Citation: Shukla, P.; Saxena, P. Polymer nanocomposites in sensor applications: a review on present trends and future scope. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2553-8 doi: 10.1007/s10118-021-2553-8 shu

Polymer Nanocomposites in Sensor Applications: A Review on Present Trends and Future Scope

  • Corresponding author: Prashant Shukla, E-mail: drprashantdb1980@gmail.com
  • Received Date: 2020-10-28
    Available Online: 2021-03-22

Figures(13) / Tables(3)

  • Polymers are crucial constituents of modern electronic devices. They can be used in their pristine, composite or nanocomposite forms for several domestic and industrial applications with innumerable unique possibilities. Polymer nanocomposites have gained wide theoretical interest and numerous practical applications in diverse fields of science and technology as they bestow the materials not only with virtuous processability but also with exceptional functionalities. It is evidenced that the electrical conductance of polymer nanocomposite is governed by the conductive filler networks within the polymer matrix. Hence, insignificant variation in the conductive networks can result in noteworthy variations in the output electric signal of polymer nanocomposite. Exploiting this stimuli-responsive performance of conductive networks to the physical parameters, polymer nanocomposites can be harnessed to fabricate novel sensitive sensors to detect vital physical parameters viz. strain/stress, pressure, temperature, solvent or vapor. Technical and phenomenological studies on polymer nanocomposites are still enduring. Advanced explanations are being sought but the mechanisms governing the formation of several polymer nanocomposites are still topics of debate in the material science community. Their in-depth investigation requires copious scientific work. This review analytically sketches the synthesis, microstructures, physiochemical properties and the underlying mechanisms for stimuli-responsiveness to the physical parameters of the polymer nanocomposites as well as their applications in various sensitive sensors and detectors. Thus, it became evocative for this review to focus on their processing methodologies, physiochemical physiognomies, classification and probable potentials of polymer nanocomposites. This review primarily presents the current literature survey on polymer composites and the gap areas in the study encourages the objective of the present review article. Finally, the status, perspectives and the advantages of specific polymer nanocomposites at present are summarized. The attention of this review is drawn to the present trends, challenges and future scope in this field of study. Finally, the vital concern and future challenge in utilizing the stimulus responsive behavior of polymer nanocomposites to design versatile sensors for real time applications are elaborately discussed.
  • 加载中
    1. [1]

      MacDiarmid, A. G. Synthetic metals: a novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581−2590. doi: 10.1002/1521-3773(20010716)40:14%3C2581::AID-ANIE2581%3E3.0.CO;2-2

    2. [2]

      Ramakrishnan, S. Conducting polymers from a laboratory curiosity to the market place. Resonance-J. Sci. Edu. 1997, 2, 48−58. doi: 10.1007/s12045-011-0141-x

    3. [3]

      Schultze, J. W.; Karabulutu, H. Application potential of conducting polymers. Electrochim. Acta 2005, 50, 1739−1745. doi: 10.1016/j.electacta.2004.10.023

    4. [4]

      Bakhshi, A. K.; Bhalla, G. Electrically conducting polymers: materials of the twenty first century. J. Scientif. Indust. Res. 2004, 63, 715−728.

    5. [5]

      Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436−2440. doi: 10.1002/adma.201104795

    6. [6]

      Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes. Adv. Polym. Sci. 1999, 138, 107−147. doi: 10.1007/3-540-69711-X_3

    7. [7]

      Kai, W.; Hirota, Y.; Hua, L.; Inoue, Y. Thermal and mechanical properties of a poly(ε-caprolactone)/graphite oxide composite. J. Appl. Poly. Sci. 2008, 107, 1395−1400. doi: 10.1002/app.27210

    8. [8]

      Paul, D. R.; Robeson, L. M. Polymer nanotechnology: nanocomposites. Polymer 2008, 49, 3187−3204. doi: 10.1016/j.polymer.2008.04.017

    9. [9]

      Auffan, M.; Rose, J.; Bottero, J. Y.; Lowry, G. V.; Jolivet, J. P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 10, 634−641. doi: 10.1038/nnano.2009.242

    10. [10]

      Xue, L.; Dai, S.; Li, Z. Biodegradable shape-memory block co-polymers for fast self-expandable stents. Biomaterials 2010, 31, 8132−8140. doi: 10.1016/j.biomaterials.2010.07.043

    11. [11]

      Kim, H.; Abdala, A. A.; Macoshko, C. W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515−6530. doi: 10.1021/ma100572e

    12. [12]

      Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene based polymer nanocomposites. Polymer 2011, 52, 5−25. doi: 10.1016/j.polymer.2010.11.042

    13. [13]

      Wu, D.; Zhang, F.; Liang, H.; Feng, X. Nanocomposites and macroscopic materials: Assembly of chemically modified graphene sheets. Chem. Soc. Rev. 2012, 42, 6160−6177. doi: 10.1039/C2CS35179J

    14. [14]

      Layek, R. K.; Nand, A. K. A review on synthesis and properties of polymer functionalized graphene. Polymer 2013, 54, 5087−5103. doi: 10.1016/j.polymer.2013.06.027

    15. [15]

      Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 2014, 39, 1934−1972. doi: 10.1016/j.progpolymsci.2014.03.001

    16. [16]

      Wang, M.; Duan, X.; Xu, Y.; Duan, X. Functional three-dimensional graphene/polymer composites. ACS Nano 2016, 10, 7231−7247. doi: 10.1021/acsnano.6b03349

    17. [17]

      Phiri, J.; Gane, P.; Maloney, T. C. General overview of graphene: production, properties and application in polymer composites. Mat. Sci. Eng. B 2017, 215, 9−28. doi: 10.1016/j.mseb.2016.10.004

    18. [18]

      Kumar, S. K.; Brian, C.; Benicewicz, R. A.; Vaja Karen, W. 50th Anniversary perspective: are polymer nanocomposites practical for applications? Macromolecules 2017, 50, 714−731. doi: 10.1021/acs.macromol.6b02330

    19. [19]

      Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q. Parallel carbon nanotube stripes in polymer thin film with tunable microstructures and anisotropic conductive properties. Compos. Part A: Appl. Sci. Manuf. 2015, 69, 240−246. doi: 10.1016/j.compositesa.2014.11.023

    20. [20]

      Huang, J.; Zhu, Y.; Jiang, W.; Yin, J.; Tang, Q.; Yang, X. Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy. ACS Appl. Mater. Interfaces 2014, 6, 1754−1758. doi: 10.1021/am404758d

    21. [21]

      Mao, C.; Huang, J.; Zhu, Y.; Jiang, W.; Tang, Q.; Ma, X. Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly. J. Phys. Chem. Lett. 2013, 4, 43−47. doi: 10.1021/jz301811b

    22. [22]

      Bovery, F.; Winslow, F.H. Chapter 1-The nature of macromolecules. In Macromolecules-an introduction to polymer science. Bovery, F.; Winslow, F. H. (eds.), Academic Press, 1979, 1−21.

    23. [23]

      Cervenka, A. Advantages and disadvantages of thermoset and thermoplastic matrices for continuous fibre composites. In Mechanics of composite materials and structures. Soares, C. M. M.; Freitas, M. J. M. (eds) NATO Science Series (Series E: Mathematical and Physical Sciences) 1999, 361, 291−298.

    24. [24]

      Friedrich, K.; Haupert, F.; Hou, M.; Klinkmuller, V. Fundamental aspects in manufacturing of thermoplastic composite materials In Advanced technology for design and fabrication of composite materials and science. Springer. Sih, G. C.; Carpinteri, A.; Surace, G. (eds) Dordrecht, 1995, 333−348

    25. [25]

      Mallick, P. Fibre reinforced composites: materials, manufacturing and design. 2nd Edition, Marcel Dekker Inc., New York, 1993.

    26. [26]

      Yin, Z.; Wu, S.; Zhou, X.; Huang, X.; Zhang, B.; Zhang, H. Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells. Small 2010, 6, 307−312. doi: 10.1002/smll.200901968

    27. [27]

      Sankaran, S.; Deshmukh, K.; Ahamed, M. B.; Pasha, S. K. K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A: Appl. Sci. Manuf. 2018, 114, 49−71. doi: 10.1016/j.compositesa.2018.08.006

    28. [28]

      Chee, W. K., Lim, H. N., Huang, N. M., Harrison, I. Nanocomposites of graphene/polymers: a review. RSC Adv. 2015, 5, 68014−68051. doi: 10.1039/C5RA07989F

    29. [29]

      Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S. Lee, J. H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350−1375. doi: 10.1016/j.progpolymsci.2010.07.005

    30. [30]

      Compton, O. C.; Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6, 711−723. doi: 10.1002/smll.200901934

    31. [31]

      Huang, X.; Yin, Z.; Wu, S.; Qi, X.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: synthesis, characterization, properties, and applications. Small 2011, 7, 1876−1902. doi: 10.1002/smll.201002009

    32. [32]

      Young, R. J.; Kinloch, I. A.; Gong, L.; Novoselov, K. The mechanics of graphene nanocomposites: a review. Compos. Sci. Technol. 2012, 72, 1459−1476. doi: 10.1016/j.compscitech.2012.05.005

    33. [33]

      Bhattacharya, M. Polymer nanocomposites-a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials 2016, 9, 262. doi: 10.3390/ma9040262

    34. [34]

      Yang, M.; Hou, Y.; Kotov, N. A. Graphene-based multilayers: critical evaluation of materials assembly techniques. Nano Today 2012, 7, 430−447. doi: 10.1016/j.nantod.2012.08.006

    35. [35]

      Sun, X.; Sun, H.; Li, H.; Peng, H. Developing polymer composite materials: carbon nanotubes or graphene? Adv. Mater. 2013, 25, 5153−5176. doi: 10.1002/adma.201301926

    36. [36]

      Alam, F. E.; Dai, W.; Yang, M.; Du, S.; Li, X.; Yu, J.; Jiang, N.; Lin, C. T. In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity. J. Mater. Chem. A 2017, 5, 6164−6169. doi: 10.1039/C7TA00750G

    37. [37]

      Narimissa, E.; Gupta, R. K.; Bhaskaran, M.; Sriram, S. Influence of nano-graphite platelet concentration on onset of crystalline degradation in polylactide composites. Polym. Deg. Stabil. 2012, 97, 829−832. doi: 10.1016/J.POLYMDEGRADSTAB.2012.02.010

    38. [38]

      Elham, A.; Masoumeh, G.; Saeed, S. Electrochemical sensing based on carbon nanoparticles: a review. Sensor. Actuat. B 2019, 293, 183−209. doi: 10.1016/j.snb.2019.04.075

    39. [39]

      Cui, X.; Sun, S.; Han, B.; Yun, X.; Ouyang, J.; Zeng, S.; Ou, J. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites. Compos. Part A: Appl. Sci. Manuf. 2017, 93, 49−58. doi: 10.1016/j.compositesa.2016.11.017

    40. [40]

      Kubacka, A.; Serrano, C.; Ferrer, M.; Lunsdorf, H.; Bielecki, P.; Cerrada, M. A. L.; Gracia, M. High performance dual action polymer- TiO2 nanocomposite film via melting processing. Nano Lett. 2007, 7, 2529−2534. doi: 10.1021/nl0709569

    41. [41]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V. Electric field effect in atomically thin carbon films. Science 2004, 306, 666−669. doi: 10.1126/science.1102896

    42. [42]

      Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505−509. doi: 10.1038/nnano.2009.177

    43. [43]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A. Graphene-based composite materials. Nature 2006, 442, 282−286. doi: 10.1038/nature04969

    44. [44]

      Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787−1799. doi: 10.1021/cr970102g

    45. [45]

      Huang, J.; Mao, C.; Zhu, Y.; Jiang, W.; Yang, X. Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 2014, 73, 267−274. doi: 10.1016/j.carbon.2014.02.063

    46. [46]

      Chen, J.; Cui, X.; Zhu, Y.; Jiang, W.; Sui, K. Design of superior conductive polymer composite with precisely controlling carbon nanotubes at the interface of a co-continuous polymer blend via a balance of π-π interactions and dipole-dipole interactions. Carbon 2017, 114, 441−448. doi: 10.1016/j.carbon.2016.12.048

    47. [47]

      Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Natural sunlight-actuated shape memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem. Eng. J. 2020, 382, 122823. doi: 10.1016/j.cej.2019.122823

    48. [48]

      Hishiyama, Y.; Kaburagi, Y.; Inagaki, M. Chemistry and physics of carbon. Marcel Dekker Inc. 1991, 23, 2−68.

    49. [49]

      Fim, F.; Guterres, J. M.; Basso, N. R. S.; Galland, G. B. Polyethylene/graphite nanocomposites obtained by in situ polymerization. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 692. doi: 10.1002/pola.23822

    50. [50]

      Cho, D.; Lee, S.; Yang, G.; Fukushima, H.; Drzal, L. T. Dynamic mechanical and thermal properties of phenylethynyl terminated polyimide composites reinforced with expanded graphite nanoplatelets. Macromol. Mater. Eng. 2005, 290−179. doi: 10.1002/mame.200400281

    51. [51]

      Sumin, K.; Drzal, L. T. Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for Reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. J. Adh. Sci. Technol. 2009, 23, 1623−1638. doi: 10.1163/156856109X440984

    52. [52]

      Ramanathan, T.; Abdala, A.; Stankovich, S. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327−331. doi: 10.1038/nnano.2008.96

    53. [53]

      Xu, D.; Sridhar, V.; Pham, T. T.; Kim, J. K. Dispersion, mechanical and thermal properties of nano graphite platelets reinforced flouro-elastomer composites. e-Polymers 2008, 8, 23. doi: 10.1515/epoly.2008.8.1.237

    54. [54]

      Chen, J. ; Cui, X.; Sui, K.; Zhu. Y.; Jiang, W. Balance the electrical properties and mechanical properties of carbon black filled immiscible polymer blends with a double percolation structure. Compos. Sci. Technol. 2017, 140, 99−105. doi: 10.1016/j.compscitech.2016.12.029

    55. [55]

      Tjong, S. C.; Mai, Y. W. Physical properties and applications of polymer nanocomposites. 1st Edition Woodhead Publishing, United Kingdom, 2010.

    56. [56]

      Alateyah, A. L.; Dhakal, H. N.; Zhang, Z. Y. Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Adv. Polym. Technol. 2013, 32, 21368−21403. doi: 10.1002/adv.21368

    57. [57]

      Sahu, D.; Sarkar, N.; Mohapatra, P.; Swain, S. K. Nano gold hybrid polyvinyl alcohol films for sensing of Cu2+ ions. Chem. Select 2019, 4, 9784−9793. doi: 10.1002/slct.201902167

    58. [58]

      Sahu, D.; Sarkar, N.; Sahoo, G.; Mohapatra, P.; Sarat, S. K. Nano silver imprinted polyvinyl alcohol nanocomposite thin films for Hg2+ sensor. Sensor. Actuat. B: Chem. 2017, 246, 96−107. doi: 10.1016/j.snb.2017.01.038

    59. [59]

      Rueda, M. M.; Auscher, M.; Fulchiron, R.; Perie, T.; Martin, G.; Sonntag, P.; Cassagnau, P. Rheology and applications of highly filled polymers. A review of current understanding. Prog. Polym. Sci. 2017, 66, 22−53. doi: 10.1016/j.progpolymsci.2016.12.007

    60. [60]

      Sun, H.; Chiu, Y.; Chen, W. Renewable polymeric materials for electronic applications. Polym. J. 2017, 49, 61−73. doi: 10.1038/pj.2016.95

    61. [61]

      Das, T. K.; Prusty, S. Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 2013, 52, 319−333. doi: 10.1080/03602559.2012.751410

    62. [62]

      Hulanick, A.; Glab, S.; Ingman, F. Chemical sensors definitions and classifications. Pure Appl. Chem. 1991, 63, 1247−1250. doi: 10.1351/pac199163091247

    63. [63]

      Aswal, D. K.; Gupta, S. K. Science and technology of chemiresistive gas sensor, Nova Science Publishers, New York. 2007, 33−94.

    64. [64]

      Ramgir, N.; Datta, N.; Kaur, M.; Kailasaganapathi, S.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects. Colloids Surf. A: Physiochem. Eng. Asp. 2013, 439, 101−116. doi: 10.1016/j.colsurfa.2013.02.029

    65. [65]

      Tran, H. D.; Li, D.; Kaner, R. B. 1D conducting polymer nanostructures: one dimensional conducting polymer nanostructures: bulk synthesis and applications. Adv. Mater. 2009, 21, 1487−1499. doi: 10.1002/adma.200802289

    66. [66]

      Wang, T.; Huang, D.; Yang, Z. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 2016, 8, 95−119. doi: 10.1007/s40820-015-0073-1

    67. [67]

      Yoon, H.; Xie, J.; Abraham, J. K.; Varadan, V. K.; Ruffin, P. B. An adaptive inverse method of control for a piezoelectric actuator. Smart Mater. Struct. 2006, 15, 14−20. doi: 10.1088/0964-1726/15/1/004

    68. [68]

      Grozdanov, A.; Tomova, A.; Dimitrov, A.; Polymer nanocomposite films as a potential Sensor. In Advanced sensors for safety and security. NATO science for peace and security series B: physics and biophysics. Vaseashta A.; Khudaverdyan S. (eds) 2013, 151-162. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-94-007-7003-4_12

    69. [69]

      An, K. H.; Jeong, S. Y.; Hwang, H. R.; Lee, Y. H. Enhanced sensitivity of a gas sensor incorporating single walled carbon nanotube-polypyrrole nanocomposites. Adv. Mater. 2004, 16, 1005−1009. doi: 10.1002/adma.200306176

    70. [70]

      Al-Mashat, L. L.; Shin, K.; Kalantar-Zadeh, K.; Plessis, J. D.; Han, S. H.; Kojima, R. W.; Kaner, R. B.; Li, D.; Gou, X. L.; Ippolito, S. J.; Wlodarski, W. Graphene/polyaniline nanocomposite for hydrogen sensing. Phys. Chem. C 2010, 114, 16168−16173. doi: 10.1021/jp103134u

    71. [71]

      Yu, X.; Zhang, W.; Zhang, P.; Su, Z. Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges. Biosens. Bioelectron. 2017, 89, 72−84. doi: 10.1016/j.bios.2016.01.081

    72. [72]

      Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 2018, 168, 388−396. doi: 10.1016/j.compscitech.2018.10.025

    73. [73]

      Chen, J.; Zhu, Y.; Jiang, W. A stretchable and transparent strain sensor based on sandwich-like PDMS/CNTs/PDMS composite containing an ultrathin conductive CNT layer. Compos. Sci. Technol. 2020, 186, 107938. doi: 10.1016/j.compscitech.2019.107938

    74. [74]

      Omar, N. A. S.; Fen, Y. W.; Saleviter, S.; Kamil, Y. M.; Mohd, W.; Mustaqim, E.; Daniyal, M.; Abdullah, J.; Mahdi, M. A. Experimental evaluation on surface plasmon resonance sensor performance based on sensitive hyperbranched polymer nanocomposite thin films. Sensor. Actuat. A: Phys. 2020, 303, 111830. doi: 10.1016/j.sna.2020.111830

    75. [75]

      Thompson, C. M.; Smith, J. G.; Connell, J. W. Polyimides prepared from 4,4’-(2-diphenylphosphinyl-1,4-phenylenedioxy) diphthalic anhydride for potential space applications. High Perform. Polym. 2003, 15, 181−195. doi: 10.1177%2F0954008303015002003

    76. [76]

      Samwel, S. W. Low earth orbital atomic oxygen erosion effect on space craft material. Space Res. J. 2014, 7, 1−13. doi: 10.3923/SRJ.2014.1.13

    77. [77]

      Buczala, D. M.; Brunsvold, A. L.; Minton, T. K. Erosion of Kapton H® by hyperthermal atomic oxygen. J. Spacecrafts Rockets 2006, 43, 421−425. doi: 10.2514/1.16402

    78. [78]

      Wanasinghe, D.; Aslani, F.; Ma, G.; Habibi, D. Review of polymer composites with diverse nanofillers for electromagnetic interference shielding. Nanomater. 2020, 10, 541−586. doi: 10.3390/nano10030541

    79. [79]

      Carpi, F.; Rossi, D. Colours from electroactive polymers: Electrochromic, electroluminescent and laser devices based on organic materials. Optics and Laser Technol 2006, 38, 292−305. doi: 10.1016/j.optlastec.2005.06.019

    80. [80]

      Plesu, N.; Ilia, G.; Pascariu, A.; Vlase, G. Preparation, degradation of polyaniline doped with organic phosphorus acids and corrosion essays of polyaniline-acrylic blends. Synth. Metals 2006, 156, 230−238. doi: 10.1016/j.synthmet.2005.11.006

    81. [81]

      Snook, G. A.; Kao, P.; Best, A. S. Conducting-polymer-based super capacitor devices and electrodes. J. Power Sources 2011, 196, 1. doi: 10.1016/j.jpowsour.2010.06.084

    82. [82]

      Rong, A. M.; Zhang, M.; Ruan, W. Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater. Sci. Technol. 2006, 22, 787−796. doi: 10.1179/174328406X101247

    83. [83]

      Sree, U. B.; Yamamoto, Y.; Deore, B.; Shugi, H.; Nagaoka, T. Characterization of polypyrrole nanofilms for membrane based sensors. Synth. Met. 2002, 131, 161−165. doi: 10.1016/S0379-6779(02)00179-0

    84. [84]

      Wang, J.; Bunimovich, Y. L.; Sui, G.; Savvas, S.; Wang, J.; Guo, Y. Electrochemical fabrication of conducting polymer nanowires in an integrated micro fluidic system. Chem. Commun. 2006, 3075−3077. doi: 10.1039/B604426C

    85. [85]

      Ma, Y.; Zhang, J.; Zhang, G.; He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 2004, 126, 7097−7101. doi: 10.1021/ja039621t

    86. [86]

      Alexandre, M.; Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2008, R 28, 1−63. doi: 10.1016/S0927-796X(00)00012-7

    87. [87]

      Ray, S. S.; Okamoto, M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003, 28, 1539−1641. doi: 10.3390/ma2030992

    88. [88]

      Buryachenko, V. A.; Roy, A.; Lafdi, K.; Anderson, K. L.; Chellapilla, S. Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation. Compos. Sci. Technol. 2005, 65, 2435−2465. doi: 10.1016/j.compscitech.2005.08.005

    89. [89]

      Xie, X. L.; Mai, Y. W.; Zhou, X. P. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater. Sci. Eng. 2005, R 49, 89−112. doi: 10.1016/j.mser.2005.04.002

    90. [90]

      Luo, Y.; Zhang, Y.; Zhao, Y.; Fang, X.; Ren, J.; Weng, W.; Jiang, Y.; Sun, H.; Wang, B.; Cheng, X. and Peng, H. Aligned carbon nanotube/molybdenum disulfide hybrids for effective fibrous supercapacitors and lithium ion batteries. J. Mater. Chem. A 2015, 3, 17553−17557. doi: 10.1039/C5TA04457J

    91. [91]

      Feynman, R. P.; There's plenty of room at the bottom[1959]. J. Microelectromechanical Systems 1992, 1, 60-66. https://resolver.caltech.edu/CaltechES:23.5.1960Bottom.

    92. [92]

      David, A. J.; John, F. W. The Interface and Interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym. Rev. 2012, 52, 321−354. doi: 10.1080/15583724.2012.710288

    93. [93]

      Li, S.; Qin, J.; Fornara, A.; Toprak, M.; Muhammed, M.; Kim, D. K. Synthesis and magnetic properties of bulk transparent PMMA/Fe-oxide nanocomposites. Nanotechnology 2009, 20, 185607. doi: 10.1088/0957-4484/20/18/185607

    94. [94]

      Wu, Y.; Jia, P.; Xu, L.; Chen, Z.; Xiao, L.; Sun, J.; Zhang, J.; Huang, Y.; Bielawski, C. W.; Geng, J. Tuning the surface properties of graphene oxide by surface-initiated polymerization of epoxides: an efficient method for enhancing gas separation. ACS Appl. Mater. Interfaces 2017, 9, 4998−5005. doi: 10.1021/acsami.6b14895

    95. [95]

      Chen, X.; Huang, H.; Shu, X.; Liu, S.; Zhao, J. Preparation and properties of a novel graphene fluoroxide/polyimide nanocomposite film with a low dielectric constant. RSC Adv. 2017, 7, 1956−1965. doi: 10.1039/C6RA25343A

    96. [96]

      Sharma, M.; Gao, S.; Mader, E.; Sharma, H.; Wei, L. Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35−50. doi: 10.1016/j.compscitech.2014.07.005

    97. [97]

      Karger-Kocsis, J.; Mahmood, H.; Pegoretti, A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog. Mat. Sci. 2015, 73, 1−43. doi: 10.1016/j.pmatsci.2015.02.003

    98. [98]

      Salvetat, J. P.; Briggs, A. D.; Bonard, J. M.; Bacsa, R. R.; Kulik, A. J.; Stockli, T.; Burnham, N. A.; Forro, L. A. Elastic and shear moduli of single-walled carbon nanotube ropes. Phy. Rev. Lett. 1999, 82, 944−947. doi: 10.1103/PhysRevLett.82.944

    99. [99]

      Zhang, Y. Q.; Lee, J. H.; Jang, H. J.; Nah, C. W. Preparing PP/clay nanocomposites using a swelling agent. Compos. Part B: Eng. 2004, 35, 133−138. doi: 10.1016/S1359-8368(03)00068-4

    100. [100]

      Supova, M.; Martynkova, G. S.; Barabaszova, K. Effect of nanofillers dispersion in polymer matrices: a review. Sci. Adv. Mat. 2011, 3, 1−25. doi: 10.1166/sam.2011.1136

    101. [101]

      Needleman, A.; Borders, T. L.; Brinson, L. C. Effect of an interphase region on debonding of a CNT reinforced polymer composite. Compos. Sci. Technol. 2010, 70, 2207−2215. doi: 10.1016/j.compscitech.2010.09.002

    102. [102]

      Safaei, M.; Sheidaei, A.; Baniassadi, M. An interfacial debonding-induced damage model for graphite nanoplatelet polymer composites. Comput. Mater. Sci. 2015, 96, 191−199. doi: 10.1016/j.commatsci.2014.08.036

    103. [103]

      Liu, H.; Brinson, L. C. Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos. Sci. Technol. 2008, 68, 1502−1512. doi: 10.1016/j.compscitech.2007.10.033

    104. [104]

      Balberg, I. Recent developments in continuum percolation. Philos. Mag. Part B 1987, 56, 991−1003. doi: 10.1080/13642818708215336

    105. [105]

      Kruckel, J.; Stary, Z.; Triebel, C.; Schubert, D. W.; Munstedt, H. Conductivity of polymethylmethacrylate filled with carbon black or carbon fibres under oscillatory shear. Polymer 2012, 53, 395−402. doi: 10.1016/j.polymer.2011.11.041

    106. [106]

      Mutiso, R. M.; Winey, K. I. Electrical properties of polymer nanocomposites containing rod-like nanofillers. Prog. Polym. Sci. 2015, 40, 63−84. doi: 10.1016/j.progpolymsci.2014.06.002

    107. [107]

      Alig, I.; Potschke, P.; Lellinger, D.; Skipa, T.; Pegel, S.; Kasaliwal, G. R.; Villmow, T. Establishment, morphology and properties of carbon nanotube networks in polymer melts. Polymer 2012, 53, 4−28. doi: 10.1016/j.polymer.2011.10.063

    108. [108]

      Bauhofer, W.; Kovacs, J. Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486−1498. doi: 10.1016/j.compscitech.2008.06.018

    109. [109]

      Zeng, Y.; Liu, P.; Du, J.; Zhao, L.; Ajayan, P. M.; Cheng, H. M. Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube-polymer interactions. Carbon 2010, 48, 3551−3558. doi: 10.1016/j.carbon.2010.05.053

    110. [110]

      Bréchet, Y.; Cavaillé, J. Y.; Chabert, E.; Chazeau, L.; Dendievel, R.; Flandin, L.; Gauthier, C. Polymer based nanocomposites: effect of filler-filler and filler-matrix interactions. Adv. Eng. Mater. 2001, 3, 571. doi: 10.1002/1527-2648(200108)3:8<571::AID-ADEM571>3.0.CO;2-M

    111. [111]

      Ma, H. M.; Gao, X. L. A three-dimensional Monte Carlo model for electrically conductive polymer matrix composites filled with curved fibers. Polymer 2008, 49, 4230−4238. doi: 10.1016/j.polymer.2008.07.034

    112. [112]

      Bao, W. S.; Meguid, S. A.; Zhu, Z. H.; Pan, Y.; Weng, G. J. A novel approach to predict the electrical conductivity of multifunctional nanocomposites. Mech. Mater. 2012, 46, 129−138. doi: 10.1016/j.mechmat.2011.12.006

    113. [113]

      Lu, W.; Chou, T. W.; Thostenson, E. T. A three-dimensional model of electrical percolation thresholds in carbon nanotube-based composites. Appl. Phys. Lett. 2010, 96, 223106. doi: 10.1063/1.3443731

    114. [114]

      Li, C.; Thostenson, E. T.; Chou, T. W. Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos. Sci. Technol. 2008, 68, 1445−1452. doi: 10.1016/j.compscitech.2007.10.056

    115. [115]

      Chen, Y.; Wang, S.; Pan, F.; Zhang, J. A numerical study on electrical percolation of polymer-matrix composites with hubrid fillers of carbon nanotubes and carbon black. J. Nanomater. 2014, 9, 614797−614806. doi: 10.1155/2014/614797

    116. [116]

      Gong, S.; Zhu, Z. H.; Meguid, S. A. Anisotropic electrical conductivity of polymer composites with aligned carbon nanotubes. Polymer 2015, 56, 498−506. doi: 10.1016/j.polymer.2014.11.038

    117. [117]

      Cho, H. W.; Nam, S.; Lim, S.; Kim, D.; Kim, H.; Sung, B. J. Effects of size and interparticle interaction of silica nanoparticles on dispersion and electrical conductivity of silver/epoxy nanocomposites. J. Appl. Phys. 2014, 115, 154307. doi: 10.1063/1.4871669

    118. [118]

      Feng, Y.; Ning, N.; Zhang, L.; Tian, M.; Zou, H.; Mi, J. Evolution of conductive network and properties of nanorod/polymer composite under tensile strain. J. Chem. Phys. 2013, 139, 024903. doi: 10.1063/1.4812752

    119. [119]

      Cho, H. W.; Kim, S. W.; Kim, J.; Kim, U. J.; Im, K.; Park, J. J.; Sung, B. J. Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation. J. Chem. Phys. 2016, 144, 194903. doi: 10.1063/1.4949759

    120. [120]

      Ambrosetti, G.; Grimaldi, C.; Balberg, I.; Maeder, T.; Danani, A.; Ryser, A. Solution of the tunneling-percolation problem in the nanocomposite regime. Phys. Rev. B 2010, 81, 155434. doi: 10.1103/PhysRevB.81.155434

    121. [121]

      Ambrosetti, G.; Johner, N.; Grimaldi, C.; Maeder, T.; Ryser, P.; and Danani, P. Electron tunneling in conductor-insulator composites with spherical fillers. J. Appl. Phys. 2009, 106, 016103. doi: 10.1063/1.3159040

    122. [122]

      Ambrosetti, G.; Johner, N.; Grimaldi, C.; Danani, A.; and Ryser, P. Percolative properties of hard oblate ellipsoids of revolution with a soft shell. Phys. Rev. E 2008, 78, 061126. doi: 10.1103/PhysRevE.78.061126

    123. [123]

      Chatterjee, A. P. Connectedness percolation in polydisperse rod systems: a modified Bethe lattice approach. J. Chem. Phys. 2010, 132, 224905. doi: 10.1063/1.3436716

    124. [124]

      Chatterjee, A. P. Connectedness percolation in monodisperse rod systems: clustering effects. J. Phys.: Condens. Matter 2011, 23, 375101. doi: 10.1088/0953-8984/23/37/375101

    125. [125]

      Chatterjee, A. P. Geometric percolation in polydisperse systems of finite-diameter rods: effects due to particle clustering and inter-particle correlations. J. Chem. Phys. 2012, 137, 134903. doi: 10.1063/1.4755957

    126. [126]

      Chatterjee, A. P. A percolation-based model for the conductivity of nanofiber composites. J. Chem. Phys. 2013, 139, 224904. doi: 10.1063/1.4840098

    127. [127]

      Chatterjee, A. P. A lattice-based approach to percolation in penetrable sphere systems. J. Stat. Phys. 2014, 156, 586−592. doi: 10.1007/s10955-014-1013-z

    128. [128]

      Chatterjee, A. P. Percolation in polydisperse systems of aligned rods: a lattice-based analysis. J. Chem. Phys. 2014, 140, 204911. doi: 10.1063/1.4879217

    129. [129]

      Chatterjee, A. P. Percolation thresholds for polydisperse circular disks: A lattice-based exploration. J. Chem. Phys. 2014, 141, 034903. doi: 10.1063/1.4890280

    130. [130]

      Chatterjee, A. P. A lattice model for connectedness percolation in mixtures of rods and disks. J. Phys.: Condens. Matter. 2015, 27, 315303. doi: 10.1088/0953-8984/27/31/315303

    131. [131]

      Chatterjee, A. P. Connectedness percolation in isotropic systems of monodisperse spherocylinders. J. Phys.: Condens. Matter 2015, 27, 375302. doi: 10.1088/0953-8984/27/37/375302

    132. [132]

      Kyrylyuk, A. V.; Schoot, P. V. Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc. Natl. Acad. Sci. 2008, 105, 8221. doi: 10.1073/pnas.0711449105

    133. [133]

      Kyrylyuk, A., Hermant, M., Schilling, T. Controlling electrical percolation in multicomponent carbon nanotube dispersions. Nat. Nanotechnol. 2011, 6, 364−369. doi: 10.1038/nnano.2011.40

    134. [134]

      Otten, R. H.; Schoot, P. V. Continuum percolation of polydisperse nanofillers. Phys. Rev. Lett. 2009, 103, 225704. doi: 10.1103/PhysRevLett.103.225704

    135. [135]

      Otten, R. H.; Schoot, P. V. Connectivity percolation of polydisperse anisotropic nanofillers. J. Chem. Phys. 2011, 134, 094902. doi: 10.1063/1.3559004

    136. [136]

      Nigro, B.; Grimaldi, C. Impact of tunneling anisotropy on the conductivity of nanorod dispersions. Phys. Rev. B 2014, 90, 094202. doi: 10.1103/PhysRevB.90.094202

    137. [137]

      Gangopadhyay, R.; De, A. Conducting polymer nanocomposites: a brief overview. Chem. Mater. 2000, 12, 608−622. doi: 10.1021/cm990537f

    138. [138]

      Mutiso, R. M.; Sherrott, M. C.; Li, J.; Winey, K. I. Simulations and generalized model of the effect of filler size dispersity on electrical percolation in rod networks. Phys. Rev. B 2012, 86, 214306. doi: 10.1103/PhysRevB.86.214306

    139. [139]

      White, S. I.; Di Donna, B. A.; Mu, M.; Lubensky, T. C.; Winey, K. I. Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys. Rev. B 2009, 79, 024301. doi: 10.1103/PhysRevB.79.024301

    140. [140]

      Rahatekar, S. S.; Hamm, M.; Shaffer, S. P.; Elliott, J. A. Mesoscale modeling of electrical percolation in fiber-filled systems. J. Chem. Phys. 2005, 123, 134702. doi: 10.1063/1.2031147

    141. [141]

      Chatterjee, A. P.; Grimaldi, C. Random geometric graph description of connectedness percolation in rod systems. Phys. Rev. E 2015, 92, 032121. doi: 10.1103/PhysRevE.92.032121

    142. [142]

      Chatterjee, A. P.; Grimaldi, C. Tunneling conductivity in anisotropic nanofiber composites: a percolation-based model. J. Phys.: Condens. Matter 2015, 27, 145302. doi: 10.1088/0953-8984/27/14/145302

    143. [143]

      Du, F.; Fischer, J. E.; Winey, K. I. Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys. Rev. B 2005, 72, 121404. doi: 10.1103/PhysRevB.72.121404

    144. [144]

      Behnam, A.; Guo, J.; Ural, A. Effects of nanotube alignment and measurement direction on percolation resistivity in single-walled carbon nanotube films. J. Appl. Phys. 2007, 102, 044313. doi: 10.1063/1.2769953

    145. [145]

      Zeng, X.; Xu, X.; Shenai, P. M.; Kovalev, E.; Baudot, C.; Mathews, N.; Zhao, Y. Characteristics of the Electrical Percolation in Carbon Nanotubes/Polymer Nanocomposites. J. Phys. Chem. C 2011, 115, 21685−90. doi: 10.1021/jp207388n

    146. [146]

      Silva, J.; Ribeiro, S.; Lanceros-Mendez, S.; Simoes, R. The influence of matrix mediated hopping conductivity, filler concentration, aspect ratio and orientation on the electrical response of carbon nanotube/polymer nanocomposites. Compos. Sci. Technol. 2011, 71, 643. doi: 10.1016/j.compscitech.2011.01.005

    147. [147]

      Balberg, I.; Anderson, C. H.; Alexander, S.; Wagner, N. Excluded volume and its relation to the onset of percolation. Phys. Rev. B. 1984, 30, 3933. doi: 10.1103/PhysRevB.30.3933

    148. [148]

      Guo, Z. ; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 2017, 3, 348−362. doi: 10.1016/j.chempr.2017.05.004

    149. [149]

      Chen, X; Sun, H.; Yang, Z.; Guan, G.; Zhang, Z.; Qiu, L.; Peng, H. A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and electrochemical capacitor. J. Mater. Chem. A 2014, 2(6), 1897−1902. doi: 10.1039/C3TA13712K

    150. [150]

      Peng, H., Sun, X., Cai, F. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nat. Nanotechnol. 2009, 4, 738−741. doi: 10.1038/nnano.2009.264

    151. [151]

      Shen, J.; Han, X.; Lee, L. J. Nanoscaled reinforcement of polystyrene foams using carbon nanofibers. J. Cell Plast. 2006, 42, 105−126. doi: 10.1177%2F0021955X06060947

    152. [152]

      Qian, D.; Dickney, E. C.; Andrews, R.; Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 2000, 76, 2868−2870. doi: 10.1063/1.126500

    153. [153]

      Chae, D. W.; Kim, B. C. Characterization on polystyrene/zinc oxide nanocomposites prepared from solution mixing. Polym. Adv. Technol. 2006, 16, 846−850. doi: 10.1002/pat.673

    154. [154]

      Shen, J. W.; Huang, W. Y.; Zuo, S. W.; Hou, J. Polyethylene/grafted polyethylene/graphite nanocomposites: Preparation, structure, and electrical properties. J. Appl. Polym. Sci. 2005, 97, 51−59. doi: 10.1002/app.21729

    155. [155]

      Raravikar, N. R.; Schadler, L. S.; Vijayaraghavan, A.; Zhao, Y. P.; Wei, B. Q.; Ajayan, P. M. Synthesis and characterization of thickness-aligned carbon nanotube-polymer composite films. Chem. Mater. 2005, 17, 974−983. doi: 10.1021/cm0485254

    156. [156]

      Jia, Z.; Wang, Z.; Xu, C.; Liang, J.; Wei, B.; Wu, D.; Zhu, S. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A 1999, 27, 395−400. doi: 10.1016/S0921-5093(99)00263-4

    157. [157]

      Huang, C.; Cheng, Q. Learning from nacre: Constructing polymer nanocomposites. Compos. Sci. Technol. 2017, 150, 141−166. doi: 10.1016/j.compscitech.2017.07.021

    158. [158]

      Li, S.; Toprak, M. S.; Jo, Y. S.; Dobson, J.; Kim, D. K.; Muhammed, M. Bulk synthesis of transparent and homogeneous polymeric hybrid materials with ZnO quantum dots and PMMA. Adv. Mater. 2007, 19, 4347−52. doi: 10.1002/adma.200700736

    159. [159]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: copper (I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596−2599. doi: 10.1002/1521-3773(20020715)41:14%3C2596::AID-ANIE2596%3E3.0.CO;2-4

    160. [160]

      Siemsen, P.; Livingston, R. C.; Diederich, F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 2000, 39, 2632−2657. doi: 10.1002/1521-3773(20000804)39:15%3C2632::AID-NIE2632%3E3.0.CO;2-F

    161. [161]

      Jean-François, L.; Börner, H. G.; Weichenhan, K. Combining ATRP and “click” chemistry: a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 2006, 39, 6376−6383. doi: 10.1021/ma061557n

    162. [162]

      Binder, W. H.; Sachsenhofer, R. ‘Click’ chemistry in polymer and materials science. Macromol. Rapid Commun. 2007, 28, 15−54. doi: 10.1002/marc.200600625

    163. [163]

      Xi, W.; Scott, T. F.; Kloxin, C. J.; Browman, C. N. Click chemistry in materials science. Adv. Funct. Mater. 2014, 24, 2572−2590. doi: 10.1002/adfm.201302847

    164. [164]

      Castelain, M.; Martinez, G.; Marcos, C.; Eliis, G.; Salavagione, H. J. Effect of click-chemistry approaches for graphene modification on the electrical, thermal, and mechanical properties of polyethylene/graphene nanocomposites. Macromolecules 2013, 46, 8980−8987. doi: 10.1021/ma401606d

    165. [165]

      Salavagione, H. J.; Díaz, S. Q.; Jimenez, P. E.; Martínez, G.; Ania, F.; Flores, A.; Gómez-Fatou, M. A. Development of advanced elastomeric conductive nanocomposites by selective chemical affinity of modified graphene. Macromolecules 2016, 49, 4948−4956. doi: 10.1021/acs.macromol.6b00490

    166. [166]

      Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H. Jr.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4, 928−933. doi: 10.1038/nmat1502

    167. [167]

      May, P.; Khan, U.; O'Neill, A.; Coleman, J. N. Approaching the theoretical limit for reinforcing polymers with graphene. J. Mater. Chem. 2012, 22, 1278−1282. doi: 10.1039/C1JM15467B

    168. [168]

      Grimmer, C. S.; Dharan, C. K. H. High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J. Mater. Sci. 2008, 43, 4487−4492. doi: 10.1007/s10853-008-2651-9

    169. [169]

      Kim, K. T.; Jo, W. H. Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for Nylon66/multi-walled carbon nanotube composites. Carbon 2011, 49, 819−826. doi: 10.1016/j.carbon.2010.10.021

    170. [170]

      Yuan, W.; Chan-Park, M. B. Covalent cum noncovalent functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interfaces 2012, 4, 2065−2073. doi: 10.1021/am300038d

    171. [171]

      Coleman, J. N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K. P.; Belton, C.; Fonseca, A.; Nagy, J. B.; Gun'ko, Y. K.; Blau, W. J. High performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 2004, 14, 791−798. doi: 10.1002/adfm.200305200

    172. [172]

      Aoyama, S.; Park, Y. T.; Ougizawa, T.; Macosko, C. W. Melt crystallization of poly(ethylene terephthalate): comparing addition of graphene vs. carbon nanotubes. Polymer 2014, 55, 2077−2085. doi: 10.1016/j.polymer.2014.02.055

    173. [173]

      Calcagno, C. I. W.; Mariani, C. M.; Teixeira, S. R.; Mauler, R. S. The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 2007, 48, 966−974. doi: 10.1016/j.polymer.2006.12.044

    174. [174]

      Liao, K. H.; Aoyama, S.; Abdala, A. A.; Macosko, C. W. Does graphene change Tg of nanocomposites? Macromolecules 2014, 47, 8311−8319. doi: 10.1021/ma501799z

    175. [175]

      Chou, C. C.; McAtee, J. L. Decomposition of alkylammonium cations adsorbed on vermiculite under ambient conditions. Clay and Clay Miner 1969, 17, 339−346. doi: 10.1016/0169-1317(90)90022-H

    176. [176]

      Xie, W.; Gao, Z.; Pan, W.P.; Hunter, D.; Singh, A.; Vaia, R. Thermal degradation chemistry of alkyl quaternary ammonium Montmorillonite. Chem. Mater. 2001, 13, 2979−2990. doi: 10.1021/cm010305s

    177. [177]

      Yufeng Wang, A.; Tebyetekerwa, M.; Liu, Y.; Wang, M.; Zhu, J.; Xu, J.; Zhang, C.; Liu, T. Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chem. Eng. J. 2020, 127637. doi: 10.1016/j.cej.2020.127637

    178. [178]

      Li, L. B.; Zhang, Y.; Lu, H. Cryopolymerization enables anisotropic polyaniline hybrid hydrogels with superelasticity and highly deformation-tolerant electrochemical energy storage. Nat. Commun. 2020, 11, 62. doi: 10.1038/s41467-019-13959-9

    179. [179]

      Kumar, S.; Sarita, N. M.; Dilbaghi, N.; Tankeshwar, K.; Kim, K.H. Recent advances and remaining challenges for polymeric nanocomposites in healthcare applications. Prog. Polym. Sci. 2018, 80, 1−38. doi: 10.1016/j.progpolymsci.2018.03.001

    180. [180]

      McClory, C.; Chin, S. J.; McNally, T. Polymer/carbon nanotube composites. Aust. J. Chem. 2009, 62, 762−785. doi: 10.1071/CH09131

    181. [181]

      Wang, Y.; Shan, J. W.; Weng, G. J. Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunnelling. J. Appl. Phys. 2015, 118, 065101. doi: 10.1063/1.4928293

    182. [182]

      Smith, A. T.; LaChance, A. M.; Zeng, S.; Liu, B.; Sun, L. Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 2019, 1, 31−47. doi: 10.1016/j.nanoms.2019.02.004

    183. [183]

      Nanostructured and Amorphous Materials Incorporated. Available online: http://www.nanoamor.com (accessed on 6 December 2015).

    184. [184]

      Cheap Tubes. Available online: http://www.cheaptubes.com/ (accessed on 6 December 2015).

    185. [185]

      Guo, F.; Aryana, S.; Han, Y.; Jiao, Y. A review of the synthesis and applications of polymer-nanoclay composites. Appl. Sci. 2018, 8, 1696. doi: 10.3390/app8091696

  • 加载中
    1. [1]

      Mao-zhu TangWang XingJin-rong WuGuang-su HuangHui LiSi-duo Wu . Vulcanization Kinetics of Graphene/Styrene Butadiene Rubber Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1427-8

    2. [2]

      Yu ChenJian YaoMing-Ke XuZhi-Guo JiangHao-Bin Zhang . Electrically Conductive and Flame Retardant Graphene/Brominated Polystyrene/Maleic Anhydride Grafted High Density Polyethylene Nanocomposites with Satisfactory Mechanical Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2220-5

    3. [3]

      Shu-Wei LiuLu WangMin LinYi LiuLe-Ning ZhangHao Zhang . Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2193-4

    4. [4]

      Hao ZhangFang LiuJing CaoLi LingRan-feng Sun . Ferrocene-containing Polymers Synthesized by Acyclic Diene Metathesis (ADMET) Polymerization. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1743-2

    5. [5]

      Yi-ren TangTing LiHai-mu YeJun XuBao-hua Guo . The Effect of Polymer-Substrate Interaction on the Nucleation Property: Comparing Study of Graphene and Hexagonal Boron Nitride Nanosheets. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1816-2

    6. [6]

      Man-Man FangJie YangZhen Li . Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2218-z

    7. [7]

      Sheng-Chao ChaiTian-Yang XuXiao CaoGang WangQuan ChenHao-Long Li . Ultrasmall Nanoparticles Diluted Chain Entanglement in Polymer Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2262-8

    8. [8]

      Yan-Long LuoTian-Tian LiBin LiXian-Ling ChenZhen-Yang LuoYang-Yang GaoLi-Qun Zhang . Effect of the Nanoparticle Functionalization on the Cavitation and Crazing Process in the Polymer Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2488-5

    9. [9]

      Sobia ImtiazMuhammad SiddiqAyesha KausarSedra Tul MunthaJaweria AmbreenIram Bibi . A Review Featuring Fabrication, Properties and Applications of Carbon Nanotubes (CNTs) Reinforced Polymer and Epoxy Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2045-7

    10. [10]

      Wen-Le MaZhi-Hao CaiYi ZhangZi-Yuan WangLun XiaSu-Ping MaGuang-Hao LiYi Huang . An Overview of Stretchable Supercapacitors Based on Carbon Nanotube and Graphene. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2386-x

    11. [11]

      Pei XuZhao-Pei CuiGang RuanYun-Sheng Ding . Enhanced Crystallization Kinetics of PLLA by Ethoxycarbonyl Ionic Liquid Modified Graphene. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2192-5

    12. [12]

      Zi-Bo WeiYang ZhaoChao WangShigenori KugaYong HuangMin Wu . Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2160-5

    13. [13]

      Lu JinYan ZhengZe-Kun LiuJia-Shen LiYang-Pei-Qi YiYang-Yang FanLu-Lu XuYi Li . Enhancement of β-Phase Crystal Content of Poly(vinylidene fluoride) Nanofiber Web by Graphene and Electrospinning Parameters

      . Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2428-4

    14. [14]

      Bo YangShuang-Hong ZhangYi-Feng ZouWen-Shi MaGuo-Jia HuangMao-Dong Li . Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2185-4

    15. [15]

      Wen-Zhang FangLi PengYing-Jun LiuFang WangZhen XuChao Gao . A Review on Graphene Oxide Two-dimensional Macromolecules: from Single Molecules to Macro-assembly. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2515-1

    16. [16]

      Zhao-Yang WeiNan-Ying NingMing TianLi-Qun ZhangJian-Guo Mi . Theoretical Interpretation of Conformation Variations of Polydimethylsiloxane Induced by Nanoparticles. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2019-9

    17. [17]

      Ze-Yu LiWei ZhaiYun-Fei YuGuo-Jie LiPeng-Fei ZhanJian-Wei XuGuo-Qiang ZhengKun DaiChun-Tai LiuChang-Yu Shen . An Ultrasensitive, Durable and Stretchable Strain Sensor with Crack-wrinkle Structure for Human Motion Monitoring. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2500-8

    18. [18]

      Gui-Qing WuXin-Yu YangJia-Hui LiNan ShengCheng-Yi HouYao-Gang LiHong-Zhi Wang . Highly Stretchable and Conductive Hybrid Fibers for High-performance Fibrous Electrodes and All-solid-state Supercapacitors. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2381-2

    19. [19]

      Zhou WangXiu-zhi TangZhong-zhen YuPeng GuoHuai-he SongXu-sheng Du . Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1037-7

    20. [20]

      Guang-shuo WangZhi-yong WeiLin SangGuang-yi ChenWan-xi ZhangXu-feng DongMin Qi . MORPHOLOGY, CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY(-CAPROLACTONE)/GRAPHENE OXIDE NANOCOMPOSITES. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1278-8

Article Metrics
  • PDF Downloads(0)
  • Abstract views(282)
  • HTML views(85)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return