Citation: Zhou, J.; Zhang, X. Y.; Su, Z. Q. Rational design of biomolecules/polymer hybrids by reversible deactivation radical polymerization (RDRP) for biomedical applications. Chinese J. Polym. Sci. doi: 10.1007/s10118-021-2543-x shu

Rational Design of Biomolecules/Polymer Hybrids by Reversible Deactivation Radical Polymerization (RDRP) for Biomedical Applications

Figures(9) / Tables(2)

  • Hybrids, produced by hybridization of proteins, peptides, DNA, and other new biomolecules with polymers, often have unique functional properties. These properties, such as biocompatibility, stability and specificity, lead to various smart biomaterials. This review mainly introduces biomolecule-polymer hybrid materials by reversible deactivation radical polymerization (RDRP), emphasizing reverse addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide mediated polymerization (NMP). It includes the methods of RDRP to improve the biocompatibility of biomedical materials and organisms by surface modification. The key to the current synthesis of biomolecule-polymer hybrids is to control polymerization. Besides, this review describes several different kinds of biomolecule-polymer hybrid materials and their applications in the biomedical field. These progresses provide ideas for the investigation of biodegradable and highly bioactive biomedical soft tissue materials. The research hotspots of nanotechnology in biomedical fields are controlled drug release materials and gene therapy carrier materials. Research showed that RDRP method could improve the therapeutic effect and reduce the dosage and side effects of the drug. Specifically, by means of RDRP, the original materials can be modified to develop intelligent polymer materials as membrane materials with selective permeability and surface modification.
  • 加载中
    1. [1]

      Wang, C. Y.; Jiao, K.; Yan, J. F.; Wan, M.C.; Wan, Q. Q.; Breschi, L.; Chen, J. H.; Tay, F. R.; Niu, L. N. Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Prog. Mater. Sci. 2020, 100, 100712.

    2. [2]

      Maghsoudi, S.; Shahraki, B. T.; Rabiee, N.; Afshari, R.; Fatahi, Y.; Dinarvand, R.; Ahmadi, S.; Bagherzadeh, M.; Rabiee, M.; Tayebi, L. Recent advancements in aptamer-bioconjugates: sharpening stones for breast and prostate cancers targeting. J. Drug. Deliv. Sci. Technol 2019, 53, 101146. doi: 10.1016/j.jddst.2019.101146

    3. [3]

      Chen, C.; Ng, D. Y. W.; Weil, T. Polymer bioconjugates: modern design concepts toward precision hybrid materials. Prog. Polym. Sci. 2020, 100, 101241.

    4. [4]

      Meng, F.; Hasan, A.; Babadaei, M. M. N.; Kani, P. H.; Talaei, A. J.; Sharifi, M.; Cai, T.; Falahati, M.; Cai, Y. Polymeric-based microneedle arrays as potential platforms in development of drugs delivery systems. J. Adv. Res. 2020.

    5. [5]

      Paredes-Ramos, M.; Sabín-López, A.; Peña-García, J.; Pérez-Sánchez, H.; López-Vilariño, J.; de Vicente, M. S. Computational aided acetaminophen–phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs. J. Mol. Graph. Model. 2020, 107627.

    6. [6]

      Kim, Y. M.; Lee, Y. S.; Kim, T.; Yang, K.; Nam, K.; Choe, D.; Roh, Y. H. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr. Polym. 2020, 247, 116684. doi: 10.1016/j.carbpol.2020.116684

    7. [7]

      Messina, M. S.; Messina, K. M.; Bhattacharya, A.; Montgomery, H. R.; Maynard, H. D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020, 100, 101186. doi: 10.1016/j.progpolymsci.2019.101186

    8. [8]

      Xiong, Q.; Zhang, X.; Wei, W.; Wei, G.; Su, Z. Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications. Polym. Chem. 2020, 11, 1673−1690. doi: 10.1039/D0PY00136H

    9. [9]

      Wei, W.; Zhang, X.; Zhang, S.; Wei, G.; Su, Z. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review. Mater. Sci. Eng. C. 2019, 104, 109891. doi: 10.1016/j.msec.2019.109891

    10. [10]

      Gong, C.; Sun, S.; Zhang, Y.; Sun, L.; Su, Z.; Wu, A.; Wei, G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019, 11, 4147−4182. doi: 10.1039/C9NR00218A

    11. [11]

      Glasing, J.; Champagne, P.; Cunningham, M. F. Graft modification of chitosan, cellulose and alginate using reversible deactivation radical polymerization (RDRP). Curr. Opin. Green Sust. 2016, 2, 15−21. doi: 10.1016/j.cogsc.2016.09.002

    12. [12]

      Shipp, D. A. Reversible-deactivation radical polymerizations. Polym. Rev. 2011, 51, 99−103. doi: 10.1080/15583724.2011.566406

    13. [13]

      Ghadban, A.; Albertin, L. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers 2013, 5, 431−526. doi: 10.3390/polym5020431

    14. [14]

      Webster, O. W. Living polymerization methods. Science 1991, 251, 887−893. doi: 10.1126/science.251.4996.887

    15. [15]

      Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature. Macromolecules 1998, 31, 5958−5959. doi: 10.1021/ma980725b

    16. [16]

      Xia, J.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands. Macromolecules 1997, 30, 7697−7700. doi: 10.1021/ma971009x

    17. [17]

      Matyjaszewski, K.; Gaynor, S.; Greszta, D.; Mardare, D.; Shigemoto, T. ‘Living’ and controlled radical polymerization. J. Org. Chem 1995, 8, 306−315.

    18. [18]

      Moad, G.; Anderson, A. G.; Ercole, F.; Johnson, C. H.; Krstina, J.; Moad, C. L.; Rizzardo, E.; Spurling, T. H.; Thang, S. H. Controlled-growth free-radical polymerization of methacrylate esters: reversible chain transfer versus reversible termination. ACS Symp. 1998, 685, 332−360.

    19. [19]

      Wang, Y.; Fantin, M.; Park, S.; Gottlieb, E.; Fu, L.; Matyjaszewski, K. Electrochemically mediated reversible addition–fragmentation chain-transfer polymerization. Macromolecules 2017, 50, 7872−7879. doi: 10.1021/acs.macromol.7b02005

    20. [20]

      Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 81−84. doi: 10.1126/science.1202357

    21. [21]

      Fors, B. P.; Hawker, C. J. Control of a living radical polymerization of methacrylates by light. Angew. Chem. 2012, 124, 8980−8983. doi: 10.1002/ange.201203639

    22. [22]

      Tao, L.; Kaddis, C. S.; Loo, R. R. O.; Grover, G. N.; Loo, J. A.; Maynard, H. D. Synthetic approach to homodimeric protein-polymer conjugates. Chem. Commun. 2009, 2148−2150.

    23. [23]

      Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 101311.

    24. [24]

      Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 2018, 47, 4357−4387. doi: 10.1039/C7CS00587C

    25. [25]

      Chenal, M.; Boursier, C.; Guillaneuf, Y.; Taverna, M.; Couvreur, P.; Nicolas, J. First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polym. Chem. 2011, 2, 1523−1530. doi: 10.1039/c1py00028d

    26. [26]

      He, P.; He, L. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition? fragmentation chain transfer polymerization. Biomacromolecules 2009, 10, 1804−1809. doi: 10.1021/bm9002283

    27. [27]

      Wilks, T. R.; Bath, J.; de Vries, J. W.; Raymond, J. E.; Herrmann, A.; Turberfield, A. J.; O’Reilly, R. K. “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer. ACS Nano 2013, 7, 8561−8572. doi: 10.1021/nn402642a

    28. [28]

      Averick, S.; Mehl, R. A.; Das, S. R.; Matyjaszewski, K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J. Control. Release 2015, 205, 45−57. doi: 10.1016/j.jconrel.2014.11.030

    29. [29]

      Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513−6533. doi: 10.1021/ja408069v

    30. [30]

      Zhang, H.; Deng, J.; Lu, L.; Cai, Y. Ambient-temperature RAFT polymerization of styrene and its functional derivatives under mild long-wave UV-Vis radiation. Macromolecules 2007, 40, 9252−9261. doi: 10.1021/ma071287o

    31. [31]

      Barner-Kowollik, C.; Perrier, S. The future of reversible addition fragmentation chain transfer polymerization. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5715−5723. doi: 10.1002/pola.22866

    32. [32]

      Smith, A. E.; Xu, X.; McCormick, C. L. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog. Polym. Sci. 2010, 35, 45−93. doi: 10.1016/j.progpolymsci.2009.11.005

    33. [33]

      Lebreton, P.; Ameduri, B.; Boutevin, B.; Corpart, J. M. Use of original ω-perfluorinated dithioesters for the synthesis of well-controlled polymers by reversible addition-fragmentation chain transfer (RAFT). Macromol. Chem. Phys. 2002, 203, 522−537. doi: 10.1002/1521-3935(20020201)203:3<522::AID-MACP522>3.0.CO;2-L

    34. [34]

      Sciannamea, V.; Jérôme, R.; Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 2008, 108, 1104−1126. doi: 10.1021/cr0680540

    35. [35]

      Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc. Natl. Acad. Sci. 2006, 103, 7670−7675. doi: 10.1073/pnas.0602515103

    36. [36]

      Guillaneuf, Y.; Gigmes, D.; Marque, S. R.; Tordo, P.; Bertin, D. Nitroxide-mediated polymerization of methyl methacrylate using an SG1-based alkoxyamine: how the penultimate effect could lead to uncontrolled and unliving polymerization. Macromol. Chem. Phys. 2006, 207, 1278−1288. doi: 10.1002/macp.200600125

    37. [37]

      Hong, S. C.; Pakula, T.; Matyjaszewski, K. Preparation of polyisobutene-graft-poly(methyl methacrylate) and polyisobutene-graft-polystyrene with different compositions and side chain architectures through atom transfer radical polymerization (ATRP). Macromol. Chem. Phys. 2001, 202, 3392−3402. doi: 10.1002/1521-3935(20011101)202:17<3392::AID-MACP3392>3.0.CO;2-4

    38. [38]

      Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18−37. doi: 10.1016/j.progpolymsci.2011.08.001

    39. [39]

      Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 2005, 38, 7540−7545. doi: 10.1021/ma0511245

    40. [40]

      Gao, H.; Matyjaszewski, K. Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators. Macromolecules 2007, 40, 399−401.

    41. [41]

      Maguire, M.; Poole, S.; Coates, A. R.; Tormay, P.; Wheeler-Jones, C.; Henderson, B. Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology 2005, 115, 231−238. doi: 10.1111/j.1365-2567.2005.02155.x

    42. [42]

      Hardy, C. G.; Zhang, J.; Yan, Y.; Ren, L.; Tang, C. Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog. Polym. Sci. 2014, 39, 1742−1796. doi: 10.1016/j.progpolymsci.2014.03.002

    43. [43]

      Buchmeiser, M. R.; Sinner, F.; Mupa, M.; Wurst, K. Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports. Macromolecules 2000, 33, 32−39. doi: 10.1021/ma9913966

    44. [44]

      Isarov, S. A.; Pokorski, J. K. Protein ROMP: aqueous graft-from ring-opening metathesis polymerization. ACS Macro Lett. 2015, 4, 969−973. doi: 10.1021/acsmacrolett.5b00497

    45. [45]

      Héroguez, V.; Chemtob, A.; Quemener, D. ROMP in dispersed media. In Handbook of metathesis. Wiley-VCH Verlag GmbH & Co. KGaA, 2015, 25−44.

    46. [46]

      Jagur-Grodzinski, J. Functional polymers by living anionic polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2116−2133. doi: 10.1002/pola.10291

    47. [47]

      Matsuoka, D.; Goseki, R.; Uchida, S.; Ishizone, T. Living anionic polymerization of 1-adamantyl 4-vinylphenyl ketone. Macromol. Chem. Phys. 2017, 218, 1700015. doi: 10.1002/macp.201700015

    48. [48]

      Haraguchi, R.; Nishikawa, T.; Kanazawa, A.; Aoshima, S. Metal-free living cationic polymerization using diaryliodonium salts as organic lewis acid catalysts. Macromolecules 2020, 53, 4185−4192. doi: 10.1021/acs.macromol.0c00823

    49. [49]

      Aoshima, S.; Kanaoka, S. A Renaissance in living cationic polymerization. Chem. Rev. 2009, 109, 5245−5287. doi: 10.1021/cr900225g

    50. [50]

      Liu, D.; He, J.; Zhang, L.; Tan, J. 100th Anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. Recent advances and future opportunities. ACS Macro Lett. 2019, 8, 1660−1669. doi: 10.1021/acsmacrolett.9b00870

    51. [51]

      Torres-Rocha, O. L.; Wu, X.; Zhu, C.; Crudden, C. M.; Cunningham, M. F. Polymerization-induced self-assembly (PISA) of 1,5-cyclooctadiene using ring opening metathesis polymerization. Macromol. Rapid Commun. 2019, 40, 1800326. doi: 10.1002/marc.201800326

    52. [52]

      Dai, X.; Yu, L.; Zhang, Y.; Zhang, L.; Tan, J. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers. Macromolecules 2019, 52, 7468−7476. doi: 10.1021/acs.macromol.9b01689

    53. [53]

      Tan, J.; Xu, Q.; Zhang, Y.; Huang, C.; Li, X.; He, J.; Zhang, L. Room temperature synthesis of self-assembled ab/b and abc/bc blends by photoinitiated polymerization-induced self-assembly (photo-PISA) in water. Macromolecules 2018, 51, 7396−7406. doi: 10.1021/acs.macromol.8b01456

    54. [54]

      He, J.; Cao, J.; Chen, Y.; Zhang, L.; Tan, J. Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett. 2020, 9, 533−539. doi: 10.1021/acsmacrolett.0c00151

    55. [55]

      Kedracki, D.; Maroni, P.; Schlaad, H.; Vebert-Nardin, C. Polymer–aptamer hybrid emulsion templating yields bioresponsive nanocapsules. Adv. Funct. Mater. 2014, 24, 1133−1139. doi: 10.1002/adfm.201302475

    56. [56]

      Adhikary, P.; Tiwari, K.; Singh, R. Synthesis, characterization, and flocculation characteristics of polyacrylamide-grafted glycogen. J. Appl. Polym. Sci. 2007, 103, 773−778. doi: 10.1002/app.25043

    57. [57]

      Seaberg, J.; Kaabipour, S.; Hemmati, S.; Ramsey, J. D. A rapid millifluidic synthesis of tunable polymer-protein nanoparticles. Eur. J. Pharm. Biopharm. 2020, 154, 127−135. doi: 10.1016/j.ejpb.2020.07.006

    58. [58]

      Baldwin, A. D.; Kiick, K. L. Polysaccharide-modified synthetic polymeric biomaterials. Peptide Sci. 2010, 94, 128−140. doi: 10.1002/bip.21334

    59. [59]

      Fujita, M.; Shoda, S. i.; Kobayashi, S. Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer. J. Am. Chem. Soc. 1998, 120, 6411−6412. doi: 10.1021/ja980893j

    60. [60]

      Vicent, M. J.; Duncan, R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 2006, 24, 39−47. doi: 10.1016/j.tibtech.2005.11.006

    61. [61]

      Lutolf, M.; Hubbell, J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47−55. doi: 10.1038/nbt1055

    62. [62]

      Lin, J.; Bao, Y. X.; Lam, W.; L, W. W.; Lu, F.; Zhu, X.; Liu, J.; Wang, H. P. Immunoregulatory and anti-tumor effects of polysaccharopeptide and astragalus polysaccharides on tumor-bearing mice. Immunopharm. Immunot. 2008, 30, 771−782. doi: 10.1080/08923970802279183

    63. [63]

      Miadoková, E.; Svidová, S.; Vlčková, V.; Kogan, G.; Rauko, P. The role of microbial polysaccharides in cancer prevention and therapy. J Cancer Integrative Med. 2004, 2, 1738.

    64. [64]

      Deeley, R. G.; Westlake, C.; Cole, S. P. Transmembrane transport of endo-and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 2006, 86, 849−899. doi: 10.1152/physrev.00035.2005

    65. [65]

      Xu, X.; Cui, Y.; Bu, H.; Chen, J.; Li, Y.; Tang, G.; Wang, L. Q. A photosensitizer loaded hemoglobin–polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J. Mater. Chem. B 2018, 6, 1825−1833. doi: 10.1039/C7TB03109B

    66. [66]

      Makwana, H.; Mastrotto, F.; Magnusson, J. P.; Sleep, D.; Hay, J.; Nicholls, K. J.; Allen, S.; Alexander, C. Engineered polymer–transferrin conjugates as self-assembling targeted drug delivery systems. Biomacromolecules 2017, 18, 1532−1543. doi: 10.1021/acs.biomac.7b00101

    67. [67]

      Duro-Castano, A.; Lim, N. H.; Tranchant, I.; Amoura, M.; Beau, F.; Wieland, H.; Kingler, O.; Herrmann, M.; Nazaré, M.; Plettenburg, O. In vivo imaging of MMP-13 activity using a specific polymer-FRET peptide conjugate detects early osteoarthritis and inhibitor efficacy. Adv. Funct. Mater. 2018, 28, 1802738. doi: 10.1002/adfm.201802738

    68. [68]

      Gao, D.; Zhang, P.; Liu, Y.; Sheng, Z.; Chen, H.; Yuan, Z. Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale 2018, 10, 19742−19748. doi: 10.1039/C8NR06197A

    69. [69]

      Faust, H. J.; Sommerfeld, S. D.; Rathod, S.; Rittenbach, A.; Banerjee, S. R.; Tsui, B. M.; Pomper, M.; Amzel, M. L.; Singh, A.; Elisseeff, J. H. A hyaluronic acid binding peptide-polymer system for treating osteoarthritis. Biomaterials 2018, 183, 93−101. doi: 10.1016/j.biomaterials.2018.08.045

    70. [70]

      Bao, X.; Fan, X.; Yu, Y.; Wang, Q.; Wang, P.; Yuan, J. Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling. Int. J. Biol. Macromol. 2020, 144, 267−278. doi: 10.1016/j.ijbiomac.2019.12.078

    71. [71]

      Ramirez, L. M. F.; Babin, J.; Boudier, A.; Gaucher, C.; Schmutz, M.; Er-Rafik, M.; Durand, A.; Six, J. L.; Nouvel, C. First multi-reactive polysaccharide-based transurf to produce potentially biocompatible dextran-covered nanocapsules. Carbohydr. Polym. 2019, 224, 115153. doi: 10.1016/j.carbpol.2019.115153

    72. [72]

      Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. Grafting from starch nanoparticles with synthetic polymers via nitroxide-mediated polymerization. Macromol. Rapid Commun. 2019, 40, 1800834. doi: 10.1002/marc.201800834

    73. [73]

      Song, W.; Xiao, C.; Cui, L.; Tang, Z.; Zhuang, X.; Chen, X. Facile construction of functional biosurface via SI-ATRP and “click glycosylation”. Colloids Surf. B 2012, 93, 188−194. doi: 10.1016/j.colsurfb.2012.01.002

    74. [74]

      Rowland, G.; O'neill, G.; Davies, D. Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage. Nature 1975, 255, 487−488. doi: 10.1038/255487a0

    75. [75]

      Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. Graft modification of starch nanoparticles using nitroxide-mediated polymerization and the grafting from approach. Carbohydr. Polym. 2020, 228, 115384. doi: 10.1016/j.carbpol.2019.115384

    76. [76]

      Porter, C. J.; Werber, J. R.; Ritt, C. L.; Guan, Y. F.; Zhong, M.; Elimelech, M. Controlled grafting of polymer brush layers from porous cellulosic membranes. J. Membr. Sci. 2020, 596, 117719. doi: 10.1016/j.memsci.2019.117719

    77. [77]

      Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411, 59−62. doi: 10.1038/35075028

    78. [78]

      Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444. doi: 10.1002/adma.201703444

    79. [79]

      Zhang, L.; Beatty, A.; Lu, L.; Abdalrahman, A.; Makris, T.; Wang, G.; Wang, Q. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Mater. Sci. Eng. C 2020, 110768.

    80. [80]

      Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization. Biomacromolecules 2015, 16, 2040−2048. doi: 10.1021/acs.biomac.5b00470

    81. [81]

      Johnson, J. A.; Finn, M.; Koberstein, J. T.; Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun. 2008, 29, 1052−1072. doi: 10.1002/marc.200800208

    82. [82]

      Meldal, M.; Tornøe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952−3015. doi: 10.1021/cr0783479

    83. [83]

      Lutz, J. F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug. Deliv. Rev. 2008, 60, 958−970. doi: 10.1016/j.addr.2008.02.004

    84. [84]

      Bao, H.; Li, L.; Gan, L. H.; Ping, Y.; Li, J.; Ravi, P. Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 2010, 43, 5679−5687. doi: 10.1021/ma100894p

    85. [85]

      Zhang, K.; Zhuang, P.; Wang, Z.; Li, Y.; Jiang, Z.; Hu, Q.; Liu, M.; Zhao, Q. One-pot synthesis of chitosan-g-(PEO-PLLA-PEO) via “click” chemistry and “SET-NRC” reaction. Carbohydr. Polym. 2012, 90, 1515−1521. doi: 10.1016/j.carbpol.2012.07.023

    86. [86]

      Canning, S. L.; Smith, G. N.; Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 2016, 49, 1985−2001. doi: 10.1021/acs.macromol.5b02602

    87. [87]

      Karagoz, B.; Esser, L.; Duong, H. T.; Basuki, J. S.; Boyer, C.; Davis, T. P. Polymerization-induced self-assembly (PISA)–control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 2014, 5, 350−355. doi: 10.1039/C3PY01306E

    88. [88]

      Dao, T. T.; Vezenkov, L.; Subra, G.; Amblard, M.; In, M.; Le Meins, J. F. O.; Aubrit, F.; Moradi, M. A.; Ladmiral, V.; Semsarilar, M. Self-assembling peptide-polymer nano-objects via polymerization-induced self-assembly. Macromolecules 2020, 53, 7034−7043. doi: 10.1021/acs.macromol.0c01260

    89. [89]

      Tsao, C.; Zhang, P.; Yuan, Z.; Dong, D.; Wu, K.; Niu, L.; McMullen, P.; Luozhong, S.; Hung, H. C.; Cheng, Y. H. Zwitterionic polymer conjugated glucagon-like peptide-1 for prolonged glycemic control. Bioconjug. Chem. 2020, 31, 1812−1819. doi: 10.1021/acs.bioconjchem.0c00286

    90. [90]

      Crooke, S. N.; Zheng, J.; Ganewatta, M. S.; Guldberg, S. M.; Reineke, T. M.; Finn, M. Immunological properties of protein–polymer nanoparticles. ACS Appl. Biomater. 2018, 2, 93−103.

    91. [91]

      Nandi, S.; Kundu, A.; Das, P.; Nandi, A. K. Facile synthesis of water soluble, fluorescent DNA-polymer conjugate via enzymatic polymerization for cell imaging. J. Nanosci. Nanotechnol. 2017, 17, 5168−5174. doi: 10.1166/jnn.2017.13839

    92. [92]

      Lueckerath, T.; Strauch, T.; Koynov, K.; Barner-Kowollik, C.; Ng, D. Y.; Weil, T. DNA–polymer conjugates by photoinduced RAFT polymerization. Biomacromolecules 2018, 20, 212−221.

    93. [93]

      Noteborn, W. E.; Wondergem, J. A.; Iurchenko, A.; Chariyev-Prinz, F.; Donato, D.; Voets, I. K.; Heinrich, D.; Kieltyka, R. E. Grafting from a hybrid DNA–covalent polymer by the hybridization chain reaction. Macromolecules 2018, 51, 5157−5164. doi: 10.1021/acs.macromol.7b02610

    94. [94]

      Hadinoto, K.; Sundaresan, A.; Cheow, W. S. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 2013, 85, 427−443. doi: 10.1016/j.ejpb.2013.07.002

    95. [95]

      Wong, H. L.; Bendayan, R.; Rauth, A. M.; Xue, H. Y.; Babakhanian, K.; Wu, X. Y. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 2006, 317, 1372−1381. doi: 10.1124/jpet.106.101154

    96. [96]

      Woodle, M. C.; Newman, M. S.; Cohen, J. A. Sterically stabilized liposomes: physical and biological properties. J. Drug. Target. 1994, 2, 397−403. doi: 10.3109/10611869408996815

    97. [97]

      Tomaás, R., M.; Gibson, M. I. Optimization and stability of cell–polymer hybrids obtained by “clicking” synthetic polymers to metabolically labeled cell surface glycans. Biomacromolecules 2019, 20, 2726−2736. doi: 10.1021/acs.biomac.9b00478

    98. [98]

      Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754−2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3

    99. [99]

      Zhou, C.; Reesink, H. L.; Putnam, D. A. Selective and tunable galectin binding of glycopolymers synthesized by a generalizable conjugation method. Biomacromolecules 2019, 20, 3704−3712. doi: 10.1021/acs.biomac.9b00759

    100. [100]

      Yang, L.; Sun, H.; Liu, Y.; Hou, W.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P.; Pan, X.; Li, X. Self-assembled aptamer-grafted hyperbranched polymer nanocarrier for targeted and photoresponsive drug delivery. Angew. Chem. 2018, 130, 17294−17298. doi: 10.1002/ange.201809753

    101. [101]

      Mansur, A.; Mansur, H.; González, J. Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors 2011, 11, 9951−9972. doi: 10.3390/s111009951

    102. [102]

      Liu, Y.; Nevanen, T. K.; Paananen, A.; Kempe, K.; Wilson, P.; Johansson, L. S.; Joensuu, J. J.; Linder, M. B.; Haddleton, D. M.; Milani, R. Self-assembling protein–polymer bioconjugates for surfaces with antifouling features and low nonspecific binding. ACS Appl. Mater. Interfaces 2018, 11, 3599−3608.

    103. [103]

      Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta. Pharm. Sin. B 2016, 6, 287−296. doi: 10.1016/j.apsb.2016.02.001

    104. [104]

      Mathiowitz, E.; Saltzman, W.; Domb, A.; Dor, P.; Langer, R. Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal. J. Appl. Polym. Sci. 1988, 35, 755−774. doi: 10.1002/app.1988.070350316

    105. [105]

      Hawkins, M. J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug. Deliv. Rev. 2008, 60, 876−885. doi: 10.1016/j.addr.2007.08.044

    106. [106]

      Wahajuddin, S. A. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 2012, 7, 3445.

    107. [107]

      Li, J.; Ma, Y. J.; Wang, Y.; Chen, B. Z.; Guo, X. D.; Zhang, C. Y. Dual redox/pH-responsive hybrid polymer-lipid composites: synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem. Eng. J. 2018, 341, 450−461. doi: 10.1016/j.cej.2018.02.055

    108. [108]

      Jiang, P.; Jacobs, K. M.; Ohr, M. P.; Swindle-Reilly, K. E. Chitosan–polycaprolactone core–shell microparticles for sustained delivery of bevacizumab. Mol. Pharmaceut. 2020, 17, 2570−2584. doi: 10.1021/acs.molpharmaceut.0c00260

    109. [109]

      Suh, J. K. F.; Matthew, H. W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000, 21, 2589−2598. doi: 10.1016/S0142-9612(00)00126-5

    110. [110]

      Ma, P. X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008, 60, 184−198. doi: 10.1016/j.addr.2007.08.041

    111. [111]

      Solchaga, L. A.; Dennis, J. E.; Goldberg, V. M.; Caplan, A. I. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 1999, 17, 205−213. doi: 10.1002/jor.1100170209

    112. [112]

      Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529−2543. doi: 10.1016/S0142-9612(00)00121-6

    113. [113]

      Ohgushi, H., Tissue engineering using bioceramics. In Bioceramics and their Clinical Applications, Woodhead Publishing 2008, 718−736.

    114. [114]

      Mishra, R.; Varshney, R.; Das, N.; Sircar, D.; Roy, P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 2019, 119, 155−168. doi: 10.1016/j.eurpolymj.2019.07.007

    115. [115]

      Kim, S. H.; Thambi, T.; Phan, V. G.; Lee, D. S. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydr. Polym. 2020, 233, 115832. doi: 10.1016/j.carbpol.2020.115832

    116. [116]

      Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B 2019, 178, 222−229. doi: 10.1016/j.colsurfb.2019.03.004

    117. [117]

      Nelson, R. W.; Nedelkov, D.; Tubbs, K. A. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 2000, 21, 1155−1163. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-X

    118. [118]

      Cornell, B. A.; Braach-Maksvytis, V.; King, L.; Osman, P.; Raguse, B.; Wieczorek, L.; Pace, R. A biosensor that uses ion-channel switches. Nature 1997, 387, 580−583. doi: 10.1038/42432

    119. [119]

      Pandey, C. M.; Malhotra, B. D. Biosensors: fundamentals and applications. Walter de Gruyter GmbH & Co KG: 2019.

    120. [120]

      Gu, T.; Zhang, Y.; Deng, F.; Zhang, J.; Hasebe, Y. Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film. J. Environ. Sci. 2011, 23, S66−S69. doi: 10.1016/S1001-0742(11)61080-2

    121. [121]

      Yoo, E. H.; Lee, S. Y. Glucose biosensors: an overview of use in clinical practice. Sensors 2010, 10, 4558−4576. doi: 10.3390/s100504558

    122. [122]

      Yang, Y.; Nam, S.; Lee, W. Y. Tris(2,2′-bipyridyl) ruthenium(II) electrogenerated chemiluminescence ethanol biosensor based on ionic liquid doped titania-Nafion composite film. Microchem. J. 2018, 142, 62−69. doi: 10.1016/j.microc.2018.06.016

    123. [123]

      Paloni, J. M.; Olsen, B. D. Polymer domains control diffusion in protein-polymer conjugate biosensors. ACS Appl. Polym. Mater. 2020, 14, 4481−4492.

    124. [124]

      Paloni, J. M.; Dong, X. H.; Olsen, B. D. Protein–polymer block copolymer thin films for highly sensitive detection of small proteins in biological fluids. ACS Sensors 2019, 4, 2869−2878. doi: 10.1021/acssensors.9b01020

    125. [125]

      Qi, F.; Qian, Y.; Shao, N.; Zhou, R.; Zhang, S.; Lu, Z.; Zhou, M.; Xie, J.; Wei, T.; Yu, Q. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interface 2019, 11, 18907−18913. doi: 10.1021/acsami.9b02915

    126. [126]

      Nishimura, T.; Shishi, S.; Sasaki, Y.; Akiyoshi, K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J. Am. Chem. Soc. 2019, 142, 154−161.

  • 加载中
    1. [1]

      Hao WangHong-rui SongYong CuiYing-jie DengXue-si Chend . MAGNOLOL ENTRAPPED ULTRA-FINE FIBROUS MATS ELECTROSPUN FROM POLY(ETHYLENE GLYCOL)-b-POLY(L-LACTIDE) AND IN VITRO RELEASE. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1024-z

    2. [2]

      Yang BaiFang-Yuan XieWei Tian . Controlled Self-assembly of Thermo-responsive Amphiphilic H-shaped Polymer for Adjustable Drug Release. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2086-y

    3. [3]

      Zhuo-Ran ZhongYi-Nan ChenYang ZhouMao Chen . Challenges and Recent Developments of Photoflow-Reversible Deactivation Radical Polymerization (RDRP). Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2529-8

    4. [4]

      Xian-Wu JingZhi-Yu HuangHong-Sheng LuBao-Gang Wang . CO2-sensitive Amphiphilic Triblock Copolymer Self-assembly Morphology Transition and Accelerating Drug Release from Polymeric Vesicle. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2008-z

    5. [5]

      Jiang-jiang DuanLi-na Zhang . Robust and Smart Hydrogels Based on Natural Polymers. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1983-9

    6. [6]

      Liu-Cheng MaoXiao-Yong ZhangYen Wei . Recent Advances and Progress for the Fabrication and Surface Modification of AIE-active Organic-inorganic Luminescent Composites. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2208-1

    7. [7]

      Xu-Dong ShiPei-Jian SunZhi-Hua Gan . Preparation of Porous Polylactide Microspheres and Their Application in Tissue Engineering. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2079-x

    8. [8]

      Hong-Mei ChenLin WangShao-Bing Zhou . Recent Progress in Shape Memory Polymers for Biomedical Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2118-7

    9. [9]


    10. [10]

      Man-Zhu ZhaoDong-Bing ChengZhao-Ru ShangLei WangZeng-Ying QiaoJing-Ping ZhangHao Wang . An “In Vivo Self-assembly” Strategy for Constructing Superstructures for Biomedical Applications. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2170-3

    11. [11]


    12. [12]

      K. DoraswamyP. Venkata Ramana . Controlled Drug Release Studies of Atenolol Using Differently Sulfonated Acryloxyacetophenone and Methyl Methacrylate Copolymer Resins as Drug Carriers. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1406-0

    13. [13]

      Wen-liang WangXiao-jing MaXi-fei Yu . pH-responsive Polymersome Based on PMCP-b-PDPA as a Drug Delivery System to Enhance Cellular Internalization and Intracellular Drug Release. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1982-x

    14. [14]

      Dian-xiang LuXian-tao WenJie LiangXing-dong ZhangZhong-wei GuYu-jiang Fan . NOVEL pH-SENSITIVE DRUG DELIVERY SYSTEM BASED ON NATURAL POLYSACCHARIDE FOR DOXORUBICIN RELEASE. Chinese J. Polym. Sci,

    15. [15]

      Yin YuanPei-jian SunXu-dong ShiZhi-hua GanFo-song Wang . Biodegradable Microspheres with Poly(N-isopropylacrylamide) Enriched Surface: Thermo-responsibility, Biodegradation and Drug Release. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1702-3

    16. [16]

      Run ZhaoYu-Juan ZhouKe-Cheng JieJie YangSébastien PerrierFei-He Huang . Fluorescent Supramolecular Polymersomes Based on Pillararene/Paraquat Molecular Recognition for pH-controlled Drug Release. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2305-1

    17. [17]

      Chen GaoYing WangWei-pu Zhu . Resorcinarene-centered Amphiphilic Star-block Copolymers:Synthesis, Micellization and Controlled Drug Release. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1528-4

    18. [18]


    19. [19]

      Yong-Peng MiaoJing LyuHai-Yang YongSigen AYong-Sheng GaoWen-Xin Wang . Controlled Polymerization of Methyl Methacrylate and Styrene via Cu(0)-Mediated RDRP by Selecting the Optimal Reaction Conditions. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2236-x

    20. [20]


Article Metrics
  • PDF Downloads(0)
  • Abstract views(474)
  • HTML views(143)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint