Citation: Hou, F. Y.; Song, Y. H.; Zheng, Q. Influence of liquid isoprene rubber on strain softening of carbon black filled isoprene rubber nanocomposites. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2550-y doi: 10.1007/s10118-021-2550-y shu

Influence of Liquid Isoprene Rubber on Strain Softening of Carbon Black Filled Isoprene Rubber Nanocomposites

  • Corresponding author: Yi-Hu Song, E-mail: s_yh0411@zju.edu.cn
  • Received Date: 2020-12-03
    Available Online: 2021-04-14

Figures(10) / Tables(3)

  • The reinforcement of rubbers by nanoparticles is always accompanied with enhanced dissipation of mechanical energy upon large deformations. Methods for solving the contradiction between improving reinforcement and reducing energy dissipation for rubber nanocomposites have not been well developed. Herein carbon black (CB) filled isoprene rubber (IR)/liquid isoprene rubber (LR) blend nanocomposites with similar crosslink density (νe) are prepared and influence of LR on the strain softening behaviors including Payne effect under large amplitude shear deformation and Mullins effect under cyclic uniaxial deformation is investigated. The introduction of LR could improve the frequency sensitivity of loss modulus and reduce critical strain amplitude for Payne effect and loss modulus at the low amplitudes. Meanwhile, tuning νe and LR content allows reducing mechanical hysteresis in Mullins effect without significant impact on the mechanical performances. The investigation is illuminating for manufacturing nanocomposite vulcanizates with balanced mechanical hysteresis and reinforcement effect.
  • 加载中
    1. [1]

      Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 16, 20−25. doi: 10.1063/1.1707495

    2. [2]

      Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162−170. doi: 10.1016/0095-8522(51)90036-0

    3. [3]

      Krieger, I. M. Rheology of monodisperse latices. Adv. Colloid Interface Sci. 1972, 3, 111−136. doi: 10.1016/0001-8686(72)80001-0

    4. [4]

      Schroyen, B.; Swan, J. W.; van Puyvelde, P.; Vermant, J. Quantifying the dispersion quality of partially aggregated colloidal dispersions by high frequency rheology. Soft Matter 2017, 13, 7897−7906. doi: 10.1039/C7SM01690E

    5. [5]

      Kraus, G. Mechanical losses in carbon-black-filled rubbers. Appl. Polym. Symp. 1984, 75−92.

    6. [6]

      Zhu, Z.; Thompson, T.; Wang, S. Q.; Von Meerwall, E. D.; Halasa, A. Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 2005, 38, 8816−8824. doi: 10.1021/ma050922s

    7. [7]

      Lewicki, J. P.; Maxwell, R. S.; Patel, M.; Herberg, J. L.; Swain, A. C.; Liggat, J. J.; Pethrick, R. A. Effect of meta-carborane on segmental dynamics in a bimodal poly(dimethylsiloxane) network. Macromolecules 2008, 41, 9179−9186. doi: 10.1021/ma801570e

    8. [8]

      Song, Y.; Zheng, Q. Concepts and conflicts in nanoparticles reinforcement to polymers beyond hydrodynamics. Prog. Mater. Sci. 2016, 84, 1−58. doi: 10.1016/j.pmatsci.2016.09.002

    9. [9]

      Payne, A. R.; Whittaker, R. E. Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 1971, 44, 440−478. doi: 10.5254/1.3547375

    10. [10]

      Payne, A. R.; Whittake, R. E. Effect of vulcanization on low-strain dynamic properties of filled rubbers. J. Appl. Polym. Sci. 1972, 16, 1191−1212. doi: 10.1002/app.1972.070160513

    11. [11]

      Diani, J.; Fayolle, B.; Gilormini, P. A review on the Mullins effect. Eur. Polym. J. 2009, 45, 601−612. doi: 10.1016/j.eurpolymj.2008.11.017

    12. [12]

      Nagaraja, S. M.; Mujtaba, A.; Beiner, M. Quantification of different contributions to dissipation in elastomer nanoparticle composites. Polymer 2017, 111, 48−52. doi: 10.1016/j.polymer.2017.01.011

    13. [13]

      Robertson, C. G.; Wang, X. Isoenergetic jamming transition in particle-filled systems. Phys. Rev. Lett. 2005, 95, 075703. doi: 10.1103/PhysRevLett.95.075703

    14. [14]

      Zhao, D.; Ge, S.; Senses, E.; Akcora, P.; Jestin, J.; Kumar, S. K. Role of filler shape and connectivity on the viscoelastic behavior in polymer nanocomposites. Macromolecules 2015, 48, 5433−5438. doi: 10.1021/acs.macromol.5b00962

    15. [15]

      Cassagnau, P. Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49, 2183. doi: 10.1016/j.polymer.2007.12.035

    16. [16]

      Merabia, S.; Sotta, P.; Long, D. R. A microscopic model for the reinforcement and the nonlinear behavior of filled elastomers and thermoplastic elastomers (Payne and Mullins effects). Macromolecules 2008, 41, 8252−8266. doi: 10.1021/ma8014728

    17. [17]

      Majesté, J. C.; Vincent, F. A kinetic model for silica-filled rubber reinforcement. J. Rheol. 2015, 59, 405−427. doi: 10.1122/1.4906621

    18. [18]

      Sternstein, S. S.; Zhu, A. J. Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 2002, 35, 7262−7273. doi: 10.1021/ma020482u

    19. [19]

      Li, Z.; Xu, H.; Xia, X.; Song, Y.; Zheng, Q. Energy dissipation accompanying Mullins effect of nitrile butadiene rubber/carbon black nanocomposites. Polymer 2019, 171, 106−114. doi: 10.1016/j.polymer.2019.03.043

    20. [20]

      Hou, F.; Song, Y.; Zheng, Q. Payne effect of thermo-oxidatively aged isoprene rubber vulcanizates. Polymer 2020, 195, 122432. doi: 10.1016/j.polymer.2020.122432

    21. [21]

      Xu, H.; Xia, X.; Hussain, M.; Song, Y.; Zheng, Q. Linear and nonlinear rheological behaviors of silica filled nitrile butadiene rubber. Polymer 2018, 156, 222−227. doi: 10.1016/j.polymer.2018.10.014

    22. [22]

      Li, Z.; Wen, F.; Hussain, M.; Song, Y.; Zheng, Q. Scaling laws of Mullins effect in nitrile butadiene rubber nanocomposites. Polymer 2020, 193, 122350. doi: 10.1016/j.polymer.2020.122350

    23. [23]

      Acosta, R. H.; Monti, G. A.; Villar, M. A.; Valles, E. M.; Vega, D. A. Transiently trapped entanglements in model polymer networks. Macromolecules 2009, 42, 4674−4680. doi: 10.1021/ma8025546

    24. [24]

      Agudelo, D. C.; Roth, L. E.; Vega, D. A.; Valles, E. M.; Villar, M. A. Dynamic response of transiently trapped entanglements in polymer networks. Polymer 2014, 55, 1061−1069. doi: 10.1016/j.polymer.2014.01.010

    25. [25]

      Chasse, W.; Lang, M.; Sommer, J. U.; Saalwachter, K. Cross-link density estimation of PDMS networks with precise consideration of networks defects. Macromolecules 2012, 45, 899−912. doi: 10.1021/ma202030z

    26. [26]

      Campise, F.; Roth, L. E.; Acosta, R. H.; Villiar, M. A.; Valles, E. M.; Monti, G. A.; Vega, D. A. Contribution of linear guest and structural pendant chains to relaxational dynamics in model polymer networks probed by time-domain 1H NMR. Macromolecules 2016, 49, 387−394. doi: 10.1021/acs.macromol.5b01806

    27. [27]

      Batra, A.; Cohen, C.; Archer, L. Stress relaxation of end-linked polydimethylsiloxane elastomers with long pendent chains. Macromolecules 2005, 38, 7174−7180. doi: 10.1021/ma050933l

    28. [28]

      Vega, D. A.; Villar, M. A.; Alessandrini, J. L.; Valles, E. M. Terminal relaxation of model poly(dimethylsiloxane) networks with pendant chains. Macromolecules 2001, 34, 4591−4596. doi: 10.1021/ma0014721

    29. [29]

      Yamazaki, H.; Takeda, M.; Kohno, Y.; Ando, H.; Urayama, K.; Takigawa, T. Dynamic viscoelasticity of poly(butyl acrylate) elastomers containing dangling chains with controlled lengths. Macromolecules 2011, 44, 8829−8834. doi: 10.1021/ma201941v

    30. [30]

      Urayama, K.; Miki, T.; Takigawa, T.; Kobjiya, S. Damping elastomer based on model irregular networks of end-linked poly(dimethylsiloxane). Chem. Mater. 2004, 16, 173−178. doi: 10.1021/cm0343507

    31. [31]

      Li, Z.; Lu, X.; Tao, G.; Guo, J.; Jiang, H. Damping elastomer with broad temperature range based on irregular networks formed by end-linking of hydroxyl-terminated poly(dimethylsiloxane). Polym. Eng. Sci. 2016, 56, 97−102. doi: 10.1002/pen.24196

    32. [32]

      Yasuda, Y.; Minoda, S.; Ohashi, T.; Yokohama, H.; Ikeda, Y. Two-phase network formation in sulfur crosslinking reaction of isoprene rubber. Macromol. Chem. Phys. 2014, 215, 971−977. doi: 10.1002/macp.201400066

    33. [33]

      Ikeda, Y.; Higashitani, N.; Hijikata, K.; Kokubo, Y.; Morita, Y.; Shibayama, M.; Osaka, N.; Suzuki, T.; Endo, H.; Kohjiya, S. Vulcanization: new focus on a traditional technology by small-angle neutron scattering. Macromolecules 2009, 42, 2741−2748. doi: 10.1021/ma802730z

    34. [34]

      Glebova, Y.; Reiter-Scherer, V.; Suvanto, S.; Korpela, T.; Pakkanen, T. T.; Severin, N.; Shershnev, V.; Rabe, J. P. Nano-mechanical imaging reveals heterogeneous cross-link distribution in sulfur-vulcanized butadiene-styrene rubber comprising ZnO particles. Polymer 2016, 107, 102−107. doi: 10.1016/j.polymer.2016.11.011

    35. [35]

      Li, J.; Isayev, A. I.; Ren, X.; Soucek, M. D. Modified soybean oil-extended SBR compounds and vulcanizates filled with carbon black. Polymer 2015, 60, 144−156. doi: 10.1016/j.polymer.2015.01.028

    36. [36]

      Betron, C.; Cassagnau, P.; Bounor-Legare, V. Control of diffusion and exudation of vegetable oils in EPDM copolymers. Eur. Polym. J. 2016, 82, 102−113. doi: 10.1016/j.eurpolymj.2016.06.027

    37. [37]

      Li, Z.; Ren, W.; Chen, H.; Ye, L.; Zhang, Y. Effect of liquid isoprene rubber on dynamic mechanical properties of emulsion polymerized styrene/butadiene rubber vulcanizates. Polym. Int. 2012, 61, 531−538. doi: 10.1002/pi.3198

    38. [38]

      Ren, Y.; Zhao, S.; Li, Q.; Zhang, X.; Zhang, L. Influence of liquid isoprene on rheological behavior and mechanical properties of polyisoprene rubber. J. Appl. Polym. Sci. 2015, 132, 41485.

    39. [39]

      Gruendken, M.; Velencoso, M. M.; Hirata, K.; Blume, A. Structure-propery relationship of low molecular weight 'liquid' polymers in blends of sulfur cured SSBR-rich compounds. Polym. Test. 2020, 87, 106558. doi: 10.1016/j.polymertesting.2020.106558

    40. [40]

      Horkay, F.; Mckenna, G. B.; Deschamps, P.; Geissler, E. Neutron scattering properties of randomly cross-linked polyisoprene gels. Macromolecules 2000, 33, 5215−5220. doi: 10.1021/ma0003001

    41. [41]

      Senses, E.; Akcora, P. Tuning mechanical properties of nanocomposites with bimodal polymer bound layers. RSC Adv. 2014, 4, 49628−49634. doi: 10.1039/C4RA07157C

    42. [42]

      Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymer-nanoparticle interfacial behavior revisited: a molecular dynamics study. Phys. Chem. Chem. Phys. 2011, 13, 13058−13069. doi: 10.1039/c0cp02952a

    43. [43]

      Karatrantos, A.; Clarke, N. A theoretical model for the prediction of diffusion in polymer/SWCNT nanocomposites. Soft Matter 2011, 7, 7334−7341. doi: 10.1039/c1sm05494e

    44. [44]

      Zheng, X.; Sauer, B. B.; Vanalsten, J. G.; Schwarz, S. A.; Rafailovich, M. H.; Sokolov, J.; Rubinstein, M. Reptation dynamics of a polymer melt near an attractive solid interface. Phys. Rev. Lett. 1995, 74, 407−410. doi: 10.1103/PhysRevLett.74.407

    45. [45]

      Baeza, G. P.; Dalmas, F.; Dutertre, F.; Majeste, J. C. Isostructural softening of vulcanized nanocomposites. Soft Matter 2020, 16, 3180−3186. doi: 10.1039/C9SM02442E

    46. [46]

      Trinh, G. H.; Desloir, M.; Dutertre, F.; Majeste, J. C.; Dalmas, F.; Baeza, G. P. Isostructural softening of the filler network in SBR/silica nanocomposites. Soft Matter 2019, 15, 3122−3132. doi: 10.1039/C8SM02592D

    47. [47]

      Zhang, Q.; Xu, H.; Song, Y.; Zheng, Q. Influence of hydroxyl-terminated polybutadiene liquid on rheology of fumed silica filled cis-polybutadiene rubber. Polymer 2019, 180, 121709. doi: 10.1016/j.polymer.2019.121709

    48. [48]

      Xu, H.; Ding, L.; Song, Y.; Wang, W. Rheology of end-linking polydimethylsiloxane networks filled with silica. J. Rheol. 2020, 64, 1425−1438. doi: 10.1122/8.0000050

    49. [49]

      Subbotin, A.; Semenov, A.; Hadziioannou, G.; ten Brinke, G. Nonlinear rheology of confined polymer melts under oscillatory flow. Macromolecules 1996, 29, 1296−1304. doi: 10.1021/ma950764c

    50. [50]

      Sarvestani, A. S. Nonlinear rheology of unentangled polymer melts reinforced with high concentration of rigid nanoparticles. Nanoscale Res. Lett. 2010, 5, 791−794. doi: 10.1007/s11671-010-9557-6

    51. [51]

      Fu, W.; Wang, L.; Huang, J.; Liu, C.; Peng, W.; Xiao, H.; Li, S. Mechanical properties and Mullins effect in natural rubber reinforced by grafted carbon black. Adv. Polym. Tech. 2019, 2019, 4523696.

    52. [52]

      Sodhani, D.; Reese, S. Finite element-based micromechanical modeling of microstructure morphology in filler-reinforced elastomer. Macromolecules 2014, 47, 3161−3169. doi: 10.1021/ma402404x

    53. [53]

      Stöckelhuber, K. W.; Svistkov, A. S.; Pelevin, A. G.; Heinrich, G. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites. Macromolecules 2011, 44, 4366−4381. doi: 10.1021/ma1026077

    54. [54]

      Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H. Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems. Polymer 2001, 42, 9523−9529. doi: 10.1016/S0032-3861(01)00472-4

    55. [55]

      Bhattacharyya, S.; Sinturel, C.; Bahloul, O.; Saboungi, M. L.; Thomas, S.; Salvetat, J. P. Improving reinforcement of natural rubber by networking of activated carbon nanotubes. Carbon 2008, 46, 1037−1045. doi: 10.1016/j.carbon.2008.03.011

    56. [56]

      Meissner, B.; Matějka, L. A structure-based constitutive equation for filler-reinforced rubber-like networks and for the description of the Mullins effect. Polymer 2006, 47, 7997−8012. doi: 10.1016/j.polymer.2006.09.036

  • 加载中
    1. [1]

      Long-mei WuShuang-quan LiaoSheng-jun ZhangXiao-ying BaiXue Hou . Enhancement of Mechanical Properties of Natural Rubber with Maleic Anhydride Grafted Liquid Polybutadiene Functionalized Graphene Oxide. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1652-9

    2. [2]

      Mao-zhu TangWang XingJin-rong WuGuang-su HuangHui LiSi-duo Wu . Vulcanization Kinetics of Graphene/Styrene Butadiene Rubber Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1427-8

    3. [3]

      M. H. Abd-El SalamS. El-GamalM. MohsenD. M. Abd El-Maqsoud . Effect of Conductive Fillers on the Cyclic Stress-Strain and Nano-Scale Free Volume Properties of Silicone Rubber. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1428-7

    4. [4]

      Shi-Qi LiMao-Zhu TangCheng HuangRong ZhangGuang-Su HuangYun-Xiang Xu . The Relationship between Pendant Phosphate Groups and Mechanical Properties of Polyisoprene Rubber. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2497-z

    5. [5]

      Zhi-xin JiaYuan-fang LuoShu-yan YangBao-chun GuoMing-liang DuDe-min Jia . MORPHOLOGY, INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES. Chinese J. Polym. Sci,

    6. [6]

      Ying-jie TanYu-rong LiangGuo-sheng HuYi-qing WangYong-lai LuLi-qun Zhang . STRUCTURE AND PROPERTIES OF ISOBUTYLENE-ISOPRENE RUBBER/SWOLLEN ORGANOCLAY NANOCOMPOSITES PREPARED BY SHEAR MIXING. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1029-7

    7. [7]

      . EFFECTS OF PHENOL RESIN ADDITIVE ON DYNAMIC MECHANICAL PROPERTIES OF ACRYLATE RUBBER AND ITS BLENDS*. Chinese J. Polym. Sci,

    8. [8]

      Hong YaoJia-li NiuJie ZhangNan-ying NingXiao-qiu YangMing TianXiao-li SunLi-qun ZhangShou-ke Yan . Morphologies and Mechanical Properties of Cis-1,4-butadiene Rubber/Polyethylene Blends. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1794-4

    9. [9]

      YUAN QiangLI YufuLI Guangliang . VULCANIZATION KINETICS OF SILICONE RUBBER. Chinese J. Polym. Sci,

    10. [10]

      Qian WangQin ZhangYu-hong HuangQiang Fu . PREPARATION OF HIGH-TEMPERATURE VULCANIZED SILICONE RUBBER OF EXCELLENT MECHANICAL AND OPTICAL PROPERTIES USING HYDROPHOBIC NANO SILICA SOL AS REINFORCEMENT. Chinese J. Polym. Sci,

    11. [11]

      . HYDROPHOBICITY OF CONTAMINATED SILICONE RUBBER SURFACES. Chinese J. Polym. Sci,

    12. [12]

      Bo YangShuang-Hong ZhangYi-Feng ZouWen-Shi MaGuo-Jia HuangMao-Dong Li . Improving the Thermal Conductivity and Mechanical Properties of Two-component Room Temperature Vulcanized Silicone Rubber by Filling with Hydrophobically Modified SiO2-Graphene Nanohybrids. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2185-4

    13. [13]

      LI ShengtianDONG JianhuaYU Fusheng . A STUDY ON THE YIELD STRENGTH OF SBR RAW RUBBER. Chinese J. Polym. Sci,

    14. [14]

      LI YufuYANG QiyunLI Guangliang . SCANNING ELECTRON MICROSCOPY STUDY OF FILLED SILICONE RUBBER. Chinese J. Polym. Sci,

    15. [15]

      SUN YishiZHAO ShiqiLIN XiuyingWANG Xiqun . STUDY ON THE TOUGHENING MECHANISM OF RUBBER TOUGHENED EPOXY. Chinese J. Polym. Sci,

    16. [16]

      ZHANG ShuxiangLI XiaoyuCHEN YongXIA YuzhengJIAO Shuke . WATER STATES IN SBR BASED WATER SWELLING RUBBER. Chinese J. Polym. Sci,

    17. [17]

      . DAMAGE OF SILICONE RUBBER INDUCED BY PROTON IRRADIATION. Chinese J. Polym. Sci,

    18. [18]

      . A STUDY ON RADIATION CROSSLINKING OF POLYDIMETHYLSILOXANE (PDMS) RUBBER LATEX*. Chinese J. Polym. Sci,

    19. [19]

      Tetsuji KawazuraOraphin ChaikumpollertSeiichi Kawahara . MORPHOLOGY DEPENDENCE OF CRYSTALLIZATION OF NATURAL RUBBER IN BLENDS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1314-8

    20. [20]

      N.C. DafaderM.E. HaqueF. Akhtar . STUDY ON THE PROPERTIES OF BLEND OF NATURAL RUBBER LATEX/METHYL METHACRYLATE GRAFTED RUBBER LATEX BY GAMMA RADIATION. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(1)
  • Abstract views(322)
  • HTML views(28)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return