Citation: Li, C. C.; Xiong, M.; Peng, J. W.; Wang, J. Y.; Zhang, H. R.; Mu, Y. B.; Pei, J.; Wan, X. B. Finely tuned electron/hole transport preference of thiazoloisoindigo-based conjugated polymers by incorporation of heavy chalcogenophenes. Chinese J. Polym. Sci. doi: 10.1007/s10118-021-2552-9 shu

Finely Tuned Electron/Hole Transport Preference of Thiazoloisoindigo- based Conjugated Polymers by Incorporation of Heavy Chalcogenophenes

Figures(8) / Tables(2)

  • A series of copolymers of thiazoloisoindigo (TzII) with different chalcogenophene trimers were synthesized to systematically investigate the chalcogen effect on their charge transport properties. When only the middle thiophene ring of terthiphene (T-T-T) is replaced by heavier chalcogenophenes, a preference (expressed by the ratio of μe/μh) towards electron transport was observed descending from T-T-T to T-Se-T then to T-Te-T (Se and Te stand for selenophene and tellurophene, respectively). On the other hand, with the increased number of heavier chalcogenophenes, a preference toward hole transport was observed descending from Se-T-Se to Se-Se-Se then to Se-Te-Se. This phenomenon is well-explained by the balance between the aromatic resonance energy of the chalcogenophenes and the electronegativity of the chalcogens. Specifically, P(TzII-T-Se-T) displayed relatively balanced ambipolar property (μhmax and μemax of 3.77 and 1.59 cm2·V−1·s−1 with a μe/μh of 0.42), while P(TzII-Se-Te-Se) exhibited the best preference to hole transfer with a μe/μh of 0.09. P(TzII-T-Te-T) exhibited the best preference to electron transfer with a μe/μh of 16 and the μemax of 0.64 cm2·V−1·s−1 which is the highest electron mobility among the known conjugated polymers containing tellurophenes.
  • 加载中
    1. [1]

      Planells, M.; Schroeder, B. C.; McCulloch, I. Effect of chalcogen atom substitution on the optoelectronic properties in cyclopentadithiophene polymers. Macromolecules 2014, 47, 5889−5894. doi: 10.1021/ma5014308

    2. [2]

      Lee, J.; Han, A. R.; Kim, J.; Kim, Y.; Oh, J. H.; Yang, C. Solution-processable ambipolar diketopyrrolopyrrole-selenophene polymer with unprecedentedly high hole and electron mobilities. J. Am. Chem. Soc. 2012, 134, 20713−20721. doi: 10.1021/ja308927g

    3. [3]

      Hendriks, K. H.; Li, W.; Wienk, M. M.; Janssen, R. A. J. Small-bandgap semiconducting polymers with high near-infrared photoresponse. J. Am. Chem. Soc. 2014, 136, 12130−12136. doi: 10.1021/ja506265h

    4. [4]

      Chen, Z.; Lemke, H.; Albert-Seifried, S.; Caironi, M.; Nielsen, M. M.; Heeney, M.; Zhang, W.; McCulloch, I.; Sirringhaus, H. High mobility ambipolar charge transport in polyselenophene conjugated polymers. Adv. Mater. 2010, 22, 2371−2375. doi: 10.1002/adma.200903711

    5. [5]

      Kim, Y. M.; Lim, E.; Kang, I. N.; Jung, B. J.; Lee, J.; Koo, B. W.; Do, L. M.; Shim, H. K. Solution-processable field-effect transistor using a fluorene- and selenophene-based copolymer as an active layer. Macromolecules 2006, 39, 4081−4085. doi: 10.1021/ma060567l

    6. [6]

      Kong, H.; Chung, D. S.; Kang, I. N.; Park, J. H.; Park, M. J.; Jung, I. H.; Park, C. E.; Shim, H. K. New selenophene-based semiconducting copolymers for high performance organic thin-film transistors. J. Mater. Chem. 2009, 19, 3490−3499. doi: 10.1039/b823082j

    7. [7]

      Al-Hashimi, M.; Han, Y.; Smith, J.; Bazzi, H. S.; Alqaradawi, S. Y. A.; Watkins, S. E.; Anthopoulos, T. D.; Heeney, M. Influence of the heteroatom on the optoelectronic properties and transistor performance of soluble thiophene-, selenophene- and tellurophene-vinylene copolymers. Chem. Sci. 2016, 7, 1093−1099. doi: 10.1039/C5SC03501E

    8. [8]

      Huang, F. B., Z. S.; Geng, Y. H.; Wang, X. H.; Wang, L. X.; Ma, Y. G.; Hou, J. H.; Hu, W. P.; Pei, J.; Dong, H. L.; Wang, S.; Li, Z.; Shuai, Z. G.; Li, Y. F.; Cao, Y. Study on optoelectronic polymers: an overview and outlook. Acta Polymerica Sinica (in Chinese) 2019, 50, 988−1046.

    9. [9]

      Ni, Z.; Dong, H.; Wang, H.; Ding, S.; Zou, Y.; Zhao, Q.; Zhen, Y.; Liu, F.; Jiang, L.; Hu, W. Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2·V−1·s−1 in flexible thin film devices. Adv. Mater. 2018, 30, 1704843. doi: 10.1002/adma.201704843

    10. [10]

      Ni, Z.; Wang, H.; Dong, H.; Dang, Y.; Zhao, Q.; Zhang, X.; Hu, W. Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. Nat. Chem. 2019, 11, 271−277. doi: 10.1038/s41557-018-0200-y

    11. [11]

      Ni, Z.; Wang, H.; Zhao, Q.; Zhang, J.; Wei, Z.; Dong, H.; Hu, W. Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step CH activation strategy. Adv. Mater. 2019, 31, 1806010. doi: 10.1002/adma.201806010

    12. [12]

      Yang, J.; Zhao, Z.; Wang, S.; Guo, Y.; Liu, Y. Insight into high-performance conjugated polymers for organic field-effect transistors. Chem 2018, 4, 2748−2785. doi: 10.1016/j.chempr.2018.08.005

    13. [13]

      Sung, M. J.; Luzio, A.; Park, W. T.; Kim, R.; Gann, E.; Maddalena, F.; Pace, G.; Xu, Y.; Natali, D.; de Falco, C.; Dang, L.; McNeill, C. R.; Caironi, M.; Noh, Y. Y.; Kim, Y. H. High-mobility naphthalene diimide and selenophene-vinylene-selenophene-based conjugated polymer: n-channel organic field-effect transistors and structure-property relationship. Adv. Funct. Mater. 2016, 26, 4984−4997. doi: 10.1002/adfm.201601144

    14. [14]

      Zhao, Z.; Yin, Z.; Chen, H.; Zheng, L.; Zhu, C.; Zhang, L.; Tan, S.; Wang, H.; Guo, Y.; Tang, Q.; Liu, Y. High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimide-benzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2·V−1·s−1. Adv. Mater. 2017, 29, 1602410. doi: 10.1002/adma.201602410

    15. [15]

      Yang, L.; Gu, W.; Lv, L.; Chen, Y.; Yang, Y.; Ye, P.; Wu, J.; Hong, L.; Peng, A.; Huang, H. Triplet tellurophene-based acceptors for organic solar cells. Angew. Chem. Int. Ed. 2018, 57, 1096−1102. doi: 10.1002/anie.201712011

    16. [16]

      Jung, E. H.; Bae, S.; Yoo, T. W.; Jo, W. H. The effect of different chalcogenophenes in isoindigo-based conjugated copolymers on photovoltaic properties. Polym. Chem. 2014, 5, 6545−6550. doi: 10.1039/C4PY00791C

    17. [17]

      Park, K. H.; Cheon, K. H.; Lee, Y. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility. Chem. Commun. 2015, 51, 8120−8122. doi: 10.1039/C5CC02104A

    18. [18]

      Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 2013, 135, 14896−14899. doi: 10.1021/ja405112s

    19. [19]

      Kim, K. H.; Park, S.; Yu, H.; Kang, H.; Song, I.; Oh, J. H.; Kim, B. J. Determining optimal crystallinity of diketopyrrolopyrrole-based terpolymers for highly efficient polymer solar cells and transistors. Chem. Mater. 2014, 26, 6963−6970. doi: 10.1021/cm502991d

    20. [20]

      Kaur, M.; Yang, D. S.; Shin, J.; Lee, T. W.; Choi, K.; Cho, M. J.; Choi, D. H. A novel tellurophene-containing conjugated polymer with a dithiophenyl diketopyrrolopyrrole unit for use in organic thin film transistors. Chem. Commun. 2013, 49, 5495−5497. doi: 10.1039/c3cc41250d

    21. [21]

      Kaur, M.; Lee, D. H.; Yang, D. S.; Um, H. A.; Cho, M. J.; Kang, J. S.; Choi, D. H. Diketopyrrolopyrrole-bitellurophene containing a conjugated polymer and its high performance thin-film transistor sensor for bromine detection. Chem. Commun. 2014, 50, 14394−14396. doi: 10.1039/C4CC06531J

    22. [22]

      Ashraf, R. S.; Meager, I.; Nikolka, M.; Kirkus, M.; Planells, M.; Schroeder, B. C.; Holliday, S.; Hurhangee, M.; Nielsen, C. B.; Sirringhaus, H.; McCulloch, I. Chalcogenophene comonomer comparison in small band gap diketopyrrolopyrrole-based conjugated polymers for high-performing field-effect transistors and organic solar cells. J. Am. Chem. Soc. 2015, 137, 1314−1321. doi: 10.1021/ja511984q

    23. [23]

      Shi, L.; Guo, Y.; Hu, W.; Liu, Y. Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. Mater. Chem. Front. 2017, 1, 2423−2456. doi: 10.1039/C7QM00169J

    24. [24]

      Quinn, J. T. E.; Zhu, J.; Li, X.; Wang, J.; Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C 2017, 5, 8654−8681. doi: 10.1039/C7TC01680H

    25. [25]

      Wang, E. G.; Mammo, W.; Andersson, M. R. 25th Anniversary article: isoindigo- based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 2014, 26, 1801−1826. doi: 10.1002/adma.201304945

    26. [26]

      Lei, T.; Wang, J. Y.; Pei, J. Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 2014, 47, 1117−1126. doi: 10.1021/ar400254j

    27. [27]

      Lei, T.; Dou, J. H.; Ma, Z. J.; Yao, C. H.; Liu, C. J.; Wang, J. Y.; Pei, J. Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J. Am. Chem. Soc. 2012, 134, 20025−8. doi: 10.1021/ja310283f

    28. [28]

      Kim, G.; Kang, S. J.; Dutta, G. K.; Han, Y. K.; Shin, T. J.; Noh, Y. Y.; Yang, C. A Thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/V·s that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 2014, 136, 9477−9483. doi: 10.1021/ja504537v

    29. [29]

      Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Diazaisoindigo-based polymers with high-performance charge-transport properties: from computational screening to experimental characterization. Chem. Mater. 2016, 28, 2209−2218. doi: 10.1021/acs.chemmater.6b00154

    30. [30]

      Lin, H. W.; Lee, W. Y.; Chen, W. C. Selenophene-DPP donor-acceptor conjugated polymer for high performance ambipolar field effect transistor and nonvolatile memory applications. J. Mater. Chem. 2012, 22, 2120−2128. doi: 10.1039/C1JM14640H

    31. [31]

      Wang, Z.; Liu, Z.; Ning, L.; Xiao, M.; Yi, Y.; Cai, Z.; Sadhanala, A.; Zhang, G.; Chen, W.; Sirringhaus, H.; Zhang, D. Charge mobility enhancement for conjugated DPP-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit. Chem. Mater. 2018, 39, 3090−3100. doi: 10.1021/acs.chemmater.8b01007

    32. [32]

      Back, J. Y.; Yu, H.; Song, I.; Kang, I.; Ahn, H.; Shin, T. J.; Kwon, S. K.; Oh, J. H.; Kim, Y. H. Investigation of structure-property relationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering. Chem. Mater. 2015, 27, 1732−1739. doi: 10.1021/cm504545e

    33. [33]

      Han, A. R.; Dutta, G. K.; Lee, J.; Lee, H. R.; Lee, S. M.; Ahn, H.; Shin, T. J.; Oh, J. H.; Yang, C. ε-Branched flexible side chain substituted diketopyrrolopyrrole-containing polymers designed for high hole and electron mobilities. Adv. Funct. Mater. 2015, 25, 247−254. doi: 10.1002/adfm.201403020

    34. [34]

      Um, H. A.; Lee, D. H.; Heo, D. U.; Yang, D. S.; Shin, J.; Baik, H.; Cho, M. J.; Choi, D. H. High aspect ratio conjugated polymer nanowires for high performance field-effect transistors and phototransistors. ACS Nano 2015, 9, 5264−5274. doi: 10.1021/acsnano.5b01982

    35. [35]

      Khim, D.; Cheon, Y. R.; Xu, Y.; Park, W. T.; Kwon, S. K.; Noh, Y. Y.; Kim, Y. H. Facile route to control the ambipolar transport in semiconducting polymers. Chem. Mater. 2016, 28, 2287−2294. doi: 10.1021/acs.chemmater.6b00298

    36. [36]

      Lei, T.; Cao, Y.; Zhou, X.; Peng, Y.; Bian, J.; Pei, J. Systematic investigation of isoindigo-based polymeric field-effect transistors: design strategy and impact of polymer symmetry and backbone curvature. Chem. Mater. 2012, 24, 1762−1770. doi: 10.1021/cm300117x

    37. [37]

      Huang, J.; Chen, Z.; Mao, Z.; Gao, D.; Wei, C.; Lin, Z.; Li, H.; Wang, L.; Zhang, W.; Yu, G. Tuning frontier orbital energetics of azaisoindigo-based polymeric semiconductors to enhance the charge-transport properties. Adv. Electron. Mater. 2017, 3, 1700078. doi: 10.1002/aelm.201700078

    38. [38]

      Wood, S.; Wade, J.; Shahid, M.; Collado-Fregoso, E.; Bradley, D. D. C.; Durrant, J. R.; Heeney, M.; Kim, J. S. Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energ. Environ. Sci. 2015, 8, 3222−3232. doi: 10.1039/C5EE01974E

    39. [39]

      Lee, T. W.; Lee, D. H.; Shin, J.; Cho, M. J.; Choi, D. H. π-Conjugated polymers derived from 2,5-bis-(2-decyltetradecyl)-3,6-di(selenophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione for high-performance thin film transistors. Polym. Chem. 2015, 6, 1777−1785. doi: 10.1039/C4PY01536C

    40. [40]

      Li, C.; Zhang, H.; Mirie, S.; Peng, J.; Cai, M.; Wang, X.; Lan, Z.; Wan, X. A new approach to thiazoloisoindigo and derivatives using a lithium tetramethylpiperidine promoted cyclization to thiazoloisatin. Org. Chem. Front. 2018, 5, 442−446. doi: 10.1039/C7QO00841D

    41. [41]

      Li, C.; Un, H. I.; Peng, J.; Cai, M.; Wang, X.; Wang, J.; Lan, Z.; Pei, J.; Wan, X. Thiazoloisoindigo: a building block that merges the merits of thienoisoindigo and diazaisoindigo for conjugated polymers. Chem. Eur. J. 2018, 24, 9807−9811. doi: 10.1002/chem.201801432

    42. [42]

      Bredas, J. L. Mind the gap! Mater. Horiz. 2014, 1, 17−19. doi: 10.1039/C3MH00098B

    43. [43]

      Vessally, E. Aromatic stability energy studies on five-membered heterocyclic C4H4M (M = O, S, Se, Te, NH, PH, AsH and SbH): DFT calculations. J. Struct. Chem. 2008, 49, 979−985. doi: 10.1007/s10947-008-0169-2

  • 加载中
    1. [1]

      Jing WangHong-ming LiJiang-ping GuoQi-gu HuangJian-jun YiYun-fang LiuKe-jing GaoWan-tai Yang . Coral-shaped and Core-Shell Structure Copolyethylene Nanocomposites Particles Prepared by in situ Coordination Polymerization. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1719-7

    2. [2]

      A. AndriianovaA. ShigapovaY. BiglovaR. SalikhovI. AbdrakhmanovA. Mustafin . Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2261-9

    3. [3]

      Shi-Xuan YangZi-Yu FanFeng-Yu ZhangSi-Hao LiYi-Xian Wu . Functionalized Copolymers of Isobutylene with Vinyl Phenol: Synthesis, Characterization, and Property. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2329-6

    4. [4]

      Simona LosioLaura BoggioniMassimiliano CornelioAbbas RazaviIncoronata Tritto . Ethylene-Propene Copolymerization with C1-symmetric ansa-Fluorenyl-zirconocene Catalysts: Effects of Catalyst Structure and Comonomer on Molar Mass. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2348-3

    5. [5]


    6. [6]


    7. [7]

      J. K. QuamaraRandhir SinghB. K. Kaushik . ELECTRICAL TRANSPORT PROPERTIES OF PRISTINE AND IODINE DOPED POLYETHERIMIDES. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1075-1

    8. [8]


    9. [9]


    10. [10]

      Hui-jing HanSha ZhangRu-yi SunJian-hua WuMei-ran XieXiao-juan Liao . Photocrosslinkable Polynorbornene-based Block Copolymers with Enhanced Dielectric and Thermal Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1753-0

    11. [11]

      Pan ZhangLin YaoJian-hui LuoBin DingGe ZhouBo Jiang . Dynamics Simulation on the Associative Properties of Amphiphilic Functional Monomer Modified Polyacrylamide Copolymers. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1605-3

    12. [12]

      Zhong-Fu ZhaoPei-Ying LiuChun-Qing ZhangWei LiuYan-Hui WangTao TangYi-Fu DingYan-Dong ZhangFan-Zhi Meng . Synthesis and Properties of SEPS-g-PEO Copolymers with Varying Branch Lengths. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2104-0

    13. [13]


    14. [14]

      Xiu-bo JiangQing-fei ZhangAi-hua He . Synthesis and Characterization of Trans-1,4-butadiene/Isoprene Copolymers: Determination of Sequence Distribution and Thermal Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1626-y

    15. [15]


    16. [16]


    17. [17]

      Xiao-Lin LyuHong-Bing PanZhi-Hao ShenXing-He Fan . Self-assembly and Properties of Block Copolymers Containing Mesogen-Jacketed Liquid Crystalline Polymers as Rod Blocks. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2115-x

    18. [18]

      He Qin-zhengWang Jin-yanSong LeiJian Xi-gao . Synthesis, Curing and Properties of Poly (phthalazione ether sulfone ketone) Copolymers Crosslinked by Click Chemistry. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1835-z

    19. [19]

      Li ZhouZhi-qiang JiangNa XuNa LiuZong-quan Wu . Polythiophene-block-poly(phenyl isocyanide) Copolymers:One-pot Synthesis, Properties and Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-2003-9

    20. [20]

      Min-min SunWen WangLu-ying LiangShu-hui YanMing-lu ZhouQi-dan Ling . Substituent Effects on Direct Arylation Polycondensation and Optical Properties of Alternating Fluorene-Thiophene Copolymers. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1555-9

Article Metrics
  • PDF Downloads(1)
  • Abstract views(313)
  • HTML views(56)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint