along with the structural development within the phases before and after compatibilization. The interfacial widths between HDPE/PA6, HDPE/SEBS and SEBS/PA6 were determined independently in one measurement from a Young’s modulus map. The structural, mechanical property development and identity of the phases were determined by AFM-NM, while AFM-IR, providing complementary chemical information, identified interfacial reactions, showed the chemical affinity of a compatibilizer with the component phases, and mapped the distribution of the compatibilizer in the ternary polymer blends. The chemical, structural and interfacial information obtained by these measurements provide information that is essential for producing mechanically robust materials from incompatible mixtures of polymers.
  • 加载中
    1. [1]

      Composto, R. J.; Kramer, E. J.; White, D. M. Mutual diffusion in the miscible polymer blend polystyrene/poly(xylenyl ether). Macromolecules 1988, 21, 2580−2588. doi: 10.1021/ma00186a046

    2. [2]

      Schulze, J. S.; Cernohous, J. J.; Hirao, A.; Lodge, T. P.; Macosko, C. W. Reaction kinetics of end-functionalized chains at a polystyrene/poly(methyl methacrylate) interface. Macromolecules 2000, 33, 1191−1198. doi: 10.1021/ma9911344

    3. [3]

      Russell, T. P.; Menelle, A.; Hamilton, W. A.; Smith, G. S.; Satija, S. K.; Majkrzak, C. F. Width of homopolymer interfaces in the presence of symmetric diblock copolymers. Macromolecules 1991, 24, 5721−5726. doi: 10.1021/ma00020a036

    4. [4]

      Perrin, P.; Prud'homme, R. E. SAXS measurements of interfacial thickness in amorphous polymer blends containing a diblock copolymer. Macromolecules 1994, 27, 1852−1860. doi: 10.1021/ma00085a029

    5. [5]

      Zhang, J. B.; Lodge, T. P.; Macosko, C. W. Interfacial morphology development during PS/PMMA reactive coupling. Macromolecules 2005, 38, 6586−9651. doi: 10.1021/ma050530l

    6. [6]

      Charoensirisomboon, P.; Chiba, T.; Solomko, S. I.; Inoue, T.; Weber, M. Reactive blending of polysulfone with polyamide: a difference in interfacial behavior between in situ formed block and graft copolymers. Polymer 1999, 40, 6803−6810. doi: 10.1016/S0032-3861(99)00036-1

    7. [7]

      Pablo Tomba, J.; Carella, J. M.; Pastor, J. M. Molecular mechanisms of interphase evolution in the liquid polystyrene-glassy poly(phenylene oxide) system. Macromolecules 2009, 42, 3565−3572. doi: 10.1021/ma802884j

    8. [8]

      Sauer, B. B.; Walsh, D. J. Use of neutron reflection and spectroscopic ellipsometry for the study of the interface between miscible polymer films. Macromolecules 1991, 24, 5948−5955. doi: 10.1021/ma00022a009

    9. [9]

      Liao, Y. G.; Nakagawa, A.; Horiuchi, S. Interdiffusion at homopolymer/random copolymer interfaces investigated by energy-filtering transmission electron microscopy. Macromolecules 2007, 40, 7966−7972. doi: 10.1021/ma071535g

    10. [10]

      Qiu, H.; Bousmina, M. Determination of mutual diffusion coefficients at nonsymmetric polymer/polymer interfaces from rheometry. Macromolecules 2000, 33, 6588−6594. doi: 10.1021/ma991948k

    11. [11]

      Higashida, N.; Kressler, J.; Yukioka, S.; Inoue, T. Ellipsometric measurements of positive η parameters between dissimilar polymers and their temperature dependence. Macromolecules 1992, 25, 5259−5262. doi: 10.1021/ma00046a023

    12. [12]

      lubek, G.; Pionteck, J.; Bondarenko, V.; Pompe, G.; Taesler, Ch.; Petters, K.; Krause-Rehberg, R. Positron annihilation lifetime spectroscopy (PALS) for interdiffusion studies in disperse blends of compatible polymers: a quantitative analysis. Macromolecules 2002, 35, 6313−6323. doi: 10.1021/ma020451z

    13. [13]

      Shimizu, H.; Li, Y. J.; Kaito, A.; Sano, H. Formation of nanostructured PVDF/PA11 blends using high-shear processing. Macromolecules 2005, 38, 7880−7883. doi: 10.1021/ma051395f

    14. [14]

      Wang, D.; Li, Y.; Xie, X. M.; Guo, B. H. Compatibilization and morphology development of immiscible ternary polymer blends. Polymer 2011, 52, 191−200. doi: 10.1016/j.polymer.2010.11.019

    15. [15]

      Li, H. M.; Xie, X. M. Morphology development and superior mechanical properties of PP/PA6/SEBS ternary blends compatibilized by using a highly efficient multi-phase compatibilizer. Polymer 2017, 108, 1−10. doi: 10.1016/j.polymer.2016.11.044

    16. [16]

      Garcia, R.; Magerle, R.; Perez, R. Nanoscale compositional mapping with gentle forces. Nat. Mater. 2007, 6, 405−411. doi: 10.1038/nmat1925

    17. [17]

      Cleveland, J. P.; Anczykowski, B.; Schmid, A. E.; Elings, V. B. Energy dissipation in tapping-mode atomic force microscopy. Appl. Phys. Lett. 1998, 72, 2613−2615. doi: 10.1063/1.121434

    18. [18]

      Wang, D.; Russell, T. P. Advances in atomic force microscopy for probing polymer structure and properties. Macromolecules 2018, 51, 3−24. doi: 10.1021/acs.macromol.7b01459

    19. [19]

      Tamayo, J.; Garcia, R. Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy. Appl. Phys. Lett. 1997, 71, 2394−2396. doi: 10.1063/1.120039

    20. [20]

      Garcia, R.; Gomez, C. J.; Martinez, N. F.; Patil, S.; Dietz, C.; Magerle, R. Identification of nanoscale dissipation processes by dynamic atomic force microscopy. Phys. Rev. Lett. 2006, 97, 016103. doi: 10.1103/PhysRevLett.97.016103

    21. [21]

      Knoll, A.; Magerle, R.; Krausch, G. Tapping mode atomic force microscopy on polymers: where is the true sample surface? Macromolecules 2001, 34, 4159−4165. doi: 10.1021/ma001311x

    22. [22]

      Verma, P. Tip-enhanced Raman spectroscopy: technique and recent advances. Chem. Rev. 2017, 117, 6447−6466. doi: 10.1021/acs.chemrev.6b00821

    23. [23]

      Xue, L. J.; Li, W. Z.; Hoffmann, G. G.; Goossens, J. G. P.; Loos, J.; de With, G. High-resolution chemical identification of polymer blend thin films using tip-enhanced Raman mapping. Macromolecules 2011, 44, 2852−2858. doi: 10.1021/ma101651r

    24. [24]

      Yeo, B. S.; Amstad, E.; Schmid, T.; Stadler, J.; Zenobi, R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 2009, 5, 952−960. doi: 10.1002/smll.200801101

    25. [25]

      Dunn, R. C. Near-field scanning optical microscopy. Chem. Rev. 1999, 99, 2891−2927. doi: 10.1021/cr980130e

    26. [26]

      Hecht, B.; Sick, B.; Wild, U. P.; Deckert, V.; Zenobi, R.; Martin, O. J. F.; Pohl, D. W. Scanning near-field optical microscopy with aperture probes: fundamentals and applications. J. Chem. Phys. 2000, 112, 7761−7774. doi: 10.1063/1.481382

    27. [27]

      Nabha-Barnea, S.; Maman, N.; Visoly-Fisher, I.; Shikler, R. Microscopic investigation of degradation processes in a polyfluorene blend by near-field scanning optical microscopy. Macromolecules 2016, 49, 6439−6444. doi: 10.1021/acs.macromol.6b01543

    28. [28]

      Creton, C. Molecular stitches for enhanced recycling of packaging. Science 2017, 355, 797−798. doi: 10.1126/science.aam5803

    29. [29]

      Garcia, J. M.; Robertson, M. L. The future of plastics recycling. Science 2017, 358, 870−872. doi: 10.1126/science.aaq0324

    30. [30]

      Debolt, M. A.; Robertson, R. E. Morphology of compatibilized ternary blends of polypropylene, nylon 66, and polystyrene. Polym. Eng. Sci. 2006, 46, 385−398. doi: 10.1002/pen.20296

    31. [31]

      Cappella, B.; Kaliappan, S. K. Determination of thermomechanical properties of a model polymer blend. Macromolecules 2006, 39, 9243−9252. doi: 10.1021/ma061896g

    32. [32]

      Wang, D.; Fujinami, S.; Liu, H.; Nakajima, K.; Nishi, T. Investigation of reactive polymer-polymer interface using nanomechanical mapping. Macromolecules 2010, 43, 5521−5523. doi: 10.1021/ma100799s

    33. [33]

      Qu, M.; Deng, F.; Kalkhoran, S. M.; Gouldstone, A.; Robisson, A.; van Vliet, K. J. Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites. Soft Matter 2011, 7, 1066−1077. doi: 10.1039/C0SM00645A

    34. [34]

      Brune, P. F.; Blackman, G. S.; Diehl, T.; Meth, J. S.; Brill, D.; Tao, Y.; Thornton, J. Direct measurement of rubber interphase stiffness. Macromolecules 2016, 49, 4909−4922. doi: 10.1021/acs.macromol.6b00689

    35. [35]

      Zhang, M.; Li, Y.; Kolluru, P. V.; Catherine Brinson, L. Determination of mechanical properties of polymer interphase using combined atomic force microscope (AFM) experiments and finite element simulations. Macromolecules 2018, 51, 8229−8240. doi: 10.1021/acs.macromol.8b01427

    36. [36]

      Wang, D.; Russell, T. P.; Nishi, T.; Nakajima, K. Atomic force microscopy nanomechanics visualizes molecular diffusion and microstructure at an interface. ACS Macro Lett. 2013, 2, 757−760. doi: 10.1021/mz400281f

    37. [37]

      Wang, D.; Nakajima, K.; Liu, F.; Shi, S.; Russell, T. P. Nanomechanical imaging of the diffusion of fullerene into conjugated polymer. ACS Nano 2017, 11, 8660−8667. doi: 10.1021/acsnano.6b08456

    38. [38]

      He, C. F.; Shi, S. W.; Wu, X. F.; Russell, T. P.; Wang, D. Atomic force microscopy nanomechanical mapping visualizes interfacial broadening between networks due to chemical exchange reactions. J. Am. Chem. Soc. 2018, 140, 6793−6796. doi: 10.1021/jacs.8b03771

    39. [39]

      Dazzi, A.; Prater, C. B.; Hu, Q.; Chase, D. B.; Rabolt, J. F.; Marcott, C. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization. Appl. Spectrosc. 2012, 66, 1365−1384. doi: 10.1366/12-06804

    40. [40]

      Felts, J. R.; Cho, H.; Yu, M. F.; Bergman, L. A.; Vakakis, A. F.; King, W. P. Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures. Rev. Sci. Instrum. 2013, 84, 023709. doi: 10.1063/1.4793229

    41. [41]

      Dazzi, A.; Prater, C. B. AFM-IR: technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem. Rev. 2017, 117, 5146−5173. doi: 10.1021/acs.chemrev.6b00448

    42. [42]

      Gong, L.; Chase, D. B.; Noda, I.; Liu, J.; Martin, D. C.; Ni, C.; Rabolt, J. F. Discovery of β-form crystal structure in electrospun poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHX) nanofibers: from fiber mats to single fibers. Macromolecules 2015, 48, 6197−6205. doi: 10.1021/acs.macromol.5b00638

    43. [43]

      Tang, F. G.; Bao, P.; Su, Z. H. Analysis of nanodomain composition in high-impact polypropylene by atomic force microscopy-infrared. Anal. Chem 2016, 88, 4926−4930. doi: 10.1021/acs.analchem.6b00798

    44. [44]

      Wang, Z. Q.; Sun, B. L.; Lu, X. F.; Wang, C.; Su, Z. H. Copolymer distribution in core-shell rubber particles in high-impact polypropylene investigated by atomic force microscopy-infrared. Macromolecules 2020, 53, 2686−2693. doi: 10.1021/acs.macromol.0c00328

    45. [45]

      Rickard, M. A.; Meyers, G. F.; Habersberger, B. M.; Reinhardt, C. W.; Stanley, J. J. Nanoscale chemical imaging of a deuterium-labeled polyolefin copolymer in a polyolefin blend by atomic force microscopy-infrared spectroscopy. Polymer 2017, 129, 247−251. doi: 10.1016/j.polymer.2017.09.045

    46. [46]

      Morsch, S.; Liu, Y. W.; Lyon, S. B.; Gibbon, S. R. Insights into epoxy network nanostructural heterogeneity using AFM-IR. ACS Appl. Mater. Interfaces 2016, 8, 959−966. doi: 10.1021/acsami.5b10767

    47. [47]

      Kim, S. Y.; Khanal, D.; Kalionis, B.; Chrzanowshi, W. High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy. Nat. Protoc. 2019, 14, 576−593. doi: 10.1038/s41596-018-0109-3

    48. [48]

      Tai, T.; Karacsony, O.; Bocharova, V.; van Berkel, G. J.; Kertesz, V. Topographical and chemical imaging of a phase separated polymer using a combined atomic force microscopy/infrared spectroscopy/mass spectrometry platform. Anal. Chem. 2016, 88, 2864−2870. doi: 10.1021/acs.analchem.5b04619

    49. [49]

      Kenkel, S.; Mittal, A.; Mittal, S.; Bhargava, R. Probe-sample interaction-independent atomic force microscopy-infrared spectroscopy: toward robust nanoscale compositional mapping. Anal. Chem. 2018, 90, 8845−8855. doi: 10.1021/acs.analchem.8b00823

    50. [50]

      Felts, J. R.; Kjoller, K.; Lo, M.; Prater, C. B.; King, W. P. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano 2012, 6, 8015−8021. doi: 10.1021/nn302620f

    51. [51]

      Cartier, H.; Hu, G. H. Styrene-assisted free radical grafting of glycidyl methacrylate onto polyethylene in the melt. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 2763−2774. doi: 10.1002/(SICI)1099-0518(19981115)36:15<2763::AID-POLA13>3.0.CO;2-Y

    52. [52]

      Koning, C.; Van Duin, M.; Pagnoulle, C.; Jerome, R. Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 1998, 23, 707−757. doi: 10.1016/S0079-6700(97)00054-3

    53. [53]

      Ajji, A.; Utracki, L. A. lnterphase and compatibilization of polymer blends. Polym. Eng. Sci. 1996, 36, 1574−1585. doi: 10.1002/pen.10554

    54. [54]

      Li, H.; Chiba, T.; Higashida, N.; Yang, Y.; Inoue, T. Polymer-polymer interface in polypropylene/polyamide blends by reactive processing. Polymer 1997, 38, 3921−3925. doi: 10.1016/S0032-3861(97)86333-1

    55. [55]

      Yin, Z.; Koulic, C.; Pagnoulle, C.; Jerome, R. Probing of the reaction progress at a PMMA/PS interface by using anthracene-labeled reactive PS chains. Langmuir 2003, 19, 453−457. doi: 10.1021/la020614c

    56. [56]

      Jeon, H. K.; Macosko, C. W.; Moon, B. J.; Hoye, T. R.; Yin, Z. H. Coupling reactions of end- vs mid-functional polymers. Macromolecules 2004, 37, 2563−2571. doi: 10.1021/ma030581n

    57. [57]

      Roeder, J.; Oliveira, R. V. B.; Goncalves, M. C.; Soldi, V.; Pires, A. T. N. Polypropylene/polyamide-6 blends: influence of compatibilizing agent on interface domains. Polym. Test. 2002, 21, 815−821. doi: 10.1016/S0142-9418(02)00016-8

    58. [58]

      Vermeesch, I. M.; Groeninckx, G.; Coleman, M. M. Poly(styrene-co-n-maleimide) copolymers: preparation by reactive extrusion, molecular characterization by FTIR, and use in blends. Macromolecules 1993, 26, 6643−6649. doi: 10.1021/ma00076a051

  • 加载中
    1. [1]

      Hong-Peng HanYi-Hu SongQiang Zheng . Rheological and Interfacial Properties of Colloidal Electrolytes. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2334-9

    2. [2]

      Mohammad M. Ranjbaran . RELATION BETWEEN INTERFACIAL WAVE INSTABILITY AND TENSILE STRENGTH OF TWO-LAYER POLYMER STRUCTURE: AN EXPERIMENTAL STUDY. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9176-9

    3. [3]

      Ke WangMin GuoSi LiangPing ZhaoHong YangQin ZhangRong-ni DuQiang Fu . SPATIAL HIERARCHY AND INTERFACIAL STRUCTURE IN INJECTION-MOLDED BARS OF POLYPROPYLENE-BASED BLENDS AND COMPOSITES. Chinese J. Polym. Sci,

    4. [4]

      Yong ZhuJing-Li GaoLin-Jun ZhangYan PengHao WangFang-Wei LingGuang-Su HuangJin-Rong Wu . An Interfacial Dynamic Crosslinking Approach toward Catalyst-free and Mechanically Robust Elastomeric Vitrimer with a Segregated Structure. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2479-6

    5. [5]

      Zhi-xin JiaYuan-fang LuoShu-yan YangBao-chun GuoMing-liang DuDe-min Jia . MORPHOLOGY, INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES. Chinese J. Polym. Sci,

    6. [6]

      OU YuchunYU ZhongzhenZHU JinLI GeZHU Shanguang . EFFECT 0F INTERFACIAL ADHESION ON CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY (ETHYLENE TEREPHTHALATE)/GLASS BEAD COMPOSITES. Chinese J. Polym. Sci,

    7. [7]

      Yong ChenHong-ni Teng . FUNCTIONALIZING PS MICROSPHERES BY SUPERCRITICAL DEPOSITION OF P(S-b-tBA) FOR DIVERSE INTERFACIAL PROPERTIES EXEMPLIFIED WITH BIOCIDAL ABILITY. Chinese J. Polym. Sci, doi: 10.1007/s10118-012-1136-0

    8. [8]

      Li DangXue-ying NaiXin LiuDong-hai ZhuYa-ping DongWu Li . Effects of Different Compatibilizing Agents on the Interfacial Adhesion Properties of Polypropylene/Magnesium Oxysulfate Whisker Composites. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1953-2

    9. [9]

      Jian WangJian-hui SongYu-yuan LuYong-jin RuanLi-jia An . Phase Behavior and Interfacial Properties of Diblock CopolymerHomopolymer Ternary Mixtures: Influence of Volume Fraction of Copolymers and Interaction Energy. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1915-8

    10. [10]

      Peifeng Feng Guojun Song Wenjian Zhang Hao Zheng Bowen Li Shaofeng Zhou Yaqing Liu Guangshun Wu Lichun Ma . Interfacial improvement of carbon fiber/epoxy composites by incorporating superior and versatile multiscale gradient modulus intermediate layer with rigid-flexible hierarchical structure. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2549-4

    11. [11]

      . IN-SITU AFM OF POLYMER CRYSTALLIZATION. Chinese J. Polym. Sci,

    12. [12]

      Lie ChenYong-ai YinYu-xia LiuLing LinMing-jie Liu . Design and Fabrication of Functional Hydrogels through Interfacial Engineering. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1995-5

    13. [13]

      Toshio NishiHideyuki NukagaSo FujinamiKen Nakajima . NANOMECHANICAL MAPPING OF CARBON BLACK REINFORCED NATURAL RUBBER BY ATOMIC FORCE MICROSCOPY. Chinese J. Polym. Sci,

    14. [14]

      OU YuchunYU ZhongzhenFENG YupengFANG Xiaoping . INTERFACIAL MOLECULAR DESIGN OF A RIGID- PARTICLE TOUGHENED POLYAMIDE 6 COMPOSITE*. Chinese J. Polym. Sci,

    15. [15]

      . STUDIES ON THE INTERFACIAL ADHESION BETWEEN FUNCTIONALIZED POLYPROPYLENE AND POLYAMIDE 1010*. Chinese J. Polym. Sci,

    16. [16]

      Xiang WangMiao DuYi-hu SongQiang Zheng . Mucin from Loach Skin Mucus and Its Interfacial Behavior on Gold Surface. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1524-8

    17. [17]

      Yue FanDe-Hui WangJin-Long YangJia-Ning SongXiao-Mei LiCheng-Lin ZhangDong-Sheng WangLong-Quan ChenJia-Xi CuiXu Deng . Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2453-3

    18. [18]

      . EFFECT OF PARTICLE SIZE ON THE FILMING PROCESS OF POLYSTYRENE LATEX STUDIED BY AFM. Chinese J. Polym. Sci,

    19. [19]

      Qiang ZhengMin Zuo . INVESTIGATION OF STRUCTURE AND PROPERTIES FOR POLYMER SYSTEMS BASED ON DYNAMIC RHEOLOGICAL APPROACHES. Chinese J. Polym. Sci,

    20. [20]

      Hao-yu ZhangXin-yang LiXiao-gong Wang . NANOMECHANICAL PROPERTIES OF POLYANILINE AND AZO POLYELECTROLYTE MULTILAYER FILMS. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9066-1

Article Metrics
  • PDF Downloads(4)
  • Abstract views(246)
  • HTML views(98)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return