Citation: Hong, R.; Jiang, Y. X.; Leng, J.; Liu, M. J.; Shen, K. Z.; Fu, Q.; Zhang, J. Synergic enhancement of high-density polyethylene through ultrahigh molecular weight polyethylene and multi-flow vibration injection molding: a facile fabrication with potential industrial prospects. Chinese J. Polym. Sci. doi: 10.1007/s10118-021-2545-8 shu

Synergic Enhancement of High-density Polyethylene through Ultrahigh Molecular Weight Polyethylene and Multi-flow Vibration Injection Molding: A Facile Fabrication with Potential Industrial Prospects

  • Corresponding author: Jie Zhang, E-mail:
  • Received Date: 2020-09-19
    Accepted Date: 2020-12-30
    Available Online: 2021-02-01

Figures(14) / Tables(3)

  • General-purpose plastics with high strength and toughness have been in great demand for structural engineering applications. To achieve the reinforcement and broaden the application scope of high-density polyethylene (HDPE), multi-flow vibration injection molding (MFVIM) and ultrahigh molecular weight polyethylene (UHMWPE) are synergistically employed in this work. Herein, the MFVIM has better shear layer control ability and higher fabrication advantage for complex parts than other analogous novel injection molding technologies reported. The reinforcing effect of various filling times and UHMWPE contents as well as the corresponding microstructure evolution are investigated. When 5 wt% UHMWPE is added, MFVIM process with six flow times thickens the shear layer to the whole thickness. The tensile strength and modulus increase to 2.14 and 1.39 times, respectively, compared to neat HDPE on the premise of remaining 70% impact strength. Structural characterizations indicate that the enhancement is attributed to the improvement of shish-kebab content and lamellae compactness, as well as related to the corresponding size distributions of undissolved UHMWPE particles. This novel injection molding technology with great industrial prospects provides a facile and effective strategy to broaden the engineering applications of HDPE materials. Besides, excessive UHMWPE may impair the synergistic enhancement effect, which is also reasonably explained.
  • 加载中
    1. [1]

      Khanal, S.; Zhang, W.; Ahmed, S.; Ali, M.; Xu, S. Effects of intumescent flame retardant system consisting of tris(2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Compos. Part A: Appl. Sci. Manuf. 2018, 112, 444−451. doi: 10.1016/j.compositesa.2018.06.030

    2. [2]

      Seretis, G. V.; Manolakos, D. E.; Provatidis, C. G. On the graphene nanoplatelets reinforcement of extruded high density polyethylene. Compos. Part B: Eng. 2018, 145, 81−89. doi: 10.1016/j.compositesb.2018.03.020

    3. [3]

      Liu, Y.; Gao, S.; Hsiao, B. S.; Norman, A.; Tsou, A. H.; Throckmorton, J.; Doufas, A.; Zhang, Y. Shear induced crystallization of bimodal and unimodal high density polyethylene. Polymer 2018, 153, 223−231. doi: 10.1016/j.polymer.2018.08.020

    4. [4]

      Lin, Y.; Patel, R.; Cao, J.; Tu, W.; Zhang, H.; Bilotti, E.; Bastiaansen, C. W. M.; Peijs, T. Glass-like transparent high strength polyethylene films by tuning drawing temperature. Polymer 2019, 171, 180−191. doi: 10.1016/j.polymer.2019.03.036

    5. [5]

      Savas, L. A.; Tayfun, U.; Dogan, M. The use of polyethylene copolymers as compatibilizers in carbon fiber reinforced high density polyethylene composites. Compos. Part B: Eng. 2016, 99, 188−195. doi: 10.1016/j.compositesb.2016.06.043

    6. [6]

      Kong, C.; Wang, Y.; Ye, L.; Zhao, X. Structure and self-reinforcing mechanism of biaxially oriented polyethylene pipes produced by solid phase die drawing. Polymer 2019, 178, 121556. doi: 10.1016/j.polymer.2019.121556

    7. [7]

      Ormsby, R. T.; Solomon, L. B.; Yang, D.; Crotti, T. N.; Haynes, D. R.; Findlay, D. M.; Atkins, G. J. Osteocytes respond to particles of clinically-relevant conventional and cross-linked polyethylene and metal alloys by up-regulation of resorptive and inflammatory pathways. Acta Biomater. 2019, 87, 296−306. doi: 10.1016/j.actbio.2019.01.047

    8. [8]

      Pi, L.; Guo, D.; Nie, M.; Wang, Q. Highly endurable hydrostatic pressure polyethylene pipe prepared by the combination of rotation extrusion and lightly cross-linked polyethylene. J. Polym. Res. 2018, 25, 177. doi: 10.1007/s10965-018-1554-y

    9. [9]

      Zhang, L.; Lu, C.; Dong, P.; Wang, K.; Zhang, Q. Realizing mechanically reinforced all-polyethylene material by dispersing UHMWPE via high-speed shear extrusion. Polymer 2019, 180, 121711. doi: 10.1016/j.polymer.2019.121711

    10. [10]

      Yang, H.; Hui, L.; Zhang, J.; Chen, P.; Li, W. Effect of entangled state of nascent UHMWPE on structural and mechanical properties of HDPE/UHMWPE blends. J. Appl. Polym. Sci. 2017, 134.

    11. [11]

      Song, S.; Wu, P.; Ye, M.; Feng, J.; Yang, Y. Effect of small amount of ultra high molecular weight component on the crystallization behaviors of bimodal high density polyethylene. Polymer 2008, 49, 2964−2973. doi: 10.1016/j.polymer.2008.04.050

    12. [12]

      Chen, J.; Yang, W.; Yu, G. P.; Wang, M.; Ni, H. Y.; Shen, K. Z. Continuous extrusion and tensile strength of self-reinforced HDPE/UHMWPE sheet. J. Mater. Proc. Technol. 2008, 202, 165−169. doi: 10.1016/j.jmatprotec.2007.08.055

    13. [13]

      Pan, Y.; Guo, X.; Zheng, G.; Liu, C.; Chen, Q.; Shen, C.; Liu, X. Shear-induced skin-core structure of molten isotactic polypropylene and the formation of β-crystal. Macromol. Mater. Eng. 2018, 303, 1800083. doi: 10.1002/mame.201800083

    14. [14]

      Shen, B.; Liang, Y.; Kornfield, J. A.; Han, C. C. Mechanism for shish formation under shear flow: an interpretation from an in situ morphological study. Macromolecules 2013, 46, 1528−1542. doi: 10.1021/ma3023958

    15. [15]

      Jiang, Y.; Mi, D.; Wang, Y.; Wang, T.; Shen, K.; Zhang, J. Insight into understanding the influence of blending ratio on the structure and properties of high-density polyethylene/polystyrene microfibril composites prepared by vibration injection molding. Indust. Eng. Chem. Res. 2018, 58, 1190−1199.

    16. [16]

      Chen, Y.; Fang, D.; Hsiao, B. S.; Li, Z. Insight into unique deformation behavior of oriented isotactic polypropylene with branched shish-kebabs. Polymer 2015, 60, 274−283. doi: 10.1016/j.polymer.2015.01.058

    17. [17]

      Jiang, Y.; Mi, D.; Wang, Y.; Wang, T.; Shen, K.; Zhang, J. Composite contains large content of in situ microfibril, prepared directly by injection molding: morphology and property. Macromol. Mater. Eng. 2018, 303, 1800270. doi: 10.1002/mame.201800270

    18. [18]

      Liu, X.; Lian, M.; Pan, Y.; Wang, X.; Zheng, G.; Liu, C.; Schubert, D. W.; Shen, C. An alternating skin–core structure in melt multi-injection-molded polyethylene. Macromol. Mater. Eng. 2018, 303, 1700465. doi: 10.1002/mame.201700465

    19. [19]

      Liu, T.; Huang, A.; Geng, L. H.; Lian, X. H.; Chen, B. Y.; Hsiao, B. S.; Kuang, T. R.; Peng, X. F. Ultra-strong, tough and high wear resistance high-density polyethylene for structural engineering application: a facile strategy towards using the combination of extensional dynamic oscillatory shear flow and ultra-high-molecular-weight polyethylene. Compos. Sci. Technol. 2018, 167, 301−312. doi: 10.1016/j.compscitech.2018.08.004

    20. [20]

      Huang, Y. F.; Xu, J. Z.; Li, J. S.; He, B. X.; Xu, L.; Li, Z. M. Mechanical properties and biocompatibility of melt processed, self-reinforced ultrahigh molecular weight polyethylene. Biomaterials 2014, 35, 6687−6697. doi: 10.1016/j.biomaterials.2014.04.077

    21. [21]

      Huang, Y. F.; Xu, J. Z.; Zhang, Z. C.; Xu, L.; Li, L. B.; Li, J. F.; Li, Z. M. Melt processing and structural manipulation of highly linear disentangled ultrahigh molecular weight polyethylene. Chem. Eng. J. 2017, 315, 132−141. doi: 10.1016/j.cej.2016.12.133

    22. [22]

      Xu, L.; Huang, Y. F.; Xu, J. Z.; Ji, X.; Li, Z. M. Improved performance balance of polyethylene by simultaneously forming oriented crystals and blending ultrahigh-molecular-weight polyethylene. RSC Adv. 2014, 4, 1512−1520. doi: 10.1039/C3RA45322G

    23. [23]

      Mi, D.; Xia, C.; Jin, M.; Wang, F.; Shen, K.; Zhang, J. Quantification of the effect of shish-kebab structure on the mechanical properties of polypropylene samples by controlling shear layer thickness. Macromolecules 2016, 49, 4571−4578. doi: 10.1021/acs.macromol.6b00822

    24. [24]

      Hou, F.; Mi, D.; Zhou, M.; Zhang, J. The influences of a novel shear layer-spherulites layer alternated structure on the mechanical properties of injection-molded isotactic polypropylene. Polymer 2017, 122, 12−21. doi: 10.1016/j.polymer.2017.06.035

    25. [25]

      Liu, M.; Hong, R.; Gu, X.; Fu, Q.; Zhang, J. Remarkably improved impact fracture toughness of isotactic polypropylene via combining the effects of shear layer-spherulites layer alternated structure and thermal annealing. Ind. Eng. Chem. Res. 2019, 58, 15069−15078.

    26. [26]

      Gu, X.; Wang, Y.; Jiang, Y.; Liu, M.; Fu, Q.; Zhang, J. High impact performance induced by a synergistic effect of heteroepitaxy and oriented layer-unoriented layer alternated structure in iPP/HDPE injection molded part. Polymer 2019, 175, 206−214. doi: 10.1016/j.polymer.2019.05.018

    27. [27]

      Gu, X.; Hong, R.; Leng, J.; Hu, M.; Fu, Q.; Zhang, J. Evolution of iPP/HDPE morphology under different mold temperatures via multiflow vibration injection molding: thermal field simulation and oriented structures. Indust. Eng. Chem. Res. 2020, 59, 6741−6750.

    28. [28]

      Wang, Y.; Hou, F.; Mi, D.; Zhou, M.; Jiang, Y.; Zhang, J. Self-reinforcement of polypropylene lid-shaped samples induced by increasing shish-kebab content: practical application of vibration injection technology. Ind. Eng. Chem. Res. 2018, 57, 8620−8629.

    29. [29]

      Salleh, F. M.; Hassan, A.; Yahya, R.; Azzahari, A. D. Effects of extrusion temperature on the rheological, dynamic mechanical and tensile properties of kenaf fiber/HDPE composites. Compos. Part B: Eng. 2014, 58, 259−266. doi: 10.1016/j.compositesb.2013.10.068

    30. [30]

      Jaggi, H. S.; Satapathy, B. K.; Ray, A. R. Viscoelastic properties correlations to morphological and mechanical response of HDPE/UHMWPE blends. J. Polym. Res. 2014, 21, 482. doi: 10.1007/s10965-014-0482-8

    31. [31]

      Diop, M. F.; Burghardt, W. R.; Torkelson, J. M. Well-mixed blends of HDPE and ultrahigh molecular weight polyethylene with major improvements in impact strength achieved via solid-state shear pulverization. Polymer 2014, 55, 4948−4958. doi: 10.1016/j.polymer.2014.07.050

    32. [32]

      Lim, K. L. K.; Ishak, Z. A. M.; Ishiaku, U. S.; Fuad, A. M. Y.; Yusof, A. H.; Czigany, T.; Pukanszky, B.; Ogunniyi, D. S. High-density polyethylene/ultrahigh-molecular-weight polyethylene blend I. The processing, thermal, and mechanical properties. J. Appl. Polym. Sci. 2005, 97, 413−425.

    33. [33]

      Boscoletto, A. B.; Franco, R.; Scapin, M.; Tavan, M. An investigation on rheological and impact behaviour of high density and ultra high molecular weight polyethylene mixtures. Eur. Polym. J. 1997, 33, 97−105. doi: 10.1016/S0014-3057(96)00115-2

    34. [34]

      Sun, H.; Liu, G.; Ntetsikas, K.; Avgeropoulos, A.; Wang, S. Q. Rheology of entangled polymers not far above glass transition temperature: transient elasticity and intersegmental viscous stress. Macromolecules 2014, 47, 5839−5850. doi: 10.1021/ma500899s

    35. [35]

      Wang, S. Q.; Liu, G.; Cheng, S.; Boukany, P. E.; Wang, Y.; Li, X. Letter to the Editor: sufficiently entangled polymers do show shear strain localization at high enough Weissenberg numbers. J. Rheol. 2014, 58, 1059−1069. doi: 10.1122/1.4884361

    36. [36]

      Bair, S.; Yamaguchi, T.; Brouwer, L.; Schwarze, H.; Vergne, P.; Poll, G. Oscillatory and steady shear viscosity: the Cox–Merz rule, superposition, and application to EHL friction. Tribol. Int. 2014, 79, 126−131. doi: 10.1016/j.triboint.2014.06.001

    37. [37]

      Kuester, S.; Merlini, C.; Barra, G. M. O.; Ferreira, J. C.; Lucas, A.; de, Souza A. C.; Soares, B. G. Processing and characterization of conductive composites based on poly(styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) and carbon additives: a comparative study of expanded graphite and carbon black. Compos. Part B: Eng. 2016, 84, 236−247.

    38. [38]

      Vega, J.; Rastogi, S.; Peters, G.; Meijer, H. Rheology and reptation of linear polymers ultrahigh molecular weight chain dynamics in the melt. J. Rheol. 2004, 48, 663−678.

    39. [39]

      Tapadia, P.; Wang, S. Q. Direct visualization of continuous simple shear in non-Newtonian polymeric fluids. Phys. Rev. Lett. 2006, 96, 016001. doi: 10.1103/PhysRevLett.96.016001

    40. [40]

      Tapadia, P.; Ravindranath, S.; Wang, S. Q. Banding in entangled polymer fluids under oscillatory shearing. Phys. Rev. Lett. 2006, 96, 196001. doi: 10.1103/PhysRevLett.96.196001

    41. [41]

      Xia, X. C.; Yang, W.; Liu, Z. Y.; Zhang, R. Y.; Xie, D. D.; Yang, M. B. Strong shear-driven large scale formation of hybrid shish-kebab in carbon nanofiber reinforced polyethylene composites during the melt second flow. Phys. Chem. Chem. Phys. 2016, 18, 30452−30461. doi: 10.1039/C6CP04901J

    42. [42]

      Wang, S. Q. Molecular transitions and dynamics at polymer/wall interfaces: origins of flow instabilities and wall slip. In Polymers in confined environments, Springer: 1999; pp 227−275.

    43. [43]

      Cao, T.; Chen, X.; Lin, Y.; Meng, L.; Wan, C.; Lv, F.; Li, L. Structural evolution of UHMWPE fibers during prestretching far and near melting temperature: an in situ synchrotron radiation small- and wide-angle X-ray scattering study. Macromol. Mater. Eng. 2018, 303, 1700493. doi: 10.1002/mame.201700493

    44. [44]

      Yang, H.; Liu, D.; Ju, J.; Li, J.; Wang, Z.; Yan, G.; Ji, Y.; Zhang, W.; Sun, G.; Li, L. Chain deformation on the formation of shish nuclei under extension flow: an in situ SANS and SAXS study. Macromolecules 2016, 49, 9080−9088. doi: 10.1021/acs.macromol.6b01945

    45. [45]

      Shen, H.; He, L.; Fan, C.; Xie, B.; Yang, W.; Yang, M. Improving the integration of HDPE/UHMWPE blends by high temperature melting and subsequent shear. Mater. Lett. 2015, 138, 247−250. doi: 10.1016/j.matlet.2014.10.013

    46. [46]

      Mi, D.; Hou, F.; Zhou, M.; Zhang, J. Improving the mechanical and thermal properties of shish-kebab via partial melting and re-crystallization. Eur. Polym. J. 2018, 101, 1−11. doi: 10.1016/j.eurpolymj.2018.01.032

    47. [47]

      Wang, Z.; An, M.; Xu, H.; Lv, Y.; Tian, F.; Gu, Q. Structural evolution from shish-kebab to fibrillar crystals during hot-stretching process of gel spinning ultra-high molecular weight polyethylene fibers obtained from low concentration solution. Polymer 2017, 120, 244−254. doi: 10.1016/j.polymer.2017.05.062

    48. [48]

      Zhou, D.; Yang, S. G.; Lei, J.; Hsiao, B. S.; Li, Z. M. Role of Stably Entangled chain network density in shish-kebab formation in polyethylene under an intense flow field. Macromolecules 2015, 48, 6652−6661. doi: 10.1021/acs.macromol.5b01402

  • 加载中
    1. [1]

      Qi LiuHui-hui LiShou-ke Yan . Structure and Properties of -Polypropylene Reinforced by Polypropylene Fiber and Polyamide Fiber. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1417-x

    2. [2]

      Zhong-bin XuLiang-yao SuPeng-fei WangMao Peng . Effect of Oscillatory Shear on the Mechanical Properties and Crystalline Morphology of Linear Low Density Polyethylene?. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1663-6

    3. [3]

      Shou-song XiaoMing-jun ChenLiang-ping DongCong DengLi ChenYu-zhong Wang . Thermal Degradation, Flame Retardance and Mechanical Properties of Thermoplastic Polyurethane Composites Based on Aluminum Hypophosphite. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1378-0

    4. [4]

      Lei ShiRuo-Yu ZhangWu-Bin YingHan HuYu-Bin WangYa-Qian GuoWen-Qin WangZhao-Bin TangJin Zhu . Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2283-3

    5. [5]

      Lin JiaWen-Chao ZhangBin TongRong-Jie Yang . Crystallization, Mechanical and Flame-retardant Properties of Poly(lactic acid) Composites with DOPO and DOPO-POSS. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2098-7

    6. [6]

      Zhi YanLin YeAi-ying ZhangZeng-guo Feng . The Mobility of Threaded α-Cyclodextrins in PR Copolymer and Its Influences on Mechanical Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1913-x

    7. [7]

      Hong YaoJia-li NiuJie ZhangNan-ying NingXiao-qiu YangMing TianXiao-li SunLi-qun ZhangShou-ke Yan . Morphologies and Mechanical Properties of Cis-1,4-butadiene Rubber/Polyethylene Blends. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1794-4

    8. [8]

      Ning LiFang-Lei ZengYu WangDe-Zhi QuChun ZhangJuan LiJin-Zhao HuoYong-Ping Bai . Synthesis and Characterization of Fluorinated Polyurethane Containing Carborane in the Main Chain: Thermal, Mechanical and Chemical Resistance Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2014-1

    9. [9]

      Cai-jun ZhuLei LiYi-nan HeHe HuangQian LiWei YuanHua-yi LiShui-rong ZhengYou-liang Hu . Synthesis of PP-g-PIP and Properties of PP/PP-g-PIP Binary Blends. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1900-2

    10. [10]

      Morteza KhalinaMohammad Hosain BeheshtyAli Salimi . Preparation and Characterization of DGEBA/EPN Epoxy Blends with Improved Fracture Toughness. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2022-1

    11. [11]

      Tang-Cheng XuDong-Hua HanYong-Mei ZhuGai-Gai DuanKun-Ming LiuHao-Qing Hou . High Strength Electrospun Single Copolyacrylonitrile (coPAN) Nanofibers with Improved Molecular Orientation by Drawing. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2516-0

    12. [12]


    13. [13]

      Li DangXue-ying NaiXin LiuDong-hai ZhuYa-ping DongWu Li . Crystallization, Mechanical, Thermal and Rheological Properties of Polypropylene Composites Reinforced by Magnesium Oxysulfate Whisker. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1908-7

    14. [14]

      Fang-Lan GuanFei AnJing YangXiaofeng LiXing-Hua LiZhong-Zhen Yu . Fiber-reinforced Three-dimensional Graphene Aerogels for Electrically Conductive Epoxy Composites with Enhanced Mechanical Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1972-z

    15. [15]


    16. [16]

      Yi-ning HeXiao LiuQi LiaoJian-jun ZhouHong HuoLin Li . Thickness-dependent Orientation Structure in Poly(ethylene oxide) Multi-layer Crystals. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1504-z

    17. [17]

      Qi ChenShun WangFeng QinKuan LiuQian LiuQing ZhaoXing-Yi WangYan-Hong Hu . Soluble Polyimide-reinforced TGDDM and DGEBA Epoxy Composites. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2395-9

    18. [18]

      Cheng-zhen GengXin HuGuang-hui YangQin ZhangFeng ChenQiang Fu . Mechanically Reinforced Chitosan/Cellulose Nanocrystals Composites with Good Transparency and Biocompatibility. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1558-6

    19. [19]

      Fei ZhaoLi LiYu-chuan TianJian-jia LiuJian-jun WangZhi-ming ZhouChun-xiang LvXu-hong Guo . Preparation of Au/Ag Multilayers via Layer-by-Layer Self-assembly in Spherical Polyelectrolyte Brushes and Their Catalytic Activity. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1700-5

    20. [20]

      Zi-Jian LiJiang ZhongMao-Chen LiuJin-Chuang RongKun YangJi-Yong ZhouLiang ShenFei GaoHai-Feng He . Investigation on Self-healing Property of Epoxy Resins Based on Disulfide Dynamic Links. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2406-x

Article Metrics
  • PDF Downloads(1)
  • Abstract views(357)
  • HTML views(146)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint