Citation: Zhang, X.; Jiang, D. W.; Yang, G. L.; Zhu, Y. C.; Tian. J.; Cao, H. L.; Gao, Y.; Zhang, W. A. A single-wavelength NIR-triggered polymer for in situ generation of peroxynitrite (ONOO) to enhance phototherapeutic efficacy. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2540-0 doi: 10.1007/s10118-021-2540-0 shu

A Single-wavelength NIR-triggered Polymer for in Situ Generation of Peroxynitrite (ONOO) to Enhance Phototherapeutic Efficacy

  • Corresponding author: Yun Gao, E-mail: yungao127@163.com
    Wei-An Zhang, E-mail: wazhang@ecust.edu.cn
  • Received Date: 2020-11-11
    Accepted Date: 2020-12-16
    Available Online: 2021-01-15

Figures(5)

  • Phototherapies including photodynamic therapy (PDT) and photothermal therapy (PTT) are the most promising and non-invasive cancer treatments. However, the efficacy of mono-therapy of PDT or PTT is often limited by the phototherapeutic defects such as low light penetration depth of photosensitizers and insufficiency of photothermal agents. Peroxynitrite (ONOO) has been proved to be an efficient oxidizing and nitrating agent that involves in various physiological and pathological processes. Therefore, ONOO produced in tumor site could be an effective treatment in cancer therapy. Herein, a novel cyanine dye-based (Cy7) polymer nanoplatform is developed for enhanced phototherapy by in situ producing ONOO. The Cy7 units in the nanoparticles can not only be served as the photosensitizer to produce reactive oxygen species (ROS) including singlet oxygen and superoxide anion for PDT, but also be used as a heat source for PTT and the release of NO gas from N-nitrosated napthalimide (NORM) at the same time. Since NO can react quickly with superoxide anion to generate ONOO, the enhanced phototherapy could be achieved by in situ ONOO produced by PCy7-NO upon exposure to the near infrared (NIR) light. Therefore, the NIR-triggered Cy7-based nanoplatform for ONOO-enhanced phototherapy may provide a new perspective in cancer therapy.
  • 加载中
    1. [1]

      Josefsen, L. B.; Boyle, R. W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012, 2, 916−966. doi: 10.7150/thno.4571

    2. [2]

      Yin, Q. Y.; Dai, C. H.; Chen, H.; Gou, K.; Guan, H. Z.; Wang, P. H.; Jiang, J. T.; Weng, G. S. Tough double metal-ion cross-linked elastomers with temperature-adaptable self-healing and luminescence properties. Chinese J. Polym. Sci. In press. doi: 10.1007/s10118-021-2517-z.

    3. [3]

      Cai, Y.; Liang, P. P.; Tang, Q. Y.; Yang, X. Y.; Si, W. L.; Huang, W.; Zhang, Q.; Dong, X. C. Diketopyrrolopyrrole-triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano 2017, 11, 1054−1063. doi: 10.1021/acsnano.6b07927

    4. [4]

      He, Z.; Zhao, L. L.; Zhang, Q.; Chang, M. J.; Li, C. X.; Zhang, H. S.; Lu, Y; Che, Y. S. An acceptor–donor–acceptor structured small molecule for effective NIR triggered dual phototherapy of cancer. Adv. Funct. Mater. 2020, 30, 1910301. doi: 10.1002/adma.201700487

    5. [5]

      Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q.; Cui, H. D.; Ma, Y. F.; Cai, L. T. Cancer cell membrane-biomimetic nanoparticles for dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049−10057. doi: 10.1021/acsnano.6b04695

    6. [6]

      Li, J.; Jiang, R. C.; Wang, Q.; Li, X.; Hu, X. M.; Yuan, Y.; Lu, X. M.; Wang, W. J.; Huang, W.; Fan, Q. L. Semiconducting polymer panotheranostics for NIR-II/photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy. Biomaterials 2019, 217, 119304. doi: 10.1016/j.biomaterials.2019.119304

    7. [7]

      Zhang, Y. L.; Ren, J. T.; Gao, H. Y.; Liu, J. W.; Xia, W. J.; Qiao, W. Q.; Wang, Z. Y. Characterizations and photothermal properties of narrow bandgap conjugated polymer nanoparticles. Chinese J. Polym. Sci. 2020, 38, 814−818. doi: 10.1007/s10118-020-2420-z

    8. [8]

      Zhang, Z.; Xue, Y.; Zhang, P.; Müller, A. H. E.; Zhang, W. A. Hollow polymeric capsules from POSS-based block copolymer for photodynamic therapy. Macromolecules 2016, 49, 8440−8448. doi: 10.1021/acs.macromol.6b02414

    9. [9]

      Wang, Y.; Huang, X. Y.; Tang, Y. Y.; Zou, J. H.; Wang, P.; Zhang, Y. W.; Si, W. L.; Huang, W.; Dong, X. C. A light-induced nitric oxide controllable release nano-platform based on diketopyrrolopyrrole derivatives for pH-responsive photodynamic/photothermal synergistic cancer therapy. Chem. Sci. 2018, 9, 8103−8109. doi: 10.1039/C8SC03386B

    10. [10]

      Yang, T.; Liu, L.; Deng, Y. B.; Guo, Z. Q.; Zhang, G. B.; Ge, Z. S.; Ke, H. T.; Chen, H. B. Ultrastable near-infrared conjugated-polymer nanoparticles for dually photoactive tumor inhibition. Adv. Funct. Mater. 2020, 30, 1910301. doi: 10.1002/adfm.201910301

    11. [11]

      Wang, X. G.; Wu, L. F.; Zhou, Q. X. Study on photodynamic and photoresposive azo polyelectrolytes. Sci. China Mater. 2018, 61, 1325−1338. doi: 10.1007/s40843-018-9261-x

    12. [12]

      Han, W. K.; Zhang, S.; Deng, R. Self-assembled nanostructured photosensitizer with aggregation-induced emission for enhanced photodynamic anticancer therapy. Chinese J. Polym. Sci. 2000, 4, 337−342.

    13. [13]

      Yang, G.; Tian, J.; Chen, C.; Jiang, D.; Xue, Y.; Wang, C.; Gao, Y.; Zhang, W. A. An oxygen self-sufficient NIR-responsive nanosystem for enhanced PDT and chemotherapy against hypoxic tumors. Chem. Sci. 2019, 10, 5766−5772. doi: 10.1039/C9SC00985J

    14. [14]

      Zhang, Y.; Wang, F. M.; Liu, C. Q.; Wang, Z. Z.; Kang, L. H.; Huang, Y. Y.; Dong, K.; Ren, J. S.; Qu, X. G. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano 2018, 12, 651−661. doi: 10.1021/acsnano.7b07746

    15. [15]

      Wang, H. R.; Chao, Y.; Liu, J. J.; Zhu, W. W.; Wang, G. L.; Xu, L. G.; Liu, Z. G. Photosensitizer-crosslinked in-situ polymerization on catalase for tumor hypoxia modulation & enhanced photodynamic therapy. Biomaterials 2018, 181, 310−317. doi: 10.1016/j.biomaterials.2018.08.011

    16. [16]

      Liu, Y. J.; Bhattarai, P.; Dai, Z. F.; Chen, X. Y. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chem. Soc. Rev. 2019, 48, 2053−2108. doi: 10.1039/C8CS00618K

    17. [17]

      Ding, Y.; Du, C.; Qian, J. W.; Dong, C. M. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Lett. 2019, 19, 4362−4370. doi: 10.1021/acs.nanolett.9b00975

    18. [18]

      Zhang, X.; Du, J.; Guo, Z.; Yu, J.; Gao, Q.; Yin, W.; Zhu, S.; Gu, Z.; Zhao, Y. Efficient near infrared light triggered nitric oxide release nanocomposites for sensitizing mild photothermal therapy. Adv. Sci. 2019, 6, 1801122. doi: 10.1002/advs.201801122

    19. [19]

      Jiang, Y. Y.; Pu, K. Y. Multimodal biophotonics of semiconducting polymer nanoparticles. Acc. Chem. Res. 2018, 51, 1840−1849. doi: 10.1021/acs.accounts.8b00242

    20. [20]

      Fan, W. P.; Yung, B.; Huang, P.; Chen, X. Y. Nanotechnology for multimodal synergistic cancer therapy. Chem. Rev. 2017, 117, 13566−13638. doi: 10.1021/acs.chemrev.7b00258

    21. [21]

      Lin, H.; Gao, S. S.; Dai, C.; Chen, Y.; Shi, J. L. A two-dimensional biodegradable niobium carbide (Mxene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. J. Am. Chem. Soc. 2017, 139, 16235−16247. doi: 10.1021/jacs.7b07818

    22. [22]

      Fan, W.; Yung, B. C.; Chen, X. Stimuli-responsive NO release for on-demand gas-sensitized synergistic cancer therapy. Angew. Chem. Int. Ed. 2018, 57, 8383−8394. doi: 10.1002/anie.201800594

    23. [23]

      Sheng, D. L.; Liu, T. Z.; Deng, L. M.; Zhang, L.; Li, X. L.; Xu, J.; Hao, L.; Li, P.; Ran, H. T.; Chen, H. R.; Wang, Z. G. Perfluorooctyl Bromide & indocyanine green co-loaded nanoliposomes for enhanced multimodal imaging-guided phototherapy. Biomaterials 2018, 165, 1−13. doi: 10.1016/j.biomaterials.2018.02.041

    24. [24]

      Chen, L.; Zhou, S. F.; Su, L.; Song, J. Gas-mediated cancer bioimaging and therapy. ACS Nano 2019, 13, 10887−10917. doi: 10.1021/acsnano.9b04954

    25. [25]

      Nam, J.; Son, S.; Ochyl, L. J.; Kuai, R.; Schwendeman, A.; Moon, J. J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun. 2018, 9, 1074. doi: 10.1038/s41467-018-03473-9

    26. [26]

      Jiang, D.; Yue, T.; Wang, G.; Wang, C.; Chen, C.; Cao, H.; Gao, Y. Peroxynitrite (ONOO) generation from the HA-TPP@NORM nanoparticles based on synergistic interactions between nitric oxide and photodynamic therapies for elevating anticancer efficiency. New J. Chem. 2020, 44, 162−170. doi: 10.1039/C9NJ04763H

    27. [27]

      Ferrer-Sueta, G.; Radi, R. Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS. Chem. Biol. 2009, 4, 161−177. doi: 10.1021/cb800279q

    28. [28]

      Szabo, C.; Ischiropoulos, H.; Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 2007, 6, 662−680. doi: 10.1038/nrd2222

    29. [29]

      Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991, 288, 481−487. doi: 10.1016/0003-9861(91)90224-7

    30. [30]

      Ferrer-Sueta, G.; Campolo, N.; Trujillo, M.; Bartesaghi, S.; Carballa, S.; Romero, N.; Alvarez, B.; Radi, R. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev. 2018, 118, 1338−1408. doi: 10.1021/acs.chemrev.7b00568

    31. [31]

      Torreilles, F.; Salman-Tabcheh, S.; Guerin, M. C.; Torreilles, J. Neurodegenerative disorders: the role of peroxynitrite. Brain Res. Rev. 1999, 30, 153−163. doi: 10.1016/S0165-0173(99)00014-4

    32. [32]

      Olson, L. P.; Bartberger, M. D.; Houk, K. N. Peroxynitrate and peroxynitrite: a complete basis set investigation of similarities and differences between these NOx species. J. Am. Chem. Soc. 2003, 125, 3999−4006. doi: 10.1021/ja029619m

    33. [33]

      Goldstein, S.; Lind, J.; Merényi, G. Chemistry of peroxynitrites as compared to peroxynitrates. Chem. Rev. 2005, 105, 2457−2470. doi: 10.1021/cr0307087

    34. [34]

      Du, Z.; Zhang, X.; Guo, Z.; Xie, J.; Dong, X.; Zhu, S.; Du, J.; Gu, Z.; Zhao, Y. X-Ray-controlled generation of peroxynitrite based on nanosized LiLuF4:Ce3+ scintillators and their applications for radiosensitization. Adv. Mater. 2018, 30, 1804046. doi: 10.1002/adma.201804046

    35. [35]

      Hu, D.; Deng, Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347−359. doi: 10.1021/acsnano.9b05493

    36. [36]

      Li, Y.; Liu, X.; Li, B.; Zheng, Y.; Han, Y.; Chen, D. F.; Yeung, K. W. K.; Cui, Z.; Liang, Y.; Li, Z.; Zhu, S.; Wang, X.; Wu, S. Near-Infrared light triggered phototherapy and immunotherapy for elimination of methicillin-resistant staphylococcus aureus biofilm infection on bone implant. ACS Nano 2020, 14, 8157−8170. doi: 10.1021/acsnano.0c01486

    37. [37]

      Wang, D.; Niu, L.; Qiao, Z.Y.; Cheng, D.B.; Wang, J.; Zhong, Y.; Bai, F.; Wang, H.; Fan, H. Synthesis of self-assembled porphyrin nanoparticle photosensitizers. ACS Nano 2018, 12, 3796−3803. doi: 10.1021/acsnano.8b01010

    38. [38]

      Gao, S.; Zhang, W.; Wang, R.; Hopkins, S. P.; Spagnoli, J. C.; Racin, M.; Bai, L.; Li, L.; Jiang, W.; Yang, X.; Lee, C.; Nagata, K.; Howerth, E. W.; Handa, H.; Xie, J.; Ma, Q.; Kumar, A. Nanoparticles encapsulating nitrosylated maytansine to enhance radiation therapy. ACS Nano 2020, 14, 1468−1481. doi: 10.1021/acsnano.9b05976

    39. [39]

      Jiao, Y.; Yin, J.; He, H.; Peng, X.; Gao, Q.; Duan, C. Conformationally induced off-on cell membrane chemosensor targeting receptor protein-tyrosine kinases for in vivo and in vitro fluorescence imaging of cancers. J. Am. Chem. Soc. 2018, 140, 5882−5885. doi: 10.1021/jacs.7b10796

    40. [40]

      Burks, P. T.; Garcia, J. V.; GonzalezIrias, R.; Tillman, J. T.; Niu, M.; Mikhailovsky, A. A.; Zhang, J.; Zhang, F.; Ford, P. C. Nitric oxide releasing materials triggered by near-infrared excitation through tissue filters. J. Am. Chem. Soc. 2013, 135, 18145−18152. doi: 10.1021/ja408516w

    41. [41]

      Fan, J.; He, N.; He, Q.; Liu, Y.; Ma, Y.; Fu, X.; Liu, Y.; Huang, P.; Chen, X. A novel self-assembled sandwich nanomedicine for NIR-responsive release of NO. Nanoscale 2015, 7, 20055−20062. doi: 10.1039/C5NR06630A

    42. [42]

      Fan, J.; Song, J.; Liu, Y.; Yu, G.; Ma, Y.; Deng, Y.; He, N.; Zhang, F. Synthesis of biocompatible polymeric nanomaterial dually loaded with paclitaxel and nitric oxide for anti-MDR cancer therapy. RSC Adv. 2016, 6, 105871−105877. doi: 10.1039/C6RA23637E

    43. [43]

      Wang, L.; Chang, Y.; Feng, Y.; Li, X.; Cheng, Y.; Jian, H.; Ma, X.; Zheng, R.; Wu, X.; Xu, K.; Zhang, H. Nitric oxide stimulated programmable drug release of nanosystem for multidrug resistance cancer therapy. Nano Lett. 2019, 19, 6800−6811. doi: 10.1021/acs.nanolett.9b01869

    44. [44]

      Liu, G. Y.; Zhang, S. C.; Shi, Y. H.; Huang, X. Y.; Tang, Y. Y.; Chen, P.; Si, W. L.; Huang, W.; Dong, X. C. "Wax-sealed" theranostic nanoplatform for enhanced afterglow imaging-guided photothermally triggered photodynamic therapy. Adv. Funct. Mater. 2018, 28, 1804317. doi: 10.1002/adfm.201804317

    45. [45]

      Tan, L.; Li, J.; Liu, X.; Cui, Z.; Yang, X.; Zhu, S.; Li, Z.; Yuan, X.; Zheng, Y.; Yeung, K. W. K.; Pan, H.; Wang, X.; Wu, S. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv. Mater. 2018, 30, 1801808. doi: 10.1002/adma.201801808

    46. [46]

      Zhang, Z.; Wu, J.; Shang, Z.; Wang, C.; Cheng, J.; Qian, X.; Xiao, Y.; Xu, Z.; Yang, Y. Photocalibrated NO release from N-nitrosated napthalimides upon one-photon or two-photon irradiation. Anal. Chem. 2016, 88, 7274−7280. doi: 10.1021/acs.analchem.6b01603

    47. [47]

      Jiang, D.; Cheng, L.; Xue, Y.; Chen, C.; Wang, C.; Yang, G.; Xu, A.; Yang, Y.; Gao, Y.; Zhang, W. Modulation of the lifespan of C. elegans by the controlled release of nitric oxide. Chem. Sci. 2020, 11, 8785−8792. doi: 10.1039/C9SC06072C

    48. [48]

      Duan, Y.; Wang, Y.; Li, X.; Zhang, G.; Zhang, G.; Hu, J. Light-triggered nitric oxide (NO) release from photoresponsive polymersomes for corneal wound healing. Chem. Sci. 2020, 11, 186−194. doi: 10.1039/C9SC04039K

    49. [49]

      Duong, H. T.; Jung, K.; Kutty, S. K.; Agustina, S.; Adnan, N. N.; Basuki, J. S.; Kumar, N.; Davis, T. P.; Barraud, N.; Boyer, C. Nanoparticle (star polymer) delivery of nitric oxide effectively negates pseudomonas aeruginosa biofilm formation. Biomacromolecules 2014, 15, 2583−2589. doi: 10.1021/bm500422v

    50. [50]

      Qin, L.; Xie, F.; Jin, X.; Liu, M. Driving helical packing of a cyanine dye on dendron nanofiber: gel-shrinkage-triggered chiral H-aggregation and enhanced enantiodiscrimination. Chemistry 2015, 21, 11300−11305. doi: 10.1002/chem.201500929

    51. [51]

      Tsikas, D. Analysis of nitrite and nitrate in biological fluids by assays based on the griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J. Chromatogr. B 2007, 851, 51−70. doi: 10.1016/j.jchromb.2006.07.054

    52. [52]

      Nguyen, S. C.; Zhang, Q.; Manthiram, K.; Ye, X. C.; Lomont, J. P.; Harris, C. B.; Weller, H.; Alivisatos, A. P. Study of heat transfer dynamics from gold nanorods to the environment via time-resolved infrared spectroscopy. ACS Nano 2016, 10, 2144−2151. doi: 10.1021/acsnano.5b06623

    53. [53]

      Zou, L. L.; Wang, H.; He, B.; Zeng, L. J.; Tan, T.; Cao, H. Q.; He, X. Y.; Zhang, Z. W.; Guo, S. R.; Li, Y. P. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016, 6, 762−772. doi: 10.7150/thno.14988

  • 加载中
    1. [1]

      Jia ZhengYijun ZhengXinhua WanZhiYuan Wang . VISIBLE AND NEAR-INFRARED CHIROPTICAL GELS CONTAINING ELECTROCHROMIC ANTHRAQUINONE IMIDE GROUPS. Chinese J. Polym. Sci, doi: 10.1007/s10118-012-1128-0

    2. [2]

      Cai Wan-anCai Ji-weiNiu Hai-junXiao Tian-diBai Xu-duoWang ChengZhang Yan-hongWang Wen . Synthesis and Electrochromic Properties of Polyimides with Pendent Benzimidazole and Triphenylamine Units. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1833-1

    3. [3]

      Wei YangHao-Guo YueDong ZhaoHui YanKang-Li CaoJin-Sheng ZhaoQing Zhang . Thienylmethylene Oxindole Based Conjugated Polymers via Direct Arylation Polymerization and Their Electrochromic Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2503-5

    4. [4]

      Zhong-qiu TongHai-ming LvJiu-peng ZhaoYao Li . Near-infrared and Multicolor Electrochromic Device Based on Polyaniline Derivative. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1483-0

    5. [5]

      Zhen ChenShan-Shan MaKai ZhangZhi-Cheng HuQing-Wu YinFei HuangYong Cao . A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-b:4,5-b′]dithiophene Core for Polymer Solar Cells. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2440-8

    6. [6]

      ZHAO ChunyingYANG YongyuanLI LidongXU WeiFENG Shujing . PHOTOPOLYMERIZATION OF MMA INITIATED BY CYANINE DYE AND HEXAARYLBIIMIDAZ0LE*. Chinese J. Polym. Sci,

    7. [7]

      . SYNTHESIS AND CHARACTERIZATIONS OF NEAR INFRARED ABSORBING POLYMERS*. Chinese J. Polym. Sci,

    8. [8]

      Jia ZhengYi-jun ZhengXin-hua Wan . Near Infrared Electrochromic Variable Optical Attenuator Fabricated by Layer-by-layer Assembly. Chinese J. Polym. Sci,

    9. [9]

      Zong-Chun GaoCheng-Peng WeiYi-Fei HanMing YuanXu-Zhou YanFeng Wang . Near-Infrared-Emissive Self-assembled Polymers via the Implementation of Molecular Tweezer/Guest Complexation on a Supramolecular Coordination Complex Platform. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2090-2

    10. [10]

      WAN MeixiangLI SuzhenLI JunchaoDONG Haiou . INFRARED EMISSIVITY OF CONDUCTING POLYMERS. Chinese J. Polym. Sci,

    11. [11]

      YANG Xiaozhen . INFRARED SPECTROSCOPIC CHARACTERIZATION OF CONFORMATIONAL DEFECTS OF POLYBENZAMIDE. Chinese J. Polym. Sci,

    12. [12]

      LIU XiaopingSHEN DeyanSHI LiangheXU MaoZHOU QifengDUAN Xiaoqing . FOURIER TRANSFORM INFRARED STUDY OF FRACTIONATED AROMATIC POLYESTERS. Chinese J. Polym. Sci,

    13. [13]

      . COALESCENCE INDUCED GRADIENT MORPHOLOGY NEAR A WALL IN PHASE SEPARATED POLYMER BLENDS DURING QUIESCENT ANNEALING*. Chinese J. Polym. Sci,

    14. [14]

      SHEN DeyanZHANG Shengqing . ORIENTATION OF MOLECULAR GROUPS IN CROSS SECTION OF POLYAMIDE-6 FIBER BY INFRARED ATTENUATED TOTAL REFLECTION DICHROISM STUDIES*. Chinese J. Polym. Sci,

    15. [15]

      HUANG ZhitangHE Xiaohua . AROMATIC AND HETEROCYCLIC DINITRILES AND THEIR POLYMERS. Ⅺ. STUDY ON THE POLYMERIZATION OF AROMATIC AND HETEROCYCLIC DINITRILES BY INFRARED SPECTROSCOPY*. Chinese J. Polym. Sci,

    16. [16]

      QIAN RenyuanSHEN DeyanLI Huiming . FOURIER TRANSFORM INFRARED STUDIES OF POLY (ETHYLENE TEREPHTHALATE) FILM IN THE GLASS TRANSITION REGION. Chinese J. Polym. Sci,

    17. [17]

      XUE Gi JIANG Shankeng . A FOURIER TRANSFORM INFRARED SPECTROSCOPIC STUDY OF THE REACTION BETWEEN POLY (VINYL PYRIDINE)S AND EPOXY COMPOUNDS*. Chinese J. Polym. Sci,

    18. [18]

      Jian HuLi-Li HanTong-Ping ZhangYong-Xin DuanJian-Ming Zhang . Study on Phase Transformation Behavior of Strain-induced PLLA Mesophase by Polarized Infrared Spectroscopy. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2184-5

    19. [19]

      HE LiuJIN ShunziZHANG ShufanQI ZongnengWANG Fosong . STUDY ON MAGNETIC FIELD-INDUCED 0RIENTATI0N OF A CHIRAL SIDE-CHAIN LIQUID CRYSTAL POLYACRYLATE USING INFRARED DICHROISM. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(0)
  • Abstract views(381)
  • HTML views(183)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return