-
[1]
Wang, C. Y.; Jiao, K.; Yan, J. F.; Wan, M.C.; Wan, Q. Q.; Breschi, L.; Chen, J. H.; Tay, F. R.; Niu, L. N. Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Prog. Mater. Sci. 2020, 100, 100712.
-
[2]
Maghsoudi, S.; Shahraki, B. T.; Rabiee, N.; Afshari, R.; Fatahi, Y.; Dinarvand, R.; Ahmadi, S.; Bagherzadeh, M.; Rabiee, M.; Tayebi, L. Recent advancements in aptamer-bioconjugates: sharpening stones for breast and prostate cancers targeting. J. Drug. Deliv. Sci. Technol 2019, 53, 101146. doi: 10.1016/j.jddst.2019.101146
-
[3]
Chen, C.; Ng, D. Y. W.; Weil, T. Polymer bioconjugates: modern design concepts toward precision hybrid materials. Prog. Polym. Sci. 2020, 100, 101241.
-
[4]
Meng, F.; Hasan, A.; Babadaei, M. M. N.; Kani, P. H.; Talaei, A. J.; Sharifi, M.; Cai, T.; Falahati, M.; Cai, Y. Polymeric-based microneedle arrays as potential platforms in development of drugs delivery systems. J. Adv. Res. 2020.
-
[5]
Paredes-Ramos, M.; Sabín-López, A.; Peña-García, J.; Pérez-Sánchez, H.; López-Vilariño, J.; de Vicente, M. S. Computational aided acetaminophen–phthalic acid molecularly imprinted polymer design for analytical determination of known and new developed recreational drugs. J. Mol. Graph. Model. 2020, 107627.
-
[6]
Kim, Y. M.; Lee, Y. S.; Kim, T.; Yang, K.; Nam, K.; Choe, D.; Roh, Y. H. Cationic cellulose nanocrystals complexed with polymeric siRNA for efficient anticancer drug delivery. Carbohydr. Polym. 2020, 247, 116684. doi: 10.1016/j.carbpol.2020.116684
-
[7]
Messina, M. S.; Messina, K. M.; Bhattacharya, A.; Montgomery, H. R.; Maynard, H. D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020, 100, 101186. doi: 10.1016/j.progpolymsci.2019.101186
-
[8]
Xiong, Q.; Zhang, X.; Wei, W.; Wei, G.; Su, Z. Enzyme-mediated reversible deactivation radical polymerization for functional materials: principles, synthesis, and applications. Polym. Chem. 2020, 11, 1673−1690. doi: 10.1039/D0PY00136H
-
[9]
Wei, W.; Zhang, X.; Zhang, S.; Wei, G.; Su, Z. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review. Mater. Sci. Eng. C. 2019, 104, 109891. doi: 10.1016/j.msec.2019.109891
-
[10]
Gong, C.; Sun, S.; Zhang, Y.; Sun, L.; Su, Z.; Wu, A.; Wei, G. Hierarchical nanomaterials via biomolecular self-assembly and bioinspiration for energy and environmental applications. Nanoscale 2019, 11, 4147−4182. doi: 10.1039/C9NR00218A
-
[11]
Glasing, J.; Champagne, P.; Cunningham, M. F. Graft modification of chitosan, cellulose and alginate using reversible deactivation radical polymerization (RDRP). Curr. Opin. Green Sust. 2016, 2, 15−21. doi: 10.1016/j.cogsc.2016.09.002
-
[12]
Shipp, D. A. Reversible-deactivation radical polymerizations. Polym. Rev. 2011, 51, 99−103. doi: 10.1080/15583724.2011.566406
-
[13]
Ghadban, A.; Albertin, L. Synthesis of glycopolymer architectures by reversible-deactivation radical polymerization. Polymers 2013, 5, 431−526. doi: 10.3390/polym5020431
-
[14]
Webster, O. W. Living polymerization methods. Science 1991, 251, 887−893. doi: 10.1126/science.251.4996.887
-
[15]
Xia, J.; Gaynor, S. G.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization of acrylates at ambient temperature. Macromolecules 1998, 31, 5958−5959. doi: 10.1021/ma980725b
-
[16]
Xia, J.; Matyjaszewski, K. Controlled/“living” radical polymerization. Atom transfer radical polymerization using multidentate amine ligands. Macromolecules 1997, 30, 7697−7700. doi: 10.1021/ma971009x
-
[17]
Matyjaszewski, K.; Gaynor, S.; Greszta, D.; Mardare, D.; Shigemoto, T. ‘Living’ and controlled radical polymerization. J. Org. Chem 1995, 8, 306−315.
-
[18]
Moad, G.; Anderson, A. G.; Ercole, F.; Johnson, C. H.; Krstina, J.; Moad, C. L.; Rizzardo, E.; Spurling, T. H.; Thang, S. H. Controlled-growth free-radical polymerization of methacrylate esters: reversible chain transfer versus reversible termination. ACS Symp. 1998, 685, 332−360.
-
[19]
Wang, Y.; Fantin, M.; Park, S.; Gottlieb, E.; Fu, L.; Matyjaszewski, K. Electrochemically mediated reversible addition–fragmentation chain-transfer polymerization. Macromolecules 2017, 50, 7872−7879. doi: 10.1021/acs.macromol.7b02005
-
[20]
Magenau, A. J.; Strandwitz, N. C.; Gennaro, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization. Science 2011, 332, 81−84. doi: 10.1126/science.1202357
-
[21]
Fors, B. P.; Hawker, C. J. Control of a living radical polymerization of methacrylates by light. Angew. Chem. 2012, 124, 8980−8983. doi: 10.1002/ange.201203639
-
[22]
Tao, L.; Kaddis, C. S.; Loo, R. R. O.; Grover, G. N.; Loo, J. A.; Maynard, H. D. Synthetic approach to homodimeric protein-polymer conjugates. Chem. Commun. 2009, 2148−2150.
-
[23]
Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 101311.
-
[24]
Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 2018, 47, 4357−4387. doi: 10.1039/C7CS00587C
-
[25]
Chenal, M.; Boursier, C.; Guillaneuf, Y.; Taverna, M.; Couvreur, P.; Nicolas, J. First peptide/protein PEGylation with functional polymers designed by nitroxide-mediated polymerization. Polym. Chem. 2011, 2, 1523−1530. doi: 10.1039/c1py00028d
-
[26]
He, P.; He, L. Synthesis of surface-anchored DNA-polymer bioconjugates using reversible addition? fragmentation chain transfer polymerization. Biomacromolecules 2009, 10, 1804−1809. doi: 10.1021/bm9002283
-
[27]
Wilks, T. R.; Bath, J.; de Vries, J. W.; Raymond, J. E.; Herrmann, A.; Turberfield, A. J.; O’Reilly, R. K. “Giant surfactants” created by the fast and efficient functionalization of a DNA tetrahedron with a temperature-responsive polymer. ACS Nano 2013, 7, 8561−8572. doi: 10.1021/nn402642a
-
[28]
Averick, S.; Mehl, R. A.; Das, S. R.; Matyjaszewski, K. Well-defined biohybrids using reversible-deactivation radical polymerization procedures. J. Control. Release 2015, 205, 45−57. doi: 10.1016/j.jconrel.2014.11.030
-
[29]
Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136, 6513−6533. doi: 10.1021/ja408069v
-
[30]
Zhang, H.; Deng, J.; Lu, L.; Cai, Y. Ambient-temperature RAFT polymerization of styrene and its functional derivatives under mild long-wave UV-Vis radiation. Macromolecules 2007, 40, 9252−9261. doi: 10.1021/ma071287o
-
[31]
Barner-Kowollik, C.; Perrier, S. The future of reversible addition fragmentation chain transfer polymerization. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 5715−5723. doi: 10.1002/pola.22866
-
[32]
Smith, A. E.; Xu, X.; McCormick, C. L. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog. Polym. Sci. 2010, 35, 45−93. doi: 10.1016/j.progpolymsci.2009.11.005
-
[33]
Lebreton, P.; Ameduri, B.; Boutevin, B.; Corpart, J. M. Use of original ω-perfluorinated dithioesters for the synthesis of well-controlled polymers by reversible addition-fragmentation chain transfer (RAFT). Macromol. Chem. Phys. 2002, 203, 522−537. doi: 10.1002/1521-3935(20020201)203:3<522::AID-MACP522>3.0.CO;2-L
-
[34]
Sciannamea, V.; Jérôme, R.; Detrembleur, C. In-situ nitroxide-mediated radical polymerization (NMP) processes: their understanding and optimization. Chem. Rev. 2008, 108, 1104−1126. doi: 10.1021/cr0680540
-
[35]
Watts, R. N.; Hawkins, C.; Ponka, P.; Richardson, D. R. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proc. Natl. Acad. Sci. 2006, 103, 7670−7675. doi: 10.1073/pnas.0602515103
-
[36]
Guillaneuf, Y.; Gigmes, D.; Marque, S. R.; Tordo, P.; Bertin, D. Nitroxide-mediated polymerization of methyl methacrylate using an SG1-based alkoxyamine: how the penultimate effect could lead to uncontrolled and unliving polymerization. Macromol. Chem. Phys. 2006, 207, 1278−1288. doi: 10.1002/macp.200600125
-
[37]
Hong, S. C.; Pakula, T.; Matyjaszewski, K. Preparation of polyisobutene-graft-poly(methyl methacrylate) and polyisobutene-graft-polystyrene with different compositions and side chain architectures through atom transfer radical polymerization (ATRP). Macromol. Chem. Phys. 2001, 202, 3392−3402. doi: 10.1002/1521-3935(20011101)202:17<3392::AID-MACP3392>3.0.CO;2-4
-
[38]
Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18−37. doi: 10.1016/j.progpolymsci.2011.08.001
-
[39]
Sumerlin, B. S.; Tsarevsky, N. V.; Louche, G.; Lee, R. Y.; Matyjaszewski, K. Highly efficient “click” functionalization of poly(3-azidopropyl methacrylate) prepared by ATRP. Macromolecules 2005, 38, 7540−7545. doi: 10.1021/ma0511245
-
[40]
Gao, H.; Matyjaszewski, K. Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators. Macromolecules 2007, 40, 399−401.
-
[41]
Maguire, M.; Poole, S.; Coates, A. R.; Tormay, P.; Wheeler-Jones, C.; Henderson, B. Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology 2005, 115, 231−238. doi: 10.1111/j.1365-2567.2005.02155.x
-
[42]
Hardy, C. G.; Zhang, J.; Yan, Y.; Ren, L.; Tang, C. Metallopolymers with transition metals in the side-chain by living and controlled polymerization techniques. Prog. Polym. Sci. 2014, 39, 1742−1796. doi: 10.1016/j.progpolymsci.2014.03.002
-
[43]
Buchmeiser, M. R.; Sinner, F.; Mupa, M.; Wurst, K. Ring-opening metathesis polymerization for the preparation of surface-grafted polymer supports. Macromolecules 2000, 33, 32−39. doi: 10.1021/ma9913966
-
[44]
Isarov, S. A.; Pokorski, J. K. Protein ROMP: aqueous graft-from ring-opening metathesis polymerization. ACS Macro Lett. 2015, 4, 969−973. doi: 10.1021/acsmacrolett.5b00497
-
[45]
Héroguez, V.; Chemtob, A.; Quemener, D. ROMP in dispersed media. In Handbook of metathesis. Wiley-VCH Verlag GmbH & Co. KGaA, 2015, 25−44.
-
[46]
Jagur-Grodzinski, J. Functional polymers by living anionic polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 2116−2133. doi: 10.1002/pola.10291
-
[47]
Matsuoka, D.; Goseki, R.; Uchida, S.; Ishizone, T. Living anionic polymerization of 1-adamantyl 4-vinylphenyl ketone. Macromol. Chem. Phys. 2017, 218, 1700015. doi: 10.1002/macp.201700015
-
[48]
Haraguchi, R.; Nishikawa, T.; Kanazawa, A.; Aoshima, S. Metal-free living cationic polymerization using diaryliodonium salts as organic lewis acid catalysts. Macromolecules 2020, 53, 4185−4192. doi: 10.1021/acs.macromol.0c00823
-
[49]
Aoshima, S.; Kanaoka, S. A Renaissance in living cationic polymerization. Chem. Rev. 2009, 109, 5245−5287. doi: 10.1021/cr900225g
-
[50]
Liu, D.; He, J.; Zhang, L.; Tan, J. 100th Anniversary of macromolecular science viewpoint: heterogenous reversible deactivation radical polymerization at room temperature. Recent advances and future opportunities. ACS Macro Lett. 2019, 8, 1660−1669. doi: 10.1021/acsmacrolett.9b00870
-
[51]
Torres-Rocha, O. L.; Wu, X.; Zhu, C.; Crudden, C. M.; Cunningham, M. F. Polymerization-induced self-assembly (PISA) of 1,5-cyclooctadiene using ring opening metathesis polymerization. Macromol. Rapid Commun. 2019, 40, 1800326. doi: 10.1002/marc.201800326
-
[52]
Dai, X.; Yu, L.; Zhang, Y.; Zhang, L.; Tan, J. Polymerization-induced self-assembly via RAFT-mediated emulsion polymerization of methacrylic monomers. Macromolecules 2019, 52, 7468−7476. doi: 10.1021/acs.macromol.9b01689
-
[53]
Tan, J.; Xu, Q.; Zhang, Y.; Huang, C.; Li, X.; He, J.; Zhang, L. Room temperature synthesis of self-assembled ab/b and abc/bc blends by photoinitiated polymerization-induced self-assembly (photo-PISA) in water. Macromolecules 2018, 51, 7396−7406. doi: 10.1021/acs.macromol.8b01456
-
[54]
He, J.; Cao, J.; Chen, Y.; Zhang, L.; Tan, J. Thermoresponsive block copolymer vesicles by visible light-initiated seeded polymerization-induced self-assembly for temperature-regulated enzymatic nanoreactors. ACS Macro Lett. 2020, 9, 533−539. doi: 10.1021/acsmacrolett.0c00151
-
[55]
Kedracki, D.; Maroni, P.; Schlaad, H.; Vebert-Nardin, C. Polymer–aptamer hybrid emulsion templating yields bioresponsive nanocapsules. Adv. Funct. Mater. 2014, 24, 1133−1139. doi: 10.1002/adfm.201302475
-
[56]
Adhikary, P.; Tiwari, K.; Singh, R. Synthesis, characterization, and flocculation characteristics of polyacrylamide-grafted glycogen. J. Appl. Polym. Sci. 2007, 103, 773−778. doi: 10.1002/app.25043
-
[57]
Seaberg, J.; Kaabipour, S.; Hemmati, S.; Ramsey, J. D. A rapid millifluidic synthesis of tunable polymer-protein nanoparticles. Eur. J. Pharm. Biopharm. 2020, 154, 127−135. doi: 10.1016/j.ejpb.2020.07.006
-
[58]
Baldwin, A. D.; Kiick, K. L. Polysaccharide-modified synthetic polymeric biomaterials. Peptide Sci. 2010, 94, 128−140. doi: 10.1002/bip.21334
-
[59]
Fujita, M.; Shoda, S. i.; Kobayashi, S. Xylanase-catalyzed synthesis of a novel polysaccharide having a glucose-xylose repeating unit, a cellulose-xylan hybrid polymer. J. Am. Chem. Soc. 1998, 120, 6411−6412. doi: 10.1021/ja980893j
-
[60]
Vicent, M. J.; Duncan, R. Polymer conjugates: nanosized medicines for treating cancer. Trends Biotechnol. 2006, 24, 39−47. doi: 10.1016/j.tibtech.2005.11.006
-
[61]
Lutolf, M.; Hubbell, J. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47−55. doi: 10.1038/nbt1055
-
[62]
Lin, J.; Bao, Y. X.; Lam, W.; L, W. W.; Lu, F.; Zhu, X.; Liu, J.; Wang, H. P. Immunoregulatory and anti-tumor effects of polysaccharopeptide and astragalus polysaccharides on tumor-bearing mice. Immunopharm. Immunot. 2008, 30, 771−782. doi: 10.1080/08923970802279183
-
[63]
Miadoková, E.; Svidová, S.; Vlčková, V.; Kogan, G.; Rauko, P. The role of microbial polysaccharides in cancer prevention and therapy. J Cancer Integrative Med. 2004, 2, 1738.
-
[64]
Deeley, R. G.; Westlake, C.; Cole, S. P. Transmembrane transport of endo-and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol. Rev. 2006, 86, 849−899. doi: 10.1152/physrev.00035.2005
-
[65]
Xu, X.; Cui, Y.; Bu, H.; Chen, J.; Li, Y.; Tang, G.; Wang, L. Q. A photosensitizer loaded hemoglobin–polymer conjugate as a nanocarrier for enhanced photodynamic therapy. J. Mater. Chem. B 2018, 6, 1825−1833. doi: 10.1039/C7TB03109B
-
[66]
Makwana, H.; Mastrotto, F.; Magnusson, J. P.; Sleep, D.; Hay, J.; Nicholls, K. J.; Allen, S.; Alexander, C. Engineered polymer–transferrin conjugates as self-assembling targeted drug delivery systems. Biomacromolecules 2017, 18, 1532−1543. doi: 10.1021/acs.biomac.7b00101
-
[67]
Duro-Castano, A.; Lim, N. H.; Tranchant, I.; Amoura, M.; Beau, F.; Wieland, H.; Kingler, O.; Herrmann, M.; Nazaré, M.; Plettenburg, O. In vivo imaging of MMP-13 activity using a specific polymer-FRET peptide conjugate detects early osteoarthritis and inhibitor efficacy. Adv. Funct. Mater. 2018, 28, 1802738. doi: 10.1002/adfm.201802738
-
[68]
Gao, D.; Zhang, P.; Liu, Y.; Sheng, Z.; Chen, H.; Yuan, Z. Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. Nanoscale 2018, 10, 19742−19748. doi: 10.1039/C8NR06197A
-
[69]
Faust, H. J.; Sommerfeld, S. D.; Rathod, S.; Rittenbach, A.; Banerjee, S. R.; Tsui, B. M.; Pomper, M.; Amzel, M. L.; Singh, A.; Elisseeff, J. H. A hyaluronic acid binding peptide-polymer system for treating osteoarthritis. Biomaterials 2018, 183, 93−101. doi: 10.1016/j.biomaterials.2018.08.045
-
[70]
Bao, X.; Fan, X.; Yu, Y.; Wang, Q.; Wang, P.; Yuan, J. Graft modification of lignin-based cellulose via enzyme-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization and free-radical coupling. Int. J. Biol. Macromol. 2020, 144, 267−278. doi: 10.1016/j.ijbiomac.2019.12.078
-
[71]
Ramirez, L. M. F.; Babin, J.; Boudier, A.; Gaucher, C.; Schmutz, M.; Er-Rafik, M.; Durand, A.; Six, J. L.; Nouvel, C. First multi-reactive polysaccharide-based transurf to produce potentially biocompatible dextran-covered nanocapsules. Carbohydr. Polym. 2019, 224, 115153. doi: 10.1016/j.carbpol.2019.115153
-
[72]
Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. Grafting from starch nanoparticles with synthetic polymers via nitroxide-mediated polymerization. Macromol. Rapid Commun. 2019, 40, 1800834. doi: 10.1002/marc.201800834
-
[73]
Song, W.; Xiao, C.; Cui, L.; Tang, Z.; Zhuang, X.; Chen, X. Facile construction of functional biosurface via SI-ATRP and “click glycosylation”. Colloids Surf. B 2012, 93, 188−194. doi: 10.1016/j.colsurfb.2012.01.002
-
[74]
Rowland, G.; O'neill, G.; Davies, D. Suppression of tumour growth in mice by a drug-antibody conjugate using a novel approach to linkage. Nature 1975, 255, 487−488. doi: 10.1038/255487a0
-
[75]
Cazotti, J. C.; Fritz, A. T.; Garcia-Valdez, O.; Smeets, N. M.; Dubé, M. A.; Cunningham, M. F. Graft modification of starch nanoparticles using nitroxide-mediated polymerization and the grafting from approach. Carbohydr. Polym. 2020, 228, 115384. doi: 10.1016/j.carbpol.2019.115384
-
[76]
Porter, C. J.; Werber, J. R.; Ritt, C. L.; Guan, Y. F.; Zhong, M.; Elimelech, M. Controlled grafting of polymer brush layers from porous cellulosic membranes. J. Membr. Sci. 2020, 596, 117719. doi: 10.1016/j.memsci.2019.117719
-
[77]
Ding, Z.; Fong, R. B.; Long, C. J.; Stayton, P. S.; Hoffman, A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 2001, 411, 59−62. doi: 10.1038/35075028
-
[78]
Qi, G. B.; Gao, Y. J.; Wang, L.; Wang, H. Self-assembled peptide-based nanomaterials for biomedical imaging and therapy. Adv. Mater. 2018, 30, 1703444. doi: 10.1002/adma.201703444
-
[79]
Zhang, L.; Beatty, A.; Lu, L.; Abdalrahman, A.; Makris, T.; Wang, G.; Wang, Q. Microfluidic-assisted polymer-protein assembly to fabricate homogeneous functional nanoparticles. Mater. Sci. Eng. C 2020, 110768.
-
[80]
Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. Polymerization induced self-assembly of alginate based amphiphilic graft copolymers synthesized by single electron transfer living radical polymerization. Biomacromolecules 2015, 16, 2040−2048. doi: 10.1021/acs.biomac.5b00470
-
[81]
Johnson, J. A.; Finn, M.; Koberstein, J. T.; Turro, N. J. Construction of linear polymers, dendrimers, networks, and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition “click” chemistry. Macromol. Rapid Commun. 2008, 29, 1052−1072. doi: 10.1002/marc.200800208
-
[82]
Meldal, M.; Tornøe, C. W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 2008, 108, 2952−3015. doi: 10.1021/cr0783479
-
[83]
Lutz, J. F.; Zarafshani, Z. Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry. Adv. Drug. Deliv. Rev. 2008, 60, 958−970. doi: 10.1016/j.addr.2008.02.004
-
[84]
Bao, H.; Li, L.; Gan, L. H.; Ping, Y.; Li, J.; Ravi, P. Thermo- and pH-responsive association behavior of dual hydrophilic graft chitosan terpolymer synthesized via ATRP and click chemistry. Macromolecules 2010, 43, 5679−5687. doi: 10.1021/ma100894p
-
[85]
Zhang, K.; Zhuang, P.; Wang, Z.; Li, Y.; Jiang, Z.; Hu, Q.; Liu, M.; Zhao, Q. One-pot synthesis of chitosan-g-(PEO-PLLA-PEO) via “click” chemistry and “SET-NRC” reaction. Carbohydr. Polym. 2012, 90, 1515−1521. doi: 10.1016/j.carbpol.2012.07.023
-
[86]
Canning, S. L.; Smith, G. N.; Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules 2016, 49, 1985−2001. doi: 10.1021/acs.macromol.5b02602
-
[87]
Karagoz, B.; Esser, L.; Duong, H. T.; Basuki, J. S.; Boyer, C.; Davis, T. P. Polymerization-induced self-assembly (PISA)–control over the morphology of nanoparticles for drug delivery applications. Polym. Chem. 2014, 5, 350−355. doi: 10.1039/C3PY01306E
-
[88]
Dao, T. T.; Vezenkov, L.; Subra, G.; Amblard, M.; In, M.; Le Meins, J. F. O.; Aubrit, F.; Moradi, M. A.; Ladmiral, V.; Semsarilar, M. Self-assembling peptide-polymer nano-objects via polymerization-induced self-assembly. Macromolecules 2020, 53, 7034−7043. doi: 10.1021/acs.macromol.0c01260
-
[89]
Tsao, C.; Zhang, P.; Yuan, Z.; Dong, D.; Wu, K.; Niu, L.; McMullen, P.; Luozhong, S.; Hung, H. C.; Cheng, Y. H. Zwitterionic polymer conjugated glucagon-like peptide-1 for prolonged glycemic control. Bioconjug. Chem. 2020, 31, 1812−1819. doi: 10.1021/acs.bioconjchem.0c00286
-
[90]
Crooke, S. N.; Zheng, J.; Ganewatta, M. S.; Guldberg, S. M.; Reineke, T. M.; Finn, M. Immunological properties of protein–polymer nanoparticles. ACS Appl. Biomater. 2018, 2, 93−103.
-
[91]
Nandi, S.; Kundu, A.; Das, P.; Nandi, A. K. Facile synthesis of water soluble, fluorescent DNA-polymer conjugate via enzymatic polymerization for cell imaging. J. Nanosci. Nanotechnol. 2017, 17, 5168−5174. doi: 10.1166/jnn.2017.13839
-
[92]
Lueckerath, T.; Strauch, T.; Koynov, K.; Barner-Kowollik, C.; Ng, D. Y.; Weil, T. DNA–polymer conjugates by photoinduced RAFT polymerization. Biomacromolecules 2018, 20, 212−221.
-
[93]
Noteborn, W. E.; Wondergem, J. A.; Iurchenko, A.; Chariyev-Prinz, F.; Donato, D.; Voets, I. K.; Heinrich, D.; Kieltyka, R. E. Grafting from a hybrid DNA–covalent polymer by the hybridization chain reaction. Macromolecules 2018, 51, 5157−5164. doi: 10.1021/acs.macromol.7b02610
-
[94]
Hadinoto, K.; Sundaresan, A.; Cheow, W. S. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 2013, 85, 427−443. doi: 10.1016/j.ejpb.2013.07.002
-
[95]
Wong, H. L.; Bendayan, R.; Rauth, A. M.; Xue, H. Y.; Babakhanian, K.; Wu, X. Y. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 2006, 317, 1372−1381. doi: 10.1124/jpet.106.101154
-
[96]
Woodle, M. C.; Newman, M. S.; Cohen, J. A. Sterically stabilized liposomes: physical and biological properties. J. Drug. Target. 1994, 2, 397−403. doi: 10.3109/10611869408996815
-
[97]
Tomaás, R., M.; Gibson, M. I. Optimization and stability of cell–polymer hybrids obtained by “clicking” synthetic polymers to metabolically labeled cell surface glycans. Biomacromolecules 2019, 20, 2726−2736. doi: 10.1021/acs.biomac.9b00478
-
[98]
Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754−2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3
-
[99]
Zhou, C.; Reesink, H. L.; Putnam, D. A. Selective and tunable galectin binding of glycopolymers synthesized by a generalizable conjugation method. Biomacromolecules 2019, 20, 3704−3712. doi: 10.1021/acs.biomac.9b00759
-
[100]
Yang, L.; Sun, H.; Liu, Y.; Hou, W.; Yang, Y.; Cai, R.; Cui, C.; Zhang, P.; Pan, X.; Li, X. Self-assembled aptamer-grafted hyperbranched polymer nanocarrier for targeted and photoresponsive drug delivery. Angew. Chem. 2018, 130, 17294−17298. doi: 10.1002/ange.201809753
-
[101]
Mansur, A.; Mansur, H.; González, J. Enzyme-polymers conjugated to quantum-dots for sensing applications. Sensors 2011, 11, 9951−9972. doi: 10.3390/s111009951
-
[102]
Liu, Y.; Nevanen, T. K.; Paananen, A.; Kempe, K.; Wilson, P.; Johansson, L. S.; Joensuu, J. J.; Linder, M. B.; Haddleton, D. M.; Milani, R. Self-assembling protein–polymer bioconjugates for surfaces with antifouling features and low nonspecific binding. ACS Appl. Mater. Interfaces 2018, 11, 3599−3608.
-
[103]
Ha, D.; Yang, N.; Nadithe, V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta. Pharm. Sin. B 2016, 6, 287−296. doi: 10.1016/j.apsb.2016.02.001
-
[104]
Mathiowitz, E.; Saltzman, W.; Domb, A.; Dor, P.; Langer, R. Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal. J. Appl. Polym. Sci. 1988, 35, 755−774. doi: 10.1002/app.1988.070350316
-
[105]
Hawkins, M. J.; Soon-Shiong, P.; Desai, N. Protein nanoparticles as drug carriers in clinical medicine. Adv. Drug. Deliv. Rev. 2008, 60, 876−885. doi: 10.1016/j.addr.2007.08.044
-
[106]
Wahajuddin, S. A. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int. J. Nanomedicine 2012, 7, 3445.
-
[107]
Li, J.; Ma, Y. J.; Wang, Y.; Chen, B. Z.; Guo, X. D.; Zhang, C. Y. Dual redox/pH-responsive hybrid polymer-lipid composites: synthesis, preparation, characterization and application in drug delivery with enhanced therapeutic efficacy. Chem. Eng. J. 2018, 341, 450−461. doi: 10.1016/j.cej.2018.02.055
-
[108]
Jiang, P.; Jacobs, K. M.; Ohr, M. P.; Swindle-Reilly, K. E. Chitosan–polycaprolactone core–shell microparticles for sustained delivery of bevacizumab. Mol. Pharmaceut. 2020, 17, 2570−2584. doi: 10.1021/acs.molpharmaceut.0c00260
-
[109]
Suh, J. K. F.; Matthew, H. W. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 2000, 21, 2589−2598. doi: 10.1016/S0142-9612(00)00126-5
-
[110]
Ma, P. X. Biomimetic materials for tissue engineering. Adv. Drug. Deliv. Rev. 2008, 60, 184−198. doi: 10.1016/j.addr.2007.08.041
-
[111]
Solchaga, L. A.; Dennis, J. E.; Goldberg, V. M.; Caplan, A. I. Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J. Orthop. Res. 1999, 17, 205−213. doi: 10.1002/jor.1100170209
-
[112]
Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000, 21, 2529−2543. doi: 10.1016/S0142-9612(00)00121-6
-
[113]
Ohgushi, H., Tissue engineering using bioceramics. In Bioceramics and their Clinical Applications, Woodhead Publishing 2008, 718−736.
-
[114]
Mishra, R.; Varshney, R.; Das, N.; Sircar, D.; Roy, P. Synthesis and characterization of gelatin-PVP polymer composite scaffold for potential application in bone tissue engineering. Eur. Polym. J. 2019, 119, 155−168. doi: 10.1016/j.eurpolymj.2019.07.007
-
[115]
Kim, S. H.; Thambi, T.; Phan, V. G.; Lee, D. S. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Carbohydr. Polym. 2020, 233, 115832. doi: 10.1016/j.carbpol.2020.115832
-
[116]
Zou, L.; Zhang, Y.; Liu, X.; Chen, J.; Zhang, Q. Biomimetic mineralization on natural and synthetic polymers to prepare hybrid scaffolds for bone tissue engineering. Colloids Surf. B 2019, 178, 222−229. doi: 10.1016/j.colsurfb.2019.03.004
-
[117]
Nelson, R. W.; Nedelkov, D.; Tubbs, K. A. Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 2000, 21, 1155−1163. doi: 10.1002/(SICI)1522-2683(20000401)21:6<1155::AID-ELPS1155>3.0.CO;2-X
-
[118]
Cornell, B. A.; Braach-Maksvytis, V.; King, L.; Osman, P.; Raguse, B.; Wieczorek, L.; Pace, R. A biosensor that uses ion-channel switches. Nature 1997, 387, 580−583. doi: 10.1038/42432
-
[119]
Pandey, C. M.; Malhotra, B. D. Biosensors: fundamentals and applications. Walter de Gruyter GmbH & Co KG: 2019.
-
[120]
Gu, T.; Zhang, Y.; Deng, F.; Zhang, J.; Hasebe, Y. Direct electrochemistry of glucose oxidase and biosensing for glucose based on DNA/chitosan film. J. Environ. Sci. 2011, 23, S66−S69. doi: 10.1016/S1001-0742(11)61080-2
-
[121]
Yoo, E. H.; Lee, S. Y. Glucose biosensors: an overview of use in clinical practice. Sensors 2010, 10, 4558−4576. doi: 10.3390/s100504558
-
[122]
Yang, Y.; Nam, S.; Lee, W. Y. Tris(2,2′-bipyridyl) ruthenium(II) electrogenerated chemiluminescence ethanol biosensor based on ionic liquid doped titania-Nafion composite film. Microchem. J. 2018, 142, 62−69. doi: 10.1016/j.microc.2018.06.016
-
[123]
Paloni, J. M.; Olsen, B. D. Polymer domains control diffusion in protein-polymer conjugate biosensors. ACS Appl. Polym. Mater. 2020, 14, 4481−4492.
-
[124]
Paloni, J. M.; Dong, X. H.; Olsen, B. D. Protein–polymer block copolymer thin films for highly sensitive detection of small proteins in biological fluids. ACS Sensors 2019, 4, 2869−2878. doi: 10.1021/acssensors.9b01020
-
[125]
Qi, F.; Qian, Y.; Shao, N.; Zhou, R.; Zhang, S.; Lu, Z.; Zhou, M.; Xie, J.; Wei, T.; Yu, Q. Practical preparation of infection-resistant biomedical surfaces from antimicrobial β-peptide polymers. ACS Appl. Mater. Interface 2019, 11, 18907−18913. doi: 10.1021/acsami.9b02915
-
[126]
Nishimura, T.; Shishi, S.; Sasaki, Y.; Akiyoshi, K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J. Am. Chem. Soc. 2019, 142, 154−161.