Citation: Zhang, H.; Li, T.; Liu, B.; Ma, T. N.; Huang, L.; Bai, Z. M.; Lu, D. Effect and mechanism of solvent properties on solution behavior and films condensed state structure for the semi-rigid conjugated polymers. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2555-6 doi: 10.1007/s10118-021-2555-6 shu

Effect and Mechanism of Solvent Properties on Solution Behavior and Films Condensed State Structure for the Semi-rigid Conjugated Polymers

  • Corresponding author: Dan Lu, E-mail: lud@jlu.edu.cn
  • Received Date: 2020-11-17
    Available Online: 2021-03-26

Figures(23) / Tables(8)

  • Solvents have an essential association with polymer solution behavior. However, few researches have been deeply done on this respect. In recent years, our research group focus on the study on effect of solvent properties on solution behavior and film condensed state structure for semi-rigid conjugated polymer up till to apply for optoelectronic device. Herein, influence of solvent properties including solubility of solvent, aromaticity, polarity and hydrogen bonds on semi-rigid polymer chain solution behavior, i.e., single chain conformation, chain shape, size and chains aggregated density were studied by means of static/dynamic laser light scattering (DLS/SLS) and exponential law etc. Effect of solvent properties on condensed state structure of the semi-rigid conjugated polymer film was studied by UV absorption spectroscopy, PL spectroscopy and electron microscopy etc. The essential reasons for the influence were discovered and the mechanism was revealed. It was found that solution behavior with different solvent properties had an essential physical relationship with chains condensed state structure of the semi-rigid conjugated polymers. More importantly, there was a quantitative structure-activity relationship between solution and film. The key to this relationship depended on the interaction between solvent molecules and the semi-rigid conjugated polymer chains. This interaction could also affect optoelectronic devices performance. This study is of great significance to effectively control the condensed state structure of the semi-rigid conjugated polymers in the process of dynamic evolution from solutions to films. It not only enriches the knowledge and understanding of both semi-rigid conjugated polymer solution behaviors and film condensed state physics based on polymer physics, but also is meaningful to practical application for conjugated polymer and other traditional polymer systems.
  • 加载中
    1. [1]

      Friend, R. H; Gymer, R. W; Holmes, A. B; Burroughes, J. H; Marks, R. N; Taliani, C; Bradley, D. D. C; Dos Santos, D. A; Bredas, J. L; Logdlund, M; Salaneck, W. R. Electroluminescence in conjugated polymers. Nature 1999, 397, 121−128. doi: 10.1038/16393

    2. [2]

      Brabec, C. J; Sariciftci, N. S; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 2001, 11, 15−26. doi: 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A

    3. [3]

      Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem. Int. Ed. 2004, 43, 2334−2375. doi: 10.1002/anie.200300610

    4. [4]

      Lehn, J. M. From supramolecular chemistry towards constitutional dynamic chemistry and adaptive chemistry. Chem. Soc. Rev. 2007, 36, 151−160. doi: 10.1039/B616752G

    5. [5]

      Zhang, G.; Niu, A.; Peng, S.; Jiang, M.; Tu, Y.; Li, M.; Wu, C. Formation of novel polymeric nanoparticles. Acc. Chem. Res. 2001, 34, 249−256. doi: 10.1021/ar000011x

    6. [6]

      Beaupre, S; Leclerc, M. Fluorene-based copolymers for red-light-emitting diodes. Adv. Funct. Mater. 2002, 12, 192−196. doi: 10.1002/1616-3028(200203)12:3<192::AID-ADFM192>3.0.CO;2-U

    7. [7]

      Cheng, Y, J; Yang, S. H; Hsu, C. S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 2009, 109, 5868−5923.

    8. [8]

      Huang, X; Hu, X. 15 Major cities' scientific and technological innovation sources are released. China Awards for Science and Technology 2019, 6, 70−72.

    9. [9]

      McGehee, M. D.; Heeger, A. J. Semiconducting (conjugated) polymers as materials for solid-state lasers. Adv. Mater. 2000, 12, 1655−1668. doi: 10.1002/1521-4095(200011)12:22<1655::AID-ADMA1655>3.0.CO;2-2

    10. [10]

      Pei, J.; Liu, X. L.; Chen, Z. K.; Zhang, X. H.; Lai, Y. H.; Huang, W. First hydrogen-bonding-induced self-assembled aggregates of a polyfluorene derivative. Macromolecules 2003, 36, 323−327. doi: 10.1021/ma020744s

    11. [11]

      Dudek, S. P.; Pouderoijen, M.; Abbel, R.; Schenning, A. P. H. J.; Meijer, E. W. Synthesis and energy-transfer properties of hydrogen-bonded oligofluorenes. J. Am. Chem. Soc. 2005, 127, 11763−11768. doi: 10.1021/ja052054k

    12. [12]

      Zaumseil, J; Donley, C. L; Kim, J. S; Friend, R. H; Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 2006, 18, 2708−2712. doi: 10.1002/adma.200601080

    13. [13]

      Liu, F; Tang, X. Polymer physics (in Chinese), Higher Education Press, Beijing, 2004, p. 39.

    14. [14]

      Bhardwaj, N.; Kundu, S. C. Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325−347. doi: 10.1016/j.biotechadv.2010.01.004

    15. [15]

      Kim, J. Y; Lee, K; Coates, N. E; Moses, D; Nguyen, T. Q; Dante, M; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222−225. doi: 10.1126/science.1141711

    16. [16]

      Chen, J. W.; Huang, C. C.; Chao, C. Y. Supramolecular liquid-crystal gels formed by polyfluorene-based π-conjugated polymer for switchable anisotropic scattering device. ACS Appl. Mater. Interfaces 2014, 6, 6757−6764. doi: 10.1021/am500518c

    17. [17]

      Raspaud, E.; Lairez, D.; Adam, M.; Carton, J. P. Triblock copolymers in a selective solvent. 1. Aggregation process in dilute solution. Macromolecules 1994, 27, 2956−2964. doi: 10.1021/ma00089a011

    18. [18]

      Wu, Q. Polymer Condensed Matter Physics (in Chinese), Science Press, Beijing, 2016, p. 59.

    19. [19]

      Mes, T; Weegen, R. V. D; Palmans, A. R. A; Meijer, E. W. Single-chain polymeric nanoparticles by stepwise folding. Angew. Chem. Int. Ed. 2011, 50, 5085−5089. doi: 10.1002/anie.201100104

    20. [20]

      Daoud, M.; Cotton, J. P.; Farnoux, B.; Jannink, G.; Sarma, G.; Benoit, H.; Duplessix, C.; Picot, C.; de Gennes, P. G. Solutions of flexible polymers Neutron experiments and interpretation. Macromolecules 1975, 8, 804−818.

    21. [21]

      Dai, S.; Tam, K. C.; Jenkins, R. D. Microstructure of dilute hydrophobically modified alkali soluble emulsion in aqueous salt solution. Macromolecules 2000, 33, 404−411. doi: 10.1021/ma990887n

    22. [22]

      Wang, Z. H.; Lu, Y. Y.; Jin, H.; Luo, C. F.; An, L. J. Diffusion of a ring threaded on a linear chain. Chinese J. Polym. Sci. 2020, 38, 1409−1417. doi: 10.1007/s10118-020-2448-0

    23. [23]

      Zhang, X; Dong, H; Hu, W. Organic semiconductor single crystals for electronics and photonics. Adv. Mater. 2018, 1801048.

    24. [24]

      Neher, D. Polyfluorene homopolymers: conjugated liquid-crystalline polymers for bright blue emission and polarized electroluminescence. Macromol. Rapid Commun. 2001, 22, 1365−1385. doi: 10.1002/1521-3927(20011101)22:17<1365::AID-MARC1365>3.0.CO;2-B

    25. [25]

      Rothe, C; Galbrecht, F; Scherf, U; Monkman, A. The β-phase of poly(9,9-dioctylfluorene) as a potential system for electrically pumped organic lasing. Adv. Mater. 2006, 18, 2137−2140. doi: 10.1002/adma.200600901

    26. [26]

      Kuehne, A. J. C.; Kaiser, M.; MacKintosh, A. R.; Wallikewitz, B. H.; Hertel, D.; Pethrick, R. A.; Meerholz, K. Sub-micrometer patterning of amorphous- and β-phase in a crosslinkable poly(9,9-dioctylfluorene): dual-wavelength lasing from a mixed-morphology device. Adv. Funct. Mater. 2011, 21, 2564−2570. doi: 10.1002/adfm.201002553

    27. [27]

      Jager, E. W. H.; Smela, E.; Inganas, O. Microfabricating conjugated polymer actuators. Science 2000, 290, 1540−1545. doi: 10.1126/science.290.5496.1540

    28. [28]

      Huang, L.; Huang, X.; Sun, G.; Gu, C.; Lu, D.; Ma, Y. Study of β phase and chains aggregation degrees in poly(9,9-dioctylfluorene) (PFO) solution. J. Phys. Chem. C 2012, 116, 7993−7999. doi: 10.1021/jp301102t

    29. [29]

      Li, T.; Huang, L.; Bai, Z.; Li, X.; Liu, B.; Lu, D. Study on the forming condition and mechanism of the β conformation in poly(9,9-dioctylfluorene) solution. Polymer 2016, 88, 71−78. doi: 10.1016/j.polymer.2016.02.015

    30. [30]

      Bai, Z.; Liu, Y.; Li, T.; Li, X.; Liu, B.; Liu, B.; Lu, D. Quantitative study on β-phase heredity based on poly(9,9-dioctylfluorene) from solutions to films and the effect on hole mobility. J. Phys. Chem. C 2016, 120, 27820−27828. doi: 10.1021/acs.jpcc.6b08941

    31. [31]

      Liu, B.; Zhang, H.; Ren, J.; Ma, T.; Yu, M.; Xie, L.; Lu, D. Effect of solvent aromaticity on poly(9,9-dioctylfluorene) (PFO) chain solution behavior and film condensed state structure. Polymer 2019, 185, 121986. doi: 10.1016/j.polymer.2019.121986

    32. [32]

      Zhang, H.; Li, T.; Ma, T.; Liu, B.; Ren, J.; Lin, J.; Yu, M.; Xie, L.; Lu, D. Effect of solvents on the solution state and film condensed state structures of a polyfluorene conjugated polymer in the dynamic evolution process from solution to film. J. Phys. Chem. C 2019, 123, 27317−27326. doi: 10.1021/acs.jpcc.9b07288

    33. [33]

      Ma, T.; Song, N.; Qiu, J.; Zhang, H.; Lu, D. Synergistic effects of external electric field and solvent vapor annealing with different polarities to enhance β-phase and carrier mobility of the poly(9,9-dioctylfluorene) films. Chem. Res. Chinese Univ. 2020, 36, 1310−1319. doi: 10.1007/s40242-020-0129-8

    34. [34]

      Knaapila, M.; Dias, F. B.; Garamus, V. M.; Almásy, L.; Torkkeli, M.; Leppänen, K.; Galbrecht, F.; Preis, E.; Burrows, H. D.; Scherf, U.; et al. Influence of side chain length on the self-assembly of hairy-rod poly(9,9-dialkylfluorene)s in the poor solvent methylcyclohexane. Macromolecules 2007, 40, 9398−9405. doi: 10.1021/ma0715728

    35. [35]

      Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Self-dopant formation in poly(9,9-di-n-octylfluorene) via a dipping method for efficient and stable pure-blue electroluminescence. Adv. Mater. 2007, 19, 2574−2579. doi: 10.1002/adma.200602632

    36. [36]

      Peet, J.; Brocker, E.; Xu, Y.; Bazan, G. C. Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Adv. Mater. 2008, 20, 1882−1885. doi: 10.1002/adma.200702515

    37. [37]

      Zhang, H.; Huang, L.; Li, T.; Liu, B.; Bai, Z.; Li, X.; Lu, D. Quantitative structure-property relationship of polyfluorene conjugated polymers condensed state from solution to film. Acta Chim. Sin. 2019, 77, 397−405. doi: 10.6023/A19010039

    38. [38]

      Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Chain geometry, solution aggregation and enhanced dichroism in the liquid-crystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 1998, 49, 439−444. doi: 10.1002/(SICI)1521-4044(199808)49:8<439::AID-APOL439>3.0.CO;2-A

    39. [39]

      Huang, Z.; Huang, Y.; Li, X.; Zhang, L. Molecular mass and chain conformations of rhizoma panacis japonici polysaccharides. Carbohydr. Polym. 2009, 78, 596−601. doi: 10.1016/j.carbpol.2009.05.027

    40. [40]

      Zhang, Y; Li, S; Zhang, L. Aggregation behavior of triple helical polysaccharide with low molecular weight in diluted aqueous solution. J. Phys. Chem. B 2010, 114, 4945−4954. doi: 10.1021/jp9100398

    41. [41]

      Zhang, Y; Wu, Q; Fang, Q; Zhang, Y. X. A light-scattering study of the aggregation behavior of fluorocarbon-modified polyacrylamides in water. Macromolecules 1996, 29, 2494−2497. doi: 10.1021/ma9515792

    42. [42]

      Zheng, Y. Q.; Yao, Z. F.; Lei, T.; Dou, J. H.; Yang, C. Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J. Y.; Pei, J. Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solid-state morphology and charge-transport properties. Adv. Mater. 2017, 29, 1701072. doi: 10.1002/adma.201701072

    43. [43]

      Huang, L.; Li, T.; Liu, B.; Zhang, L.; Bai, Z.; Li, X.; Huang, X.; Lu, D. A transformation process and mechanism between the α-conformation and β-conformation of conjugated polymer PFO in precursor solution. Soft Matter 2015, 11, 2627−2638. doi: 10.1039/C5SM00074B

    44. [44]

      Kirkwood, J. G.; Riseman, J. The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 1948, 16, 565−573. doi: 10.1063/1.1746947

    45. [45]

      Li, T.; Lu, D. The shape characteristics of complex single chain and aggregation by exponential law. Acta Chim. Sin. 2016, 74, 649−656. doi: 10.6023/A16050252

    46. [46]

      Lin, J.; Yu, Z.; Zhu, W.; Xing, G.; Lin, Z.; Yang, S.; Xie, L.; Niu, C.; Huang, W. A π-conjugated polymer gelator from polyfluorene-based poly(tertiary alcohol) via the hydrogen-bonded supramolecular functionalization. Polym. Chem. 2013, 4, 477−483. doi: 10.1039/C2PY20618H

    47. [47]

      Lin, J. Y.; Wong, J.; Xie, L. H.; Dong, X. C.; Yang, H. Y.; Huang, W. Hydrogen-bonded supramolecular conjugated polymer nanoparticles for white light-emitting devices. Macromol. Rapid Commun. 2014, 35, 895−900. doi: 10.1002/marc.201300831

    48. [48]

      Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Spectral and thermal spectral stability study for fluorene-based conjugated polymers. Macromolecules 2002, 35, 6907−6914. doi: 10.1021/ma020241m

    49. [49]

      Rodrigues, R. F.; Charas, A.; Morgado, J.; Maçanita, A. Self-organization and excited-state dynamics of a fluorene-bithiophene copolymer (F8T2) in solution. Macromolecules 2010, 43, 765−771. doi: 10.1021/ma902096p

    50. [50]

      Lee, S. W.; Kim, C. H.; Lee, S. G.; Jeong, J. H.; Choi, J. H.; Lee, E. S. Mobility improvement of P3HT thin film by high-voltage electrostatic field-assisted crystallization. Electron. Mater. Lett. 2013, 9, 471−476. doi: 10.1007/s13391-013-0033-1

    51. [51]

      Ren, J.; Li, X.; Ma, T.; Liu, B.; Zhang, H.; Li, T.; Lu, D. Dynamic evolution from chain disorder to order of PTB7 condensed state structures under external fields. ACS Appl. Mater. Interfaces 2018, 10, 28093−28102. doi: 10.1021/acsami.8b08938

  • 加载中
    1. [1]

      Yi ZhongJie CaiLi-Na Zhang . A Review of Chitin Solvents and Their Dissolution Mechanisms. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2459-x

    2. [2]

      WANG WeiWANG LihuaQIN Wen . DILUTE SOLUTION BEHAVIOR OF CHITOSAN IN DIFFERENT ACID SOLVENTS*. Chinese J. Polym. Sci,

    3. [3]

      WANG Xinjiu . STATISTICAL MODELS FOR SEMI-RIGID NEMATIC POLYMERS*. Chinese J. Polym. Sci,

    4. [4]

      . COMPUTER SIMULATION OF A SINGLE POLYMER CHAIN IN DIFFERENT SOLVENTS*. Chinese J. Polym. Sci,

    5. [5]

      Wen-ping ZhangXiang-hong WangLin-li He . Aggregation Behavior of Cyclic Rod-Coil Diblock Copolymers in Selective Solvents. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1763-y

    6. [6]

      Zeng-qi XieBing YangYu-guang MaJia-cong Shen . π-CONJUGATED OLIGOMERS IN SUPRAMOLECULAR CRYSTALS AND THEIR OPTOELECTRONIC FUNCTIONS. Chinese J. Polym. Sci,

    7. [7]

      Yi-Xin LiuHong-Dong Zhang . Structures and Surface States of Polymer Brushes in Good Solvents: Effects of Surface Interactions. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2100-4

    8. [8]

      Kai ZhangXiao-yu LiuBo-wei XuYong CuiMing-liang SunJian-hui Hou . High-performance Fullerene-free Polymer Solar Cells with Solution-processed Conjugated Polymers as Anode Interfacial Layer. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1888-7

    9. [9]

      G. Santhana KrishnanA. BurkanudeenN. MuraliHemant Phadnis . STUDIES ON MOLECULAR WEIGHT DISTRIBUTION OF CARBON FIBER POLYMER PRECURSORS SYNTHESIZED USING MIXED SOLVENTS. Chinese J. Polym. Sci, doi: 10.1007/s10118-012-1163-x

    10. [10]

      Yi-Wu LiuLi-Shuang TangLun-Jun QuSi-Wei LiuZhen-Guo ChiYi ZhangJia-Rui Xu . Synthesis and Properties of High Performance Functional Polyimides Containing Rigid Nonplanar Conjugated Fluorene Moieties. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2225-0

    11. [11]

      . THE Θ-STATE OF A SINGLE HOMOPOLYMER CHAIN IN SOLUTION*. Chinese J. Polym. Sci,

    12. [12]

      XIE ZhimingLI ZhuomeiLIANG Guomei . STUDY ON THE CONFORMATIONAL PROPERTIES OF RIGID POLYELECTROLYTE SPU IN SOLUTION. Chinese J. Polym. Sci,

    13. [13]

      YANG XiaozhenLU QunFENG LiwenZHU Shannong . A STUDY ON CONFORMATIONAL STRUCTURE OF MODEL COMPOUND OF NOVEL SIDE CHAIN LIQUID CRYSTALLINE POLYMER BY USING HIGH RESOLUTION SOLID STATE 13C-NMR. Chinese J. Polym. Sci,

    14. [14]

      Musa Kaleem BalochMunaza QayumMohsin NawazSher Akber . SOLVENT QUALITY AND SOLUTION BEHAVIOR OF NYLON 12. Chinese J. Polym. Sci,

    15. [15]

      QIU XingpingDU YuminZHANG LinaQIAN Baogong . VISCOSITY BEHAVIOR OF LACQUER POLYSACCHARIDE IN AQUEOUS SOLUTION. Chinese J. Polym. Sci,

    16. [16]

      . RHEOLOGICAL BEHAVIOR OF ERWINIA GUM IN AQUEOUS SOLUTION*. Chinese J. Polym. Sci,

    17. [17]

      Omar MeladOmar Abu-TiemRajai Baraka . VISCOMETRIC INVESTIGATIONS OF POLYVINYLPYRROLIDONE IN MIXED SOLVENTS AND WITH VARYING TEMPERATURE. Chinese J. Polym. Sci,

    18. [18]

      Zhi-Guo ZhangYang BaiYongfang Li . Benzotriazole Based 2D-conjugated Polymer Donors for High Performance Polymer Solar Cells. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2496-5

    19. [19]

      . STUDIES ON THE NATURE OF THE MACROMOLECULAR CONDENSED STATE OF "NASCENT" ULTRA HIGH MOLAR MASS POLYETHYLENE*. Chinese J. Polym. Sci,

    20. [20]

      . OBSERVATIONS ON DEFORMATION BEHAVIOR OF HIGH PERFORMANCE FIBERS BY POLARIZING OPTICAL MICROSCOPY. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(0)
  • Abstract views(287)
  • HTML views(89)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return