Citation: Wang, J. H.; Chen, R.; Zhao, Z. Q.; Shen, J.; Yang, H.; Luo, Y.; Chen, G. J.; Chen, H.; Brash, J. L. Feasible fabrication of hollow micro-vesicles by non-amphiphilic macromolecules based on interfacial cononsolvency. Chinese J. Polym. Sci. doi: 10.1007/s10118-021-2541-z shu

Feasible Fabrication of Hollow Micro-vesicles by Non-amphiphilic Macromolecules Based on Interfacial Cononsolvency

Figures(5) / Tables(2)

  • Herein we present a new perspective showing that water-soluble liquids, when added to water, undergo transient emulsification before complete dissolution. Thus, non-amphiphilic macromolecules can self-assemble at the two-miscible-phase interface when cononsolvent effect appears. A representative case shown here is that when poly(N-isopropylacrylamide) (PNIPAm), prepared by aqueous radical polymerization, in methanol solution is added into water, the polymer chains rapidly self-assemble into hollow micro-vesicles based on the cononsolvency at water/methanol interface. This finding provides a subtle strategy to prepare hollow micro-vesicles by non-amphiphilic polymers without template participating. We proposed a new concept “interfacial cononsolvency” to describe the formation process. Due to the easy modification process, sugar-contained PNIPAm chains are synthesized by copolymerization. As an application example, it is shown that these sugar-contained PNIPAm chains can afford “sweet” micro-vesicles (containing glucose residues). And the “sweet” micro-vesicles can well mimick the protocells which are involved in the recognition of bacteria.
  • 加载中
    1. [1]

      Kumar, A.; Li, S.; Cheng, C.; Lee, D. Recent developments in phase inversion emulsification. Ind. Eng. Chem. Res. 2015, 54, 8375−8396. doi: 10.1021/acs.iecr.5b01122

    2. [2]

      Chandrawati, R.; Caruso, F. Biomimetic liposome- and polymersome-based multicompartmentalized assemblies. Langmuir 2012, 28, 13798−13807. doi: 10.1021/la301958v

    3. [3]

      Lee, S. M.; Nguyen, S. T. Smart nanoscale drug delivery platforms from stimuli-responsive polymers and liposomes. Macromolecules 2013, 46, 9169−9180. doi: 10.1021/ma401529w

    4. [4]

      Torres-Martínez, A.; Angulo-Pachón, C. A.; Galindo, F.; Miravet, J. F. Liposome-enveloped molecular nanogels. Langmuir 2019, 35, 13375−13381. doi: 10.1021/acs.langmuir.9b02282

    5. [5]

      Wang, C. Y.; Yuan, Q.; Yang, S. G.; Xu, J. Effect of water content on the size and membrane thickness of polystyrene-block-poly(ethylene oxide) vesicles. Chinese J. Polym. Sci. 2015, 33, 661−668. doi: 10.1007/s10118-015-1618-y

    6. [6]

      Wan, L.; Ruiz, R.; Gao, H.; Albrecht, T. R. Self-registered self-assembly of block copolymers. ACS Nano 2017, 11, 7666−7673. doi: 10.1021/acsnano.7b03284

    7. [7]

      D'Agosto, F.; Rieger, J.; Lansalot, M. RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed. 2020, 59, 8368. doi: 10.1002/anie.201911758

    8. [8]

      Chen, D. Y.; Jiang, M. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions. Acc. Chem. Res. 2005, 38, 494−502. doi: 10.1021/ar040113d

    9. [9]

      Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40, 2254−2266. doi: 10.1039/c0cs00153h

    10. [10]

      Xia, D. Y.; Wang, P.; Ji, X. F.; Khashab, N. M.; Sessler, J. L.; Huang, F. H. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 2020, 120, 6070−6123. doi: 10.1021/acs.chemrev.9b00839

    11. [11]

      Luo, M.; Epps, T. H. Directed block copolymer thin film self-assembly: emerging trends in nanopattern fabrication. Macromolecules 2013, 46, 7567−7579. doi: 10.1021/ma401112y

    12. [12]

      Onses, M. S.; Hernández, A. R.; Hur, S. M.; Sutanto, E.; Williamson, L.; Alleyne, A. G.; Nealey, P. F.; de Pablo, J. J.; Rogers, J. A. Block-copolymer assembly on nanoscale patterns of polymer brushes formed by electrohydrodynamic jet printing. ACS Nano 2014, 8, 6606−6613. doi: 10.1021/nn5022605

    13. [13]

      Tang, Y.; Ito, K.; Hong, L.; Ishizone, T.; Yokoyama, H. Tunable thermoresponsive mesoporous block copolymer membranes. Macromolecules 2016, 49, 7886−7896. doi: 10.1021/acs.macromol.6b01665

    14. [14]

      Nunes, S. P. Block copolymer membranes for aqueous solution applications. Macromolecules 2016, 49, 2905−2916. doi: 10.1021/acs.macromol.5b02579

    15. [15]

      Zheng, C. X.; Zhao, Y.; Liu, Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2018, 36, 322. doi: 10.1007/s10118-018-2078-y

    16. [16]

      Chen, S.; Qin, J. L.; Du, J. Z. Two principles for polymersomes with ultrahigh biomacromolecular loading efficiencies: acid-induced adsorption and affinity-enhanced attraction. Macromolecules 2020, 53, 3978−3993. doi: 10.1021/acs.macromol.0c00252

    17. [17]

      Zhou, J. M.; Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Silica nanotubes decorated by pH-responsive diblock copolymers for controlled drug release. ACS Appl. Mater. Interfaces 2015, 7, 3618−3625. doi: 10.1021/am507832n

    18. [18]

      Qiao, Z. Y.; Ji, R.; Huang, X. N.; Du F. S.; Zhang R.; Liang, D. H.; Li, Z. C. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release. Biomacromolecules 2013, 14, 1555−1563. doi: 10.1021/bm400180n

    19. [19]

      Hou, Z. L. Huang, T.; Cai, C. Y.; Resheed T.; Yu, C. Y.; Zhou Y. F.; Yan, D. Y. Polymer vesicle sensor through the self-assembly of hyperbranched polymeric ionic liquids for the detection of SO2 derivatives. Chinese J. Polym. Sci. 2017, 35, 602−610. doi: 10.1007/s10118-017-1921-x

    20. [20]

      Sun, H.; Jiang, J. H.; Xiao, Y. F.; Du, J. Z. Efficient removal of polycyclic aromatic hydrocarbons, dyes, and heavy metal ions by a homopolymer vesicle. ACS Appl. Mater. Interfaces 2018, 10, 713−722. doi: 10.1021/acsami.7b15242

    21. [21]

      Trantidou, T.; Friddin, M.; Elani, Y.; Brooks, N. J.; Law, R. V.; Seddon, J. M.; Ces, O. Engineering compartmentalized biomimetic micro- and nanocontainers. ACS Nano 2017, 11, 6549−6565. doi: 10.1021/acsnano.7b03245

    22. [22]

      Winnik, F. M.; Ringsdorf, H.; Venzmer, J. Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide). Macromolecules 1990, 23, 2415−2416. doi: 10.1021/ma00210a048

    23. [23]

      Tanaka, F.; Koga, T.; Kojima, H; Winnik, F. M. Hydration and phase separation of temperature-sensitive water-soluble polymers. Chinese J. Polym. Sci. 2011, 29, 13−21. doi: 10.1007/s10118-010-1018-2

    24. [24]

      Fukai, T.; Shinyashiki, N.; Yagihara, S.; Kita, R.; Tanaka, F. Phase behavior of co-nonsolvent systems: poly(N-isopropylacrylamide) in mixed solvents of water and methanol. Langmuir 2018, 34, 3003−3009. doi: 10.1021/acs.langmuir.7b03815

    25. [25]

      DOIM. Introduction to polymer physics. Oxford, Eng.: Clarendon Press, 1997.

    26. [26]

      Zhang, G. Z.; Wu, C. The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution. J. Am. Chem. Soc. 2001, 123, 1376−1380. doi: 10.1021/ja003889s

    27. [27]

      Tanaka, F.; Koga, T.; Winnik, F. M. Competitive hydrogen bonds and cononsolvency of poly(N-isopropylacrylamide)s in mixed solvents of water/methanol. Prog. Colloid Polym. Sci. 2009, 136, 1−8.

    28. [28]

      Picaa, A.; Graziano, G. An alternative explanation of the cononsolvency of poly(N-isopropylacrylamide) in water-methanol solutions. Phys. Chem. Chem. Phys. 2016, 18, 25601−25608. doi: 10.1039/C6CP04753J

    29. [29]

      Picaa, A.; Graziano, G. On the cononsolvency behaviour of hydrophobic clusters in water-methanol solutions. Phys. Chem. Chem. Phys. 2018, 20, 7230−7235. doi: 10.1039/C7CP07943E

    30. [30]

      Bharadwaj, S.; van der Vegt, N. F. A. Does preferential adsorption drive cononsolvency? Macromolecules 2019, 52, 4131−4138. doi: 10.1021/acs.macromol.9b00575

    31. [31]

      Yamauchi, H.; Maeda, Y. LCST and UCST behavior of poly(N-isopropylacrylamide) in DMSO/water mixed solvents studied by IR and micro-Raman spectroscopy. J. Phys. Chem. B 2007, 111, 12964−12968. doi: 10.1021/jp072438s

    32. [32]

      Pérez-Ramírez, H. A.; Haro-Pérez, C.; Odriozola, G. Effect of temperature on the cononsolvency of poly(N-isopropylacryl-amide) (PNIPAM) in aqueous 1-propanol. ACS Appl. Polym. Mater. 2019, 1, 2961−2972. doi: 10.1021/acsapm.9b00665

    33. [33]

      Ebeling, B.; Eggers, S.; Hendrich, M.; Nitschke, A.; Vana, P. Flipping the pressure- and temperature-dependent cloud-point behavior in the cononsolvency system of poly(N-isopropyl-acrylamide) in water and ethanol. Macromolecules 2014, 47, 1462−1469. doi: 10.1021/ma5001139

    34. [34]

      Niebuur, B. J.; Ko, C. H.; Zhang, X.; Claude, K. L.; Chiappisi, L.; Schulte, A.; Papadakis, C. M. Pressure dependence of the cononsolvency effect in aqueous poly(N-isopropylacrylamide) solutions: a SANS study. Macromolecules 2020, 53, 3946−3955. doi: 10.1021/acs.macromol.0c00489

    35. [35]

      Scherzinger, C.; Lindner, P.; Keerl, M.; Richtering, W. Cononsolvency of poly(N,N-diethylacrylamide) (PDEAAM) and poly(N-isopropylacrylamide) (PNIPAM) based microgels in water/methanol mixtures: copolymer vs core-shell microgel. Macromolecules 2010, 43, 6829−6833. doi: 10.1021/ma100422e

    36. [36]

      Chen, R.; Ren, N.; Jin, X.; Zhu, X. Y. Role transformation of poly(N-isopropylacrylamide) microgels from stabilizer to seed in dispersion polymerization by controlling the water content in methanol-water mixture. Langmuir 2018, 34, 3420−3425. doi: 10.1021/acs.langmuir.7b03381

    37. [37]

      Wang, J. H.; Liu, Y. P.; Chen, R.; Zhang, Z. X.; Chen, G. J.; Chen, H. Ultralow self-cross-linked poly(N-isopropylacryl-amide) microgels prepared by solvent exchange. Langmuir 2019, 35, 13991−13998. doi: 10.1021/acs.langmuir.9b02722

    38. [38]

      Luo, Y.; Gu, Y.; Feng, R. Y.; Brash, J. L.; Eissa, A. M.; Haddleton, D. M.; Chen, G. J.; Chen, H. Synthesis of glycopolymers with specificity for bacterial strains via bacteria-guided polymerization. Chem. Sci. 2019, 10, 5251−5257. doi: 10.1039/C8SC05561K

    39. [39]

      Zhou, X. J.; Zhou, Y. Y.; Nie, J. J.; Ji, Z. C.; Xu, J. T.; Zhang, X. H.; Du, B. Y. Thermosensitive ionic microgels via surfactant-free emulsion copolymerization and in situ quaternization cross-linking. ACS Appl. Mater. Interfaces 2014, 6, 4498−4513. doi: 10.1021/am500291n

    40. [40]

      Zhou, X. J.; Lu, H. P.; Kong, L. L.; Zhang D.; Zhang W.; Nie, J. J.; Yuan, J. Y.; Du, B. Y.; Wang, X. P. Thermo-sensitive microgels supported gold nanoparticles as temperature-mediated catalyst. Chinese J. Polym. Sci. 2019, 37, 235−242. doi: 10.1007/s10118-019-2182-7

    41. [41]

      Zhou, X.; Lu, H. P.; Chen, F.; Kong, L. L.; Zhang, F.; Zhang, W.; Nie, J. J.; Du, B. Y.; Wang, X. P. Degradable and thermosensitive microgels synthesized via simultaneous quaternization and siloxane condensation. Langmuir 2019, 35, 6145−6153. doi: 10.1021/acs.langmuir.9b00644

    42. [42]

      Xue, H.; Zhao, Z. Q.; Chen, R.; Brash, J. L.; Chen, H. Precise regulation of particle size of poly(N-isopropylacrylamide) microgels: measuring chain dimensions with a “molecular ruler”. J. Colloid Interface Sci. 2020, 566, 394−400. doi: 10.1016/j.jcis.2020.01.076

    43. [43]

      Zhou, Y. F.; Yan, D. Y. Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc. 2005, 127, 10468−10469. doi: 10.1021/ja0505696

    44. [44]

      Mai Y. Y.; Zhou, Y. F.; Yan, D. Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules 2005, 38, 8679−8686. doi: 10.1021/ma051377y

    45. [45]

      Xue, N.; Qiu, X.; Aseyev, V.; Winnik, F. M. Nonequilibrium liquid–liquid phase separation of poly(N-isopropylacryl-amide) in water/methanol mixtures. Macromolecules 2017, 50, 4446−4453. doi: 10.1021/acs.macromol.7b00407

    46. [46]

      Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 2010, 114, 9529−9536. doi: 10.1021/jp103470e

    47. [47]

      Tanaka, F.; Koga, T.; Winnik, F. M. Temperature-responsive polymers in mixed solvents: competitive hydrogen bonds cause cononsolvency. Phys. Rev. Lett. 2008, 101, 028302. doi: 10.1103/PhysRevLett.101.028302

    48. [48]

      Tanaka, F.; Koga, T.; Kojima, H.; Xue, N.; Winnik, F. M. Preferential adsorption and co-nonsolvency of thermoresponsive polymers in mixed solvents of water/methanol. Macromolecules 2011, 44, 2978−2989. doi: 10.1021/ma102695n

    49. [49]

      Mukherji, D.; Marques, C.; Kremer, K. Polymer collapse in miscible good solvents is a generic phenomenon driven by preferential adsorption. Nat. Commun. 2014, 5, 4882. doi: 10.1038/ncomms5882

    50. [50]

      Mukherji, D.; Marques, C. M.; Stuehn, T.; Kremer, K. Co-non-solvency: mean-field polymer theory does not describe polymer collapse transition in a mixture of two competing good solvents. J. Chem. Phys. 2015, 142, 114903. doi: 10.1063/1.4914870

    51. [51]

      Kightlinger, W.; Warfel, K. F.; DeLisa, M. P.; Jewett, M. C. Synthetic glycobiology: parts, systems, and applications. ACS Synth. Biol. 2020, 9, 1534−1562. doi: 10.1021/acssynbio.0c00210

    52. [52]

      You, L. C.; Lu, F. Z.; Li, Z. C.; Zhang, W.; Li, F. M. Glucose-sensitive aggregates formed by poly(ethylene oxide)-block-poly(2-glucosyl-oxyethyl acrylate) with Concanavalin A in dilute aqueous medium. Macromolecules 2003, 36, 1−4. doi: 10.1021/ma025641o

    53. [53]

      Pasparakis G.; Cockayne A.; Alexander C. Control of bacterial aggregation by thermoresponsive glycopolymers. J. Am. Chem. Soc. 2007, 129, 11014−11015. doi: 10.1021/ja074349z

    54. [54]

      Pasparakis, G.; Alexander, C. Sweet talking double hydrophilic block copolymer vesicles. Angew. Chem. Int. Ed. 2008, 47, 4847−4850. doi: 10.1002/anie.200801098

    55. [55]

      Whitele, M.; Diggle, S. P.; Greenberg, E. P. Progress in and promise of bacterial quorum sensing research. Nature 2018, 555, 126.

    56. [56]

      Ma, Q. M.; Song, Y.; Sun, W. T.; Cao, J.; Yuan, H.; Wang, X. Y.; Sun, Y.; Shum, H. C. Cell-inspired all-aqueous microfluidics: from intracellular liquid-liquid phase separation toward advanced biomaterials. Adv. Sci. 2020, 7, 1903359. doi: 10.1002/advs.201903359

  • 加载中
    1. [1]

      Yun-Long HanMing-Ming DingRui LiTong-Fei Shi . Kinematics of Non-axially Positioned Vesicles through a Pore. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2375-0

    2. [2]


    3. [3]


    4. [4]

      Jian WangJian-hui SongYu-yuan LuYong-jin RuanLi-jia An . Phase Behavior and Interfacial Properties of Diblock CopolymerHomopolymer Ternary Mixtures: Influence of Volume Fraction of Copolymers and Interaction Energy. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1915-8

    5. [5]

      Zhu LiuZhi-Bin JiangHong YangShu-Ming BaiRong WangGi Xue . CROWDING EFFECT INDUCED PHASE TRANSITION OF AMPHIPHILIC DIBLOCK COPOLYMER IN SOLUTION. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1346-0

    6. [6]


    7. [7]

      Ru-yan ZhaoChuan-dong DouJun LiuLi-xiang Wang . An Alternating Polymer of Two Building Blocks Based on B←N Unit: Non-fullerene Acceptor for Organic Photovoltaics. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1878-9

    8. [8]

      Hong-Peng HanYi-Hu SongQiang Zheng . Rheological and Interfacial Properties of Colloidal Electrolytes. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2334-9

    9. [9]

      Jia-Lu Bai Dan Liu Rong Wang . Self-assembly of Amphiphilic Diblock Copolymers Induced by Liquid-Liquid Phase Separation. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2563-6

    10. [10]

      Yu-ting OuyangHong-xia Guo . Phase Behavior of Amphiphiles at Liquid Crystals/Water Interface: A Coarse-grained Molecular Dynamics Study. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1520-z

    11. [11]

      Lie ChenYong-ai YinYu-xia LiuLing LinMing-jie Liu . Design and Fabrication of Functional Hydrogels through Interfacial Engineering. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1995-5

    12. [12]

      LI ZichenXIE XimngFAN QinghuaFANG Yifei . POLYELEOSTEARIC ACID VESICLES*. Chinese J. Polym. Sci,

    13. [13]

      Youdi ZhangYong WangRuijie MaZhenghui LuoTao LiuSo-Huei KangHe YanZhongyi YuanChangduk YangYiwang Chen . Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2435-5

    14. [14]


    15. [15]


    16. [16]

      Xiang WangMiao DuYi-hu SongQiang Zheng . Mucin from Loach Skin Mucus and Its Interfacial Behavior on Gold Surface. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1524-8

    17. [17]

      Yue FanDe-Hui WangJin-Long YangJia-Ning SongXiao-Mei LiCheng-Lin ZhangDong-Sheng WangLong-Quan ChenJia-Xi CuiXu Deng . Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2453-3

    18. [18]

      Hao-Xuan LiThomas P. RussellDong Wang . Nanomechanical and Chemical Mapping of the Structure and Interfacial Properties in Immiscible Ternary Polymer Systems. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2567-2

    19. [19]

      Zhen-yu DengDong ZhangLin-xi Zhang . Dynamics of Attractive Vesicles in Shear Flow. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1785-5

    20. [20]


Article Metrics
  • PDF Downloads(3)
  • Abstract views(417)
  • HTML views(92)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint