Citation: Wu, Y. H.; Ye, L.; Sun, Y. N.; Han, W. J.; Zhao, T. Synthesis and pyrolysis of soluble cyclic Hf-schiff base polymers. Chinese J. Polym. Sci. 2021, 39, 659–664 doi: 10.1007/s10118-021-2566-3 shu

Synthesis and Pyrolysis of Soluble Cyclic Hf-Schiff Base Polymers

  • Corresponding author: Tong Zhao, E-mail: tzhao@iccas.ac.cn
  • Received Date: 2020-12-01
    Available Online: 2021-04-06

Figures(5) / Tables(1)

  • Soluble Hf-containing polymers are significant processable precursors for the fabrication of ultra-high temperature ceramics. In this work, cyclic Hf-Schiff base polymers were synthesized via direct polymerization of hafnium alkoxide and bis-salen monomers. The defined structure and molecular weight of the polymers were characterized by NMR spectroscopy, gel permeation chromatography and MALDI-TOF mass spectroscopy. The feed ratio of monomers regulated the molecular weight and solubility of the polymers. This synthetic strategy features simple operation under ambient conditions, efficient reaction with high yield and cyclic polymers as the main products. The Hf-Schiff base polymers were converted to HfC/C materials after pyrolysis under argon at 1600 °C, which was identified by XRD measurements, elemental analyses and Raman spectroscopy. This work will inspire more precise and efficient synthesis and applications of metallopolymers.
  • 加载中
    1. [1]

      Abd-El-Aziz, A. S.; Shipman, P. O.; Boden, B. N.; McNeil, W. S. Synthetic methodologies and properties of organometallic and coordination macromolecules. Prog. Polym. Sci. 2010, 35, 714−836. doi: 10.1016/j.progpolymsci.2010.01.004

    2. [2]

      Winter, A.; Schubert, U. S. Synthesis and characterization of metallo-supramolecular polymers. Chem. Soc. Rev. 2016, 45, 5311−5357. doi: 10.1039/C6CS00182C

    3. [3]

      Wang, Y.; Astruc, D.; Abd-El-Aziz, A. S. Metallopolymers for advanced sustainable applications. Chem. Soc. Rev. 2019, 48, 558−636. doi: 10.1039/C7CS00656J

    4. [4]

      Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M. M.; Lebrun, V.; Reuter, R.; Kohler, V.; Lewis, J. C.; Ward, T. R. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 2018, 118, 142−231. doi: 10.1021/acs.chemrev.7b00014

    5. [5]

      Gu, H.; Mu, S.; Qiu, G.; Liu, X.; Zhang, L.; Yuan, Y.; Astruc, D. Redox-stimuli-responsive drug delivery systems with supramolecular ferrocenyl-containing polymers for controlled release. Coordin. Chem. Rev. 2018, 364, 51−85. doi: 10.1016/j.ccr.2018.03.013

    6. [6]

      Zaheer, M.; Schmalz, T.; Motz, G.; Kempe, R. Polymer derived non-oxide ceramics modified with late transition metals. Chem. Soc. Rev. 2012, 41, 5102−5116. doi: 10.1039/c2cs15326b

    7. [7]

      Foucher, D. A.; Tang, B. Z.; Manners, I. Ring-opening polymerization of strained, ring-tilted ferrocenophanes: a route to high molecular weight poly(ferrocenylsilanes). J. Am. Chem. Soc. 1992, 114, 6246−6248. doi: 10.1021/ja00041a053

    8. [8]

      Hailes, R. L. N.; Oliver, A. M.; Gwyther, J.; Whittell, G. R.; Manners, I. Polyferrocenylsilanes: synthesis, properties, and applications. Chem. Soc. Rev. 2016, 45, 5358−5407. doi: 10.1039/C6CS00155F

    9. [9]

      Du, J.; Yuan, W.; Zhang, H.; Li, H.; Li, Y.; Tang, B. Z. Ferrocene-based hyperbranched poly(phenyltriazolylcarboxylate)s: synthesis by phenylpropiolate-azide polycycloaddition and use as precursors to nanostructured magnetoceramics. Polym. Chem. 2019, 10, 5931−5938. doi: 10.1039/C9PY01375J

    10. [10]

      Bouzat, F.; Darsy, G.; Foucaud, S.; Lucas, R. Group 4 metal-containing polymers: an overview. Polym. Rev. 2016, 56, 187−224. doi: 10.1080/15583724.2015.1091775

    11. [11]

      Ionescu, E.; Bernard, S.; Lucas, R.; Kroll, P.; Ushakov, S.; Navrotsky, A.; Riedel, R. Polymer-derived ultra-high temperature ceramics (UHTCs) and related materials. Adv. Eng. Mater. 2019, 21, 1900269. doi: 10.1002/adem.201900269

    12. [12]

      Wuchina, E.; Opeka, M.; Causey, S.; Buesking, K.; Spain, J.; Cull, A.; Routbort, J.; Guitierrez-Mora, F. Designing for ultrahigh-temperature applications: the mechanical and thermal properties of HfB2, HfCx, HfNx, and αHf(N). J. Mater. Sci. 2004, 39, 5939−5949. doi: 10.1023/B:JMSC.0000041690.06117.34

    13. [13]

      Padture, N. P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804−809. doi: 10.1038/nmat4687

    14. [14]

      Carraher, C. E. Synthesis and thermal analysis of hafnium polyesters. Angew. Makromol. Chem. 1973, 28, 145−151. doi: 10.1002/apmc.1973.050280112

    15. [15]

      Carraher, C. E.; Jambaya, L. M. Initial synthesis and thermal characterization of hafnium polyethers. Angew. Makromol. Chem. 1976, 52, 111−116. doi: 10.1002/apmc.1976.050520110

    16. [16]

      Matsui, H.; Okada, A.; Kuroda, T.; Seguchi, Y.; Kawahara, T.; Yoshihara, M. Syntheses and electronic behaviors of net-worked, alternating hafnium-organic moiety hybrid copolymers. J. Mater. Sci. 2007, 42, 3964−3968. doi: 10.1007/s10853-006-0352-9

    17. [17]

      Pomogailo, A. D.; Rozenberg, A. S.; Dzhardimalieva, G. I.; Bochkin, A. M.; Pomogailo, S. I.; Golubeva, N. D.; Grishchenko, V. M. Hafnium-containing nanocomposites. Inorg. Mater. 2006, 42, 128−143. doi: 10.1134/S0020168506020063

    18. [18]

      Inzenhofer, K.; Schmalz, T.; Wrackmeyer, B.; Motz, G. The preparation of HfC/C ceramics via molecular design. Dalton. Trans. 2011, 40, 4741−4745. doi: 10.1039/c0dt01817a

    19. [19]

      Cheng, J.; Wang, X.; Wang, H.; Shao, C.; Wang, J. Preparation and high-temperature behavior of HfC-SiC nanocomposites derived from a non-oxygen single-source-precursor. J. Am. Ceram. Soc. 2017, 100, 5044−5055. doi: 10.1111/jace.15063

    20. [20]

      Newkome, G. R.; Cho, T. J.; Moorefield, C. N.; Baker, G. R.; Cush, R.; Russo, P. S. Self- and directed assembly of hexaruthenium macrocycles. Angew. Chem. Int. Ed. 1999, 38, 3717−3721. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3717::AID-ANIE3717>3.0.CO;2-C

    21. [21]

      Taylor, P. N.; Anderson, H. L. Cooperative self-assembly of double-strand conjugated porphyrin ladders. J. Am. Chem. Soc. 1999, 121, 11538−11545. doi: 10.1021/ja992821d

    22. [22]

      Jiang, P.; Huang, W.; Li, J.; Zhuang, D.; Shi, J. A soluble coordination polymer and its sol-gel-derived amorphous films: synthesis and third-order nonlinear optical properties. J. Mater. Chem. 2008, 18, 3688−3693. doi: 10.1039/b807358a

    23. [23]

      Leung, A. C. W.; MacLachlan, M. J. Schiff base complexes in macromolecules. J. Inorg. Organomet. Polym. Mater. 2007, 17, 57−89. doi: 10.1007/s10904-006-9092-1

    24. [24]

      Whiteoak, C. J.; Salassa, G.; Kleij, A. W. Recent advances with π-conjugated salen systems. Chem. Soc. Rev. 2012, 41, 622−631. doi: 10.1039/C1CS15170C

    25. [25]

      Liang, Y.; Duan, R. L.; Hu, C. Y.; Li, L. L.; Pang, X.; Zhang, W. X.; Chen, X. S. Salen-iron complexes: synthesis, characterization and their reactivity with lactide. Chinese J. Polym. Sci. 2018, 36, 185−189. doi: 10.1007/s10118-018-2068-0

    26. [26]

      Saha, T. K.; Ramkumar, V.; Chakraborty, D. Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides. Inorg. Chem. 2011, 50, 2720−2722. doi: 10.1021/ic1025262

    27. [27]

      Mandal, M.; Chakraborty, D. Group 4 complexes bearing bis(salphen) ligands: synthesis, characterization, and polymerization studies. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 809−824. doi: 10.1002/pola.27918

    28. [28]

      Mandal, M.; Ramkumar, V.; Chakraborty, D. Salen complexes of zirconium and hafnium: synthesis, structural characterization and polymerization studies. Polym. Chem. 2019, 10, 3444−3460. doi: 10.1039/C8PY01750F

    29. [29]

      Archer, R. D.; Illingsworth, M. L.; Rau, D. N.; Hardiman, C. J. A Soluble linear Schiff-base coordination polymer containing eight-coordinate zirconium(IV). Macromolecules 1985, 18, 1371−1376. doi: 10.1021/ma00149a003

    30. [30]

      Archer, R. D.; Wang, B. Synthesis and characterization of the thermally stable copolymer of tetrakis(salicylaldehydato-O,O')zirconium(IV) and 3,3'-diaminobenzidine. Inorg. Chem. 1990, 29, 39−43. doi: 10.1021/ic00326a009

    31. [31]

      Sun, Y.; Chen, F.; Qiu, W.; Ye, L.; Han, W.; Zhao, W.; Zhou, H.; Zhao, T. Synthesis of rare earth containing single-phase multicomponent metal carbides via liquid polymer precursor route. J. Am. Ceram. Soc. 2020, 103, 6081−6087. doi: 10.1111/jace.17332

    32. [32]

      Curreli, S.; Escudero-Adan, E. C.; Benet-Buchholz, J.; Kleij, A. W. A modular approach towards nonsymmetrical bis(metallosalen) building blocks. Eur. J. Inorg. Chem. 2008, 2008, 2863−2873. doi: 10.1002/ejic.200800274

    33. [33]

      Solari, E.; Maltese, C.; Franceschi, F.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. Geometrical isomerism and redox behaviour in zirconium-Schiff base complexes: the formation of C-C bonds functioning as two-electron reservoirs. J. Chem. Soc., Dalton. Trans. 1997, 2903−2910. doi: 10.1039/A703592F

    34. [34]

      Haque, F. M.; Grayson, S. M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 2020, 12, 433−444. doi: 10.1038/s41557-020-0440-5

    35. [35]

      Li, X.; Chan, Y. T.; Casiano-Maldonado, M.; Yu, J.; Carri, G. A.; Newkome, G. R.; Wesdemiotis, C. Separation and characterization of metallosupramolecular libraries by ion mobility mass spectrometry. Anal. Chem. 2011, 83, 6667−6674. doi: 10.1021/ac201161u

  • 加载中
    1. [1]

      Huang Zhi-haoZhou Yan-yanWang Zi-muLi YingZhang WeiZhou Nian-chenZhang Zheng-biaoZhu Xiu-lin . Recent Advances of CuAAC Click Reaction in Building Cyclic Polymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1902-0

    2. [2]

      Jun WuTao-guang QuLing-feng GaoXiao-ming YangXiao-hong LiYing-feng TuXiu-lin Zhu . Special Odd-Even Effect of Degree of Oligomerization on Properties of Cyclic Oligoesters. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1675-2

    3. [3]

      . SYNTHESIS, CHARACTERIZATION AND CATALYTIC ACTIVITY OF N,N'-BIS(3-ALLYL SALICYLIDENE)ETHYLENEDIAMINE COBALT SCHIFF BASE COMPLEX ANCHORED ON A NEW POLYMER SUPPORT. Chinese J. Polym. Sci,

    4. [4]

      Mousa GhaemyHossein MighaniRaouf Alizadeh . SYNTHESIS AND CHARACTERIZATION OF SCHIFF-BASE-CONTAINING POLYAMIDES. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-1004-8

    5. [5]

      Rong-Juan LiuZhi-Ping ZhouYong LiuZhao-Peng LiangYong-Qiang MingTong-Fan HaoYi-Jing Nie . Differences in Crystallization Behaviors between Cyclic and Linear Polymer Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2403-0

    6. [6]

      Jun Yang aWei-hong Lin aWei-lin Sun aHua-jiang Jiang bZhi-quan Shen a . PREPARATION AND MAGNETIC PROPERTIES OF POLY(SCHIFF BASE) COMPLEXES CONTAINING PHENANTHROLINE UNITS. Chinese J. Polym. Sci,

    7. [7]

      ZHOU NianenCHEN QushengZHUO Renxi . CHEMOTHERAPEUTIC POLYMER ⅩⅦ. THE SYNTHESIS AND ANTITUMOR ACTIVITY OF POLYPHOSPHATES CONTAINING BOTH NUCLEIC ACID BASE AND NITROGEN MUSTARD. Chinese J. Polym. Sci,

    8. [8]

      XIE PingSUN LiminZHANG Rongben . SYNTHESIS OF SIDE-CHAIN LIQUID CRYSTALLINE POLYSILOXANE CONTAINING SCHIFF′S BASE MESOGENS WITH NO2-END GROUP AND ITS BEHAVIOR IN A DC ELECTRIC FIELD. Chinese J. Polym. Sci,

    9. [9]

      . PHOTOINDUCED ALIGNMENT OF OPTICALLY ACTIVE POLYMER CONTAINING A TEMPO RADICAL END GROUP*. Chinese J. Polym. Sci,

    10. [10]

      . SYNTHESIS AND CHARACTERIZATION OF A NOVEL FLUORINE-CONTAINING HYDROPHOBICALLY ASSOCIATING POLYMER*. Chinese J. Polym. Sci,

    11. [11]

      LIN JinhuoCHEN Wending . CHARACTERIZATION AND PROPERTIES OF URUSHIOL POLYMER CONTAINING BORON-NITROGEN COORDINATE BOND*. Chinese J. Polym. Sci,

    12. [12]

      Neng-wen DingWei-lin SunYan LinZhi-quan Shen . SYNTHESIS AND MAGNETIC PROPERTIES OF COMPLEXES OF A CONJUGATED HYPERBRANCHED POLYMER CONTAINING BITHIAZOLE RINGS. Chinese J. Polym. Sci, doi: 10.1007/s10118-012-1162-y

    13. [13]

      Yi-lei ZhuXiao-hong ZhangMei-fang GuoWen-qing HuangJin YangZhong-wei LiangJin-liang Qiao . CONDUCTIVE POLYMER NANOCOMPOSITES CONTAINING IN SITU ULTRA-FINE METAL PARTICLES. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1316-6

    14. [14]

      . SCATTERING FUNCTION OF POLYMER BLENDS*. Chinese J. Polym. Sci,

    15. [15]

      CHAI Zhikuan . ASPECTS OF THERMODYNAMICS OF POLYMER MIXTURES. Chinese J. Polym. Sci,

    16. [16]

      . SCATTERING FUNCTION OF POLYMER BLENDS. Chinese J. Polym. Sci,

    17. [17]

      A. SeebothA. KlukowskaR. RuhmannD. Lotzsch . THERMOCHROMIC POLYMER MATERIALS. Chinese J. Polym. Sci,

    18. [18]

      Lei ZhangXu-feng NiWei-lin SunZhi-quan Shen . HETEROCYCLIC SCHIFF BASE NEODYMIUM COMPLEX AS CATALYST FOR RING-OPENING POLYMERIZATION OF ε-CAPROLACTONE. Chinese J. Polym. Sci,

    19. [19]

      M.Y. KhuhawarA. ShahM.A. Mughal . PREPARATION AND CHARACTERIZATION OF SCHIFF BASE POLYMERS DERIVED FROM 4,4′-METHYLENEBIS(CINNAMALDEHYDE). Chinese J. Polym. Sci,

    20. [20]

      Amar H.Al-DujailiIman F.MustafaAmir T.Atto . THE EFFECT OF SUBSTITUENT ON THE THERMAL PROPERTIES OF POLYESTERS CONSISTING OF AROMATIC TYPE SCHIFF BASE MESOGENIC UNITS AND POLYMETHYLENE SPACERS. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(0)
  • Abstract views(172)
  • HTML views(55)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return