Citation: Zhou, P.; Dai, X. G.; Kong, J.; Ling, J. Synthesis of well-defined poly(tetrahydrofuran)- b -poly( α -amino acid)s via cationic ring-opening polymerization (ROP) of tetrahydrofuran and nucleophilic ROP of N -thiocarboxyanhydrides. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2539-6 doi: 10.1007/s10118-021-2539-6 shu

Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(α-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides

Figures(4) / Tables(2)

  • The synthesis of block copolymers of poly(tetrahydrofuran)-b-poly(α-amino acid) (PTHF-b-PAA) is challenging since it is difficult to combine the two blocks produced via different/conflicting ring-opening polymerization (ROP) mechanisms. In this contribution, the cationic ROP of THF is catalyzed by rare-earth triflate [RE(OTf)3] and terminated by 2-(t-butyloxycarbonyl-amino) ethanol (BAE). After the deprotection of t-butyloxycarbonyl (Boc) group, the chain end of PTHF is quantitatively changed to amino group which thereafter initiates the nucleophilic ROP of α-amino acid N-thiocarboxyanhydrides (NTAs). Both polymerizations are well controlled, generating PTHF and PAA segments with designable molecular weights (MWs). PTHF-b-polylysine (PTHF-b-PLys) and PTHF-b-polysarcosine (PTHF-b-PSar) are obtained with MWs between 8.6 and 28.7 kg/mol. The above amphiphilic diblock copolymers form micelles in water. PTHF40-b-PSar32 acts as a surfactant to stabilize oil-in-water emulsions. Both segments of PTHF-b-PAA are biocompatible and promising in the biomedical application.
  • 加载中
    1. [1]

      Basko, M.; Bednarek, M.; Billiet, L.; Kubisa, P.; Goethals, E.; Prez, F. D. Combining cationic ring-opening polymerization and click chemistry for the design of functionalized polyurethanes. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1597−1604.

    2. [2]

      Jayakannan, M.; Ramakrishnan, S. Recent developments in polyether synthesis. Macromol. Rapid Commun. 2001, 22, 1463−1473. doi: 10.1002/1521-3927(20011201)22:18<1463::AID-MARC1463>3.0.CO;2-F

    3. [3]

      Guo, A. R.; Yang, W. X.; Yang, F.; Yu, R.; Wu, Y. X. Well-defined poly(γ-benzyl-L-glutamate)-g-polytetrahydrofuran: synthesis, characterization, and properties. Macromolecules 2014, 47, 5450−5461. doi: 10.1021/ma501060y

    4. [4]

      Cheradame, H.; Sassatelli, M.; Pomel, C.; Sanh, A.; Gau-Racine, J.; Bacri, L.; Attvray, L.; Guégan, P. Tuning macromolecular structures of synthetic vectors for gene therapy. Macromol. Symp. 2008, 261, 167−181. doi: 10.1002/masy.200850122

    5. [5]

      Mu, C. G.; Fan, X. D.; Tian, W.; Bai, Y.; Yang, Z.; Fan, W. W.; Chen, H. Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polym. Chem. 2012, 3, 3330−3339. doi: 10.1039/c2py20586f

    6. [6]

      Cao, J. B.; Siefker, D.; Chan, B. A.; Yu, T. Y.; Lu, L.; Saputra, M. A.; Fronczek, F. R.; Xie, W. W.; Zhang, D. H. Interfacial ring-opening polymerization of amino-acid-derived N-thiocarboxyanhydrides toward well-defined polypeptides. ACS Macro Lett. 2017, 6, 836−840. doi: 10.1021/acsmacrolett.7b00411

    7. [7]

      Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570−6599. doi: 10.1039/C7CS00460E

    8. [8]

      Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786−808. doi: 10.1021/acs.chemrev.5b00292

    9. [9]

      Deng, C.; Wu, J. T.; Cheng, R.; Meng, F. H.; Klok, H. A.; Zhong, Z. Y. Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci. 2014, 39, 330−364. doi: 10.1016/j.progpolymsci.2013.10.008

    10. [10]

      Shen, Y.; Fu, X. H.; Fu, W. X.; Li, Z. B. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem. Soc. Rev. 2015, 44, 612−622. doi: 10.1039/C4CS00271G

    11. [11]

      Gu, L.; Jiang, Y. Z.; Hu, J. L. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv. Mater. 2019, 31, e1904311. doi: 10.1002/adma.201904311

    12. [12]

      Ebrahimi, D.; Tokareva, O.; Rim, N. G.; Wong, J. Y.; Kaplan, D. L.; Buehler, M. J. Silk-its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 2015, 1, 864−876. doi: 10.1021/acsbiomaterials.5b00152

    13. [13]

      Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Uncovering the structure-function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008. doi: 10.1038/natrevmats.2018.8

    14. [14]

      Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Mater. Today 2011, 14, 80−86. doi: 10.1016/S1369-7021(11)70057-8

    15. [15]

      Tian, Z.; Wang, M.; Zhang, A. Y.; Feng, Z. G. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release. Polymer 2008, 49, 446−454. doi: 10.1016/j.polymer.2007.11.048

    16. [16]

      Tian, Z.; Zhang, A. Y.; Ye, L.; Wang, M.; Feng, Z. G. Preparation and evaluation of a linoleic-acid-modified amphiphilic polypeptide copolymer as a carrier for controlled drug release. Biomed. Mater. 2008, 3, 044116. doi: 10.1088/1748-6041/3/4/044116

    17. [17]

      Wessely, F.; Riedl, K.; Tuppy, H. Untersuchungen uber α-amino-N-carbonsaureanhydride. 6. Monatsh. Chem. 1950, 81, 861−872. doi: 10.1007/BF00899328

    18. [18]

      Tao, X. F.; Deng, C.; Ling, J. PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers. Macromol. Rapid. Commun. 2014, 35, 875−81. doi: 10.1002/marc.201400066

    19. [19]

      Tao, X. F.; Zheng, B. T.; Kricheldorf, H. R.; Ling, J. Are N-substituted glycine N-thiocarboxyanhydride monomers really hard to polymerize? J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 404−410. doi: 10.1002/pola.28402

    20. [20]

      Tao, X. F.; Zheng, B. T.; Bai, T. W.; Li, M. H.; Ling, J. Polymerization of N-substituted glycine N-thiocarboxyanhydride through regioselective initiation of cysteamine: a direct way toward thiol-capped polypeptoids. Macromolecules 2018, 51, 4494−4501. doi: 10.1021/acs.macromol.8b00259

    21. [21]

      Tao, X. F.; Deng, Y. W.; Shen, Z. Q.; Ling, J. Controlled polymerization of N-substituted glycine N-thiocarboxyanhydrides initiated by rare earth borohydrides toward hydrophilic and hydrophobic polypeptoids. Macromolecules 2014, 47, 6173−6180. doi: 10.1021/ma501131t

    22. [22]

      Zheng, B. T.; Bai, T. W.; Tao, X. F.; Schlaad, H.; Ling, J. Identifying the hydrolysis of carbonyl sulfide as a side reaction impeding the polymerization of N-substituted glycine N-thiocarboxyanhydride. Biomacromolecules 2018, 19, 4263−4269. doi: 10.1021/acs.biomac.8b01119

    23. [23]

      Tao, X. F; Zheng, B. T.; Bai, T. W.; Zhu, B. K.; Ling, J. Hydroxyl group tolerated polymerization of N-substituted glycine N-thiocarboxyanhydride mediated by aminoalcohols: a simple way to α-hydroxyl-ω-aminotelechelic polypeptoids. Macromolecules 2017, 50, 3066−3077. doi: 10.1021/acs.macromol.7b00309

    24. [24]

      Tao, X. F.; Li, M. H.; Ling, J. α-Amino acid N-thiocarboxyanhydrides: a novel synthetic approach toward poly(α-amino acid)s. Eur. Polym. J. 2018, 109, 26−42. doi: 10.1016/j.eurpolymj.2018.08.039

    25. [25]

      Miao, Y. D.; Xie, F. N.; Cen, J. Y.; Zhou, F.; Tao, X. F.; Luo, J. F.; Han, G. C.; Kong, X. L.; Yang, X. M.; Sun, J. H.; Ling, J. Fe3+@polyDOPA-b-polysarcosine, a T1-weighted MRI contrast agent via controlled NTA polymerization. ACS Macro Lett. 2018, 7, 693−698. doi: 10.1021/acsmacrolett.8b00287

    26. [26]

      Cen, J. Y.; Zheng, B. T.; Yang, Y.; Wu, J. D.; Mao, Z. W.; Ling, J.; Han, G. C. Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in situ reduction and NTA polymerization. Eur. Polym. J. 2019, 121, 109269. doi: 10.1016/j.eurpolymj.2019.109269

    27. [27]

      Birke, A.; Ling, J.; Barz, M. Polysarcosine-containing copolymers: synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 2018, 81, 163−208. doi: 10.1016/j.progpolymsci.2018.01.002

    28. [28]

      Bai, T. W.; Shen, B.; Cai, D.; Luo, Y. F.; Zhou, P.; Xia, J. Y.; Zheng, B. T.; Zhang, K.; Xie, R. Z.; Ni, X. F.; Xu, M. S.; Ling, J.; Song, J. H. Understanding ring-closing and racemization to prepare α-amino acid NCA and NTA monomers: a DFT study. Phys. Chem. Chem. Phys. 2020, 22, 14868−14874. doi: 10.1039/D0CP01174F

    29. [29]

      You, L.; Hogen-Esch, T. E.; Zhu, Y. H.; Ling, J.; Shen, Z. Q. Brønsted acid-free controlled polymerization of tetrahydrofuran catalyzed by recyclable rare earth triflates in the presence of epoxides. Polymer 2012, 53, 4112−4118. doi: 10.1016/j.polymer.2012.07.047

    30. [30]

      Bernaerts, K. V.; Schacht, E. H.; Goethals, E. J.; Prez, F. E. D. Synthesis of poly(tetrahydrofuran)-b-polystyrene block copolymers from dual initiators for cationic ring-opening polymerization and atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3206−3217. doi: 10.1002/pola.10921

    31. [31]

      Siefker, D.; Williams, A. Z.; Stanley, G. G.; Zhang, D. H. Organic acid promoted controlled ring-opening polymerization of α-amino acid-derived N-thiocarboxyanhydrides (NTAs) toward well-defined polypeptides. ACS Macro Lett. 2018, 7, 1272−1277. doi: 10.1021/acsmacrolett.8b00743

    32. [32]

      Mäemets, V.; Koppel, I. 17O and 1H NMR chemical shifts of hydroxide and hydronium ion in aqueous solutions of strong electrolytes. J. Chem. Soc., Faraday Trans. 1997, 93, 1539−1542. doi: 10.1039/a607441c

    33. [33]

      Fetsch, C.; Grossmann, A.; Holz, L.; Nawroth, J. F.; Luxenhofer, R. Polypeptoids from N-substituted glycine N-carboxyanhydrides: hydrophilic, hydrophobic, and amphiphilic polymers with poisson distribution. Macromolecules 2011, 44, 6746−6758. doi: 10.1021/ma201015y

    34. [34]

      Mats, L.; Adrian, H.; John, D. Suspension stability: why particle size, zeta potential and rheology are important. Ann. Trans. Nordic Rheol. Soc. 2012, 20, 209−214.

  • 加载中
    1. [1]

      Xu-feng NiuFeng TianLi-zhen WangXiao-ming LiGang ZhouYu-bo Fan . Synthesis and Characterization of Chitosan-graft-Poly(lactic acid) Copolymer. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1369-1

    2. [2]

      Wei-xi YangLing-ling WangHan ZhuRi-wei XuYi-xian Wu . SYNTHESIS OF POLY(GLUTAMIC ACID-co-ASPARTIC ACID) VIA COMBINATION OF N-CARBOXYANHYDRIDE RING OPENING POLYMERIZATION WITH DEBENZYLATION. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1363-z

    3. [3]

      Yuan-lin LiSai LiLi-jie JiBin HeZhong-wei Gu . STUDIES ON THE DEGRADATION OF POLY(L-LACTIDE-r-TRIMETHENE CARBONATE) COPOLYMERS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1299-3

    4. [4]

      Na LiXing-Ke ZhangJun-Rong YuYan WangJing ZhuZu-Ming Hu . Increased Hydrogen-bonding of Poly(m-phenylene isophthalamide) (PMIA) with Sulfonate Moiety for High-performance Easily Dyeable Fiber

      . Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2416-8

    5. [5]

      Xiu-bo JiangQing-fei ZhangAi-hua He . Synthesis and Characterization of Trans-1,4-butadiene/Isoprene Copolymers: Determination of Sequence Distribution and Thermal Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1626-y

    6. [6]

      Qing-fei ZhangXiu-bo JiangAi-hua He . Synthesis and Characterization of trans-1,4-Butadiene/Isoprene Copolymers:Determination of Monomer Reactivity Ratios and Temperature Dependence. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1467-0

    7. [7]

      Yao-hui XingShao-liang LinJia-ping LinXiao-hua He . SYNTHESIS, SELF-ASSEMBLY AND RESPONSIVE PROPERTIES OF PEG-b-PDMAEMA-b-PMMAzo TRIBLOCK COPOLYMERS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1283-y

    8. [8]

      Xiao-Jing LvLi-Bin XuLiang QianYuan-Yuan YangZhi-Yi XuJin LiCheng Zhang . A Conjugated Copolymer Bearing Imidazolium-based Ionic Liquid: Electrochemical Synthesis and Electrochromic Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2525-z

    9. [9]

      Ji-jie WenHong-guang LuDe-e LiuHui Gao . Fabrication of Macroporous Protein-containing Films through the Reverse Emulsions Approach Featuring β-Cyclodextrin-conjugated PEG-PLGA Copolymers. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1789-1

    10. [10]

      You-Hao WangJin GongWen-Bing Hu . Transparency of Temperature-responsive Shape-memory Gels Tuned by a Competition between Crystallization and Glass Transition. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2456-0

    11. [11]

      Emine Gul Cansu-Ergun . Covering the More Visible Region by Electrochemical Copolymerization of Carbazole and Benzothiadiazole Based Donor-Acceptor Type Monomers. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2181-8

    12. [12]

      Qi-lei SongShuang-yan HuJun-peng ZhaoGuang-zhao Zhang . Organocatalytic Copolymerization of Mixed Type Monomers. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1925-6

    13. [13]

      . MECHANISM-TRANSFORMATION SYNTHESIS AND CHARACTERIZATION OF POLY(STYRENE-b-2-ETHYL-2-OXAZOLINE) DIBLOCK COPOLYMER*. Chinese J. Polym. Sci,

    14. [14]

      WU JinhuangSUN YanhuiFENG Xinde . SYNTHESIS OF POLY ( ETHER-URETHANE) CONTAINING PENDANT AMINO GROUP. Chinese J. Polym. Sci,

    15. [15]

      Zhen ShiQi WangGui-Fei LiYu-Feng ShouHong-Jie ZongShi-Feng YanKun-Xi ZhangJing-Bo Yin . Preparation and Characterization of Attractive Poly(amino acid) Hydrogels Based on 2-Ureido-4[1H]-pyrimidinone. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2498-y

    16. [16]

      Li Chen aXiu-li Zhuang bGuo-en Sun cXue-si Chen bXia-bin Jing b . AN APPROACH TO SYNTHESIZE POLY(ETHYLENE GLYCOL)-b-POLY(ε-CAPROLACTONE) WITH TERMINAL AMINO GROUP via SCHIFF’S BASE AS AN INITIATOR. Chinese J. Polym. Sci,

    17. [17]

      BIAN XinshengHAN XiaozuWANG XinrenZHANG Qingyu . PROPERTIES AND MORPHOLOGY OF LIQUID CHLOROPRENE-METHACRYLIC ACID COPOLYMER MODIFIED EPOXY RESIN/POLY (BUTYL METHACRYLATE) SEMI-IPN. Chinese J. Polym. Sci,

    18. [18]

      Khalil FaghihiMohsen Hajibeygi . OPTICALLY ACTIVE AND FLAME-RETARDANT POLY(AMIDE-IMIDE)S BASED ON PHOSPHINE OXIDE MOIETY AND N,N'-(PYROMELLITOYL)BIS-L-AMINO ACID IN THE MAIN CHAIN: SYNTHESIS AND CHARACTERIZATION. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9075-0

    19. [19]

      . SYNTHESIS OF POLY(ETHYLENE TEREPHTHALATE)-POLYCAPROLACTONE BLOCK COPOLYMER BY DIRECT COPOLYMERIZATION*. Chinese J. Polym. Sci,

    20. [20]

      BEI JianzhongWANG ZhifengWANG Shenguo . POLYCAPROLACTONE-POLY (ETHYLENE GLYCOL) BLOCK COPOLYMER Ⅲ DRUG RELEASE BEHAVIOR. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(0)
  • Abstract views(439)
  • HTML views(221)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return