Citation: Shi, W. Scattering function and spinodal transition of linear and nonlinear block copolymers based on a unified molecular model. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2544-9 doi: 10.1007/s10118-021-2544-9 shu

Scattering Function and Spinodal Transition of Linear and Nonlinear Block Copolymers Based on a Unified Molecular Model

  • Corresponding author: Weichao Shi, E-mail: weichaoshi@nankai.edu.cn
  • Received Date: 2020-11-29
    Accepted Date: 2020-12-30
    Available Online: 2021-02-10

Figures(5)

  • This work uses a block copolymer architecture [(A’B)nA2]m to unify the scattering function and spinodal transition of typical AB-type block copolymers. The key roles of block number, junction points and asymmetry ratios of block length are (1) to determine the form factor of each block copolymer at the molecular scale; (2) to affect the entropy loss across the spinodal transition and may result in deflection of spinodal curves. The common features are validated in typical linear and nonlinear block copolymers, including AB diblock, asymmetric A’BA triblock, miktoarm stars of ABn, AnBn, (AB)n, (A’B)nA, A’BAm, and multi-graft combs of (BnA2)m and [(A’B)nA2]m. The explicit scattering functions and form factors of various block copolymers can be directly applied in radiation experiments (i.e. neutron or X-ray scattering) to unravel the effect of molecular architecture in solution and microphase separation in disordered melt. The molecular model used in this study is also helpful to guide the chemical synthesis to explore more potentially interesting block copolymers.
  • 加载中
    1. [1]

      Bates, F. S.; Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 1990, 41, 525−557. doi: 10.1146/annurev.pc.41.100190.002521

    2. [2]

      Leibler, L. Theory of microphase separation in block copolymers. Macromolecules 1980, 13, 1602−1617. doi: 10.1021/ma60078a047

    3. [3]

      Matsen, M. W.; Bates, F. S. Unifying weak- and strong-segregation block copolymer theories. Macromolecules 1996, 29, 1091−1098. doi: 10.1021/ma951138i

    4. [4]

      Fredrickson, G. H. The equilibrium theory of inhomogeneous polymers. Oxford University Press: New York, 2006.

    5. [5]

      Olvera de la Cruz, M.; Sanchez, I. C. Theory of microphase separation in graft and star copolymers. Macromolecules 1986, 19, 2501−2508. doi: 10.1021/ma00164a008

    6. [6]

      Milner, S. T. Chain architecture and asymmetry in copolymer microphases. Macromolecules 1994, 27, 2333−2335. doi: 10.1021/ma00086a057

    7. [7]

      Matsen, M. W.; Schick, M. Microphase separation in starblock copolymer melts. Macromolecules 1994, 27, 6761−6767. doi: 10.1021/ma00101a014

    8. [8]

      Shinozaki, A.; Jasnow, D.; Balazs, A. C. Microphase separation in comb copolymers. Macromolecules 1994, 27, 2496−2502. doi: 10.1021/ma00087a018

    9. [9]

      Matsen, M. W. Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules 2012, 45, 2161−2165. doi: 10.1021/ma202782s

    10. [10]

      Polymeropoulos, G.; Zapsas, G.; Ntetsikas, K.; Bilalis, P.; Gnanou, Y.; Hadjichristidis, N. 50th Anniversary perspective: polymers with complex architectures. Macromolecules 2017, 50, 1253−1290. doi: 10.1021/acs.macromol.6b02569

    11. [11]

      Zhulina, E. B.; Borisov, O. V. Effect of block copolymer architecture on morphology of self-assembled aggregates in solution. ACS Macro Lett. 2013, 2, 292−295. doi: 10.1021/mz400035k

    12. [12]

      Augustine, D.; Hadjichristidis, N.; Gnanou, Y.; Feng, X. Hydrophilic stars, amphiphilic star block copolymers, and miktoarm stars with degradable polycarbonate cores. Macromolecules 2020, 53, 895−904. doi: 10.1021/acs.macromol.9b02658

    13. [13]

      Huang, C. I.; Yu, H. T. Microphase separation and molecular conformation of AB2 miktoarm star copolymers by dissipative particle dynamics. Polymer 2007, 48, 4537−4546. doi: 10.1016/j.polymer.2007.06.002

    14. [14]

      Teng, X.; Zhang, P.; Liu, T.; Xin, J.; Zhang, J. Biobased miktoarm star copolymer from soybean oil, isosorbide, and caprolactone. J. Appl. Polym. Sci. 2020, 137, 48281. doi: 10.1002/app.48281

    15. [15]

      Zhou, F., Zhou, Q., Tian, H.; Li, C.; Zhang, Y.; Fan, X.; Shen, Z. Synthesis and self-assembly of a triarm star-shaped rod-rod block copolymer. Chinese J. Polym. Sci. 2015, 33, 709−720. doi: 10.1007/s10118-015-1621-3

    16. [16]

      Bates, M. W.; Barbon, S. M.; Levi, A. E.; Lewis III, R. M.; Beech, H. K.; Vonk, K. M.; Zhang, C.; Fredrickson, G. H.; Hawker, C. J.; Bates, C. M. Synthesis and self-assembly of ABn miktoarm star polymers. ACS Macro Lett. 2020, 9, 396−403. doi: 10.1021/acsmacrolett.0c00061

    17. [17]

      Shi, W.; Tateishi, Y. C.; Li, W.; Hawker, C. J.; Fredrickson, G. H.; Kramer, E. J. Producing small domain features using miktoarm block copolymers with large interaction parameters. ACS Macro Lett. 2015, 4, 1287−1292. doi: 10.1021/acsmacrolett.5b00712

    18. [18]

      Ji, S. X.; Wan, L.; Liu, C. C.; Nealey, P. F. Directed self-assembly of block copolymers on chemical patterns: a platform for nanofabrication. Prog. Polym. Sci. 2016, 76−127.

    19. [19]

      Pang, Y. Y.; Jin, X. S.; Huang, G. C.; Wan, L.; Ji, S. X. Directed Self-assembly of styrene-methyl acrylate block copolymers with sub-7 nm features via thermal annealing. Macromolecules 2019, 52, 2987−2994. doi: 10.1021/acs.macromol.9b00174

    20. [20]

      Jiang, Y., Hadjichristidis, N. pH-Responsive AIE-active polyethylene-based block copolymers. Chinese J. Polym. Sci. 2019, 37, 930−935. doi: 10.1007/s10118-019-2330-0

    21. [21]

      Bai, Y.; Xie, F.; Tian, W. Controlled self-assembly of thermo-responsive amphiphilic H-shaped polymer for adjustable drug release. Chinese J. Polym. Sci. 2018, 36, 406−416. doi: 10.1007/s10118-018-2086-y

    22. [22]

      Liu, Z.; Zhang, G. Preparation of Janus hybrid gold nanoparticles based on asymmetric star polymers. J. Funct. Polym. 2020, 33, 342−349.

    23. [23]

      Shin, J. J.; Kim, E. J.; Ku, K. H.; Lee, Y. J.; Hawker, C. J.; Kim, B. J. 100th Anniversary of macromolecular science viewpoint: block copolymer particles: tuning shape, interfaces, and morphology. ACS Macro Lett. 2020, 9, 306−317. doi: 10.1021/acsmacrolett.0c00020

    24. [24]

      Zhu, Y.; Burgaz, E.; Gido, S. P.; Staudinger, U.; Weidisch, R.; Uhrig, D.; Mays, J. W. Morphology and tensile properties of multigraft copolymers with regularly spaced tri-, tetra-, and hexafunctional junction points. Macromolecules 2006, 39, 4428−4436. doi: 10.1021/ma060067s

    25. [25]

      Burns, A. B.; Register, R. A. Mechanical properties of star block polymer thermoplastic elastomers with glassy and crystalline end blocks. Macromolecules 2016, 49, 9521−9530. doi: 10.1021/acs.macromol.6b02175

    26. [26]

      Lynd, N. A.; Oyerokun, F. T.; O’Donoghue, D. L.; Handlin, D. L. Jr.; Fredrickson, G. H. Design of soft and strong thermoplastic elastomers based on nonlinear block copolymer architectures using self-consistent-field theory. Macromolecules 2010, 43, 3479−3486. doi: 10.1021/ma902517v

    27. [27]

      Shi, W.; Lynd, N. A.; Montarnal, D.; Luo, Y.; Fredrickson, G. H.; Kramer, E. J.; Ntaras, C.; Avgeropoulos, A.; Hexemer, A. Toward strong thermoplastic elastomers with asymmetric miktoarm block copolymer architectures. Macromolecules 2014, 47, 2037−2043. doi: 10.1021/ma402566g

    28. [28]

      Shi, W.; Hamilton, A. L.; Delaney, K. T.; Fredrickson, G. H.; Kramer, E. J.; Ntaras, C.; Avgeropoulos, A.; Lynd, N. A.; Demassieux, Q.; Creton, C. Aperiodic “bricks and mortar” mesophase: a new equilibrium state of soft matter and application as a stiff thermoplastic elastomer. Macromolecules 2015, 48, 5378−5384. doi: 10.1021/acs.macromol.5b01210

    29. [29]

      Liu, Y. X.; Delaney, K. T.; Fredrickson, G. H. Field-theoretic simulations of fluctuation-stabilized aperiodic “bricks-and-mortar” mesophase in miktoarm star block copolymer/homopolymer blends. Macromolecules 2017, 50, 6263−6272. doi: 10.1021/acs.macromol.7b01106

    30. [30]

      Lequieu, J.; Koeper, T.; Delaney, K. T.; Fredrickson, G. H. Extreme deflection of phase boundaries and chain bridging in A(BA′)n miktoarm star polymers. Macromolecules 2020, 53, 513−522. doi: 10.1021/acs.macromol.9b02254

    31. [31]

      Levi, A. E.; Fu, L.; Lequieu, J.; Horne, J. D.; Blankenship, J.; Mukherjee, S.; Zhang, T.; Fredrickson, G. H.; Gutekunst, W. R.; Bates, C. M. Efficient synthesis of asymmetric miktoarm star polymers. Macromolecules 2020, 53, 702−710. doi: 10.1021/acs.macromol.9b02380

    32. [32]

      Xie, Q.; Qiang, Y.; Chen, L.; Xia, Y.; Li, W. Synergistic effect of stretched bridging block and released packing frustration leads to exotic nanostructures. ACS Macro Lett. 2020, 9, 980−984. doi: 10.1021/acsmacrolett.0c00313

    33. [33]

      Chen, L.; Qiang, Y.; Li, W. Tuning arm architecture leads to unusual phase behaviors in a (BAB)5 star copolymer melt. Macromolecules 2018, 51, 9890−9900. doi: 10.1021/acs.macromol.8b01484

    34. [34]

      Xie, N.; Li, W. H.; Qiu, F.; Shi, A. C. σ Phase formed in conformationally asymmetric AB-type block copolymers. ACS Macro Lett. 2014, 3, 906−910. doi: 10.1021/mz500445v

    35. [35]

      Jiang, W.; Qiang, Y.; Li, W.; Qiu, F.; Shi, A. C. Effects of chain topology on the self-assembly of AB-type block copolymers. Macromolecules 2018, 51, 1529−1538. doi: 10.1021/acs.macromol.7b02389

    36. [36]

      Ji, X.; Li, W. Effect of chain architectures on the domain spacing of block copolymers with equivalent segregation degrees. Phys. Chem. Chem. Phys. 2020, 22, 17824−17832. doi: 10.1039/D0CP02104K

    37. [37]

      Qiang, Y.; Li, W.; Shi, A. C. Stabilizing phases of block copolymers with gigantic spheres via designed chain architectures. ACS Macro Lett. 2020, 9, 668−673. doi: 10.1021/acsmacrolett.0c00193

    38. [38]

      Hamley, I. W.; Castelletto, V. Small-angle scattering of block copolymers: in the melt, solution and crystal states. Prog. Polym. Sci. 2004, 29, 909−948.

    39. [39]

      Mori, K.; Tanaka, H.; Hashimoto, T. Scattering functions for disordered two-component polymer systems including block polymers. Macromolecules 1987, 20, 381−393. doi: 10.1021/ma00168a026

    40. [40]

      Yilmaz, G., Yagci, Y. Mechanistic transformations involving radical and cationic polymerizations. Chinese J. Polym. Sci. 2020, 38, 205−212. doi: 10.1007/s10118-020-2367-0

    41. [41]

      Lynd, N. A.; Meuler, A. J.; Hillmyer, M. A. Polydispersity and block copolymer self-assembly. Prog. Polym. Sci. 2008, 33, 875−893. doi: 10.1016/j.progpolymsci.2008.07.003

    42. [42]

      Matsen, M. W.; Thompson, R. B. Equilibrium behavior of symmetric ABA triblock copolymer melts. J. Chem. Phys. 1999, 111, 7139−7146. doi: 10.1063/1.480006

    43. [43]

      Matsen, M. W. Equilibrium behavior of asymmetric ABA triblock copolymer melts. J. Chem. Phys. 2000, 113, 5539−5544. doi: 10.1063/1.1289889

    44. [44]

      Wang, Y.; Zhong, M.; Park, J. V.; Zhukhovitskiy, A. V.; Shi, W.; Johnson, J. A. Block co-polyMOCs by stepwise self-assembly. J. Am. Chem. Soc. 2016, 138, 10708−10715. doi: 10.1021/jacs.6b06712

  • 加载中
    1. [1]

      Zhi GengSong GuanHe-ming JiangLong-cheng GaoZhi-wen LiuLei Jiang . pH-Sensitive Wettability Induced by Topological and Chemical Transition on the Self Assembled Surface of Block Copolymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1376-2

    2. [2]

      Xian-long ZhangHong WuShao-yun Guo . The Molecular Structure of SEBS Grafted with Maleic Anhydride through Ultrasound Initiation. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1645-8

    3. [3]

      Zhu LiuZhi-Bin JiangHong YangShu-Ming BaiRong WangGi Xue . CROWDING EFFECT INDUCED PHASE TRANSITION OF AMPHIPHILIC DIBLOCK COPOLYMER IN SOLUTION. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1346-0

    4. [4]

      Feng ZhouQing-han ZhouHai-jian TianChang-sheng LiYu-dong ZhangXing-he FanZhi-hao Shen . Synthesis and Self-assembly of a Triarm Star-shaped Rod-Rod Block Copolymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1621-3

    5. [5]

      Wen-jin FanGuo-qiang FanXiao-hua ZhangZhao-hui Yang . Getting to the Bottom Morphology of Block Copolymer Thin Films. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1731-6

    6. [6]

      Hui-jing HanSha ZhangRu-yi SunJian-hua WuMei-ran XieXiao-juan Liao . Photocrosslinkable Polynorbornene-based Block Copolymers with Enhanced Dielectric and Thermal Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1753-0

    7. [7]

      Kai-qiang ZhangJing-zhe CaiXiao-hui LiHui LiYun-hui ZhaoXiao-yan Yuan . Balance of Polyacrylate-Fluorosilicone Block Copolymers as Icephobic Coatings. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1563-9

    8. [8]

      Xin-yu WeiWei-yin GuXiao-bo ShenJoseph StrzalkaZhang JiangThomas P Russell . DEVIATIONS FROM BULK MORPHOLOGIES IN THIN FILMS OF BLOCK COPOLYMER/ADDITIVE BINARY BLENDS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1320-x

    9. [9]

      Chun-yan WangQian YuanShu-guang YangJian Xu . Effect of Water Content on the Size and Membrane Thickness of Polystyrene-block-Poly(ethylene oxide) Vesicles. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1618-y

    10. [10]

      Ming-zhi WangTao WangKang YuanJianzhong Du . Preparation of Water Dispersible Poly(methyl methacrylate)-based Vesicles for Facile Persistent Antibacterial Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1725-4

    11. [11]

      Xi-xian KeJun-ting XuBin-yang DuZhi-qiang Fan . Morphology and Thermoresponsive Behavior of Hybrid Micelles of Polystyrene-b-Poly((N-isopropyl acrylamide)-co-(4-vinylbenzyl chloride)) with Prussian Blue. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1656-5

    12. [12]

      Qi-guang WangFu-xin LiangQian WangXiao-zhong QuZhen-zhong Yang . Responsive Composite Janus Cages. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1691-2

    13. [13]

      Jie-xin YangWei-na HeJun-ting XuBin-yang DuZhi-qiang Fan . Influence of Different Inorganic Salts on Crystallization-driven Morphological Transformation of PCL-b-PEO Micelles in Aqueous Solutions. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1512-z

    14. [14]

      Yan-hua WangDong XiangRong RenJin LuoWei-lin Sun . L-Lactide Homopolymerization and Copolymerization with -Caprolactone by Tetrahydrosalen Stabilized Yttrium Borohydride Complex. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1532-8

    15. [15]

      Yuan-Yuan PangSheng-Xiang Ji . Effect of Ink Molecular Weights and Annealing Conditions on Molecular Transfer Printing. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2056-4

    16. [16]

      Ya-Ping MaNing ZhangWei-Ping ZhengAi-Hua HeChen-Guang Liu . Structure and Properties of Isotactic Polypropylene/Polybutene-1 In-reactor Alloys. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2468-9

    17. [17]

      Shou-Kuo ManXiao WangJin-Wen ZhengZe-Sheng An . Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2303-3

    18. [18]

      Xiao-sa JinYuan-yuan PangSheng-xiang Ji . From Self-assembled Monolayers to Chemically Patterned Brushes: Controlling the Orientation of Block Copolymer Domains in Films by Substrate Modification. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1800-x

    19. [19]

      Zhi-da WangChang-feng YanYing HuangLi-qi Yi . Dependence of Size and Morphology on Shear Flow for PS-based Amphiphilic Block Copolymer Micelles in Aqueous Solution. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1927-4

    20. [20]

      Jun-Qing SongYi-Xin LiuHong-Dong Zhang . An Efficient Algorithm for Self-consistent Field Theory Calculations of Complex Self-assembled Structures of Block Copolymer Melts. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2037-7

Article Metrics
  • PDF Downloads(2)
  • Abstract views(312)
  • HTML views(136)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return