-
[1]
Basko, M.; Bednarek, M.; Billiet, L.; Kubisa, P.; Goethals, E.; Prez, F. D. Combining cationic ring-opening polymerization and click chemistry for the design of functionalized polyurethanes. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1597−1604.
-
[2]
Jayakannan, M.; Ramakrishnan, S. Recent developments in polyether synthesis. Macromol. Rapid Commun. 2001, 22, 1463−1473. doi: 10.1002/1521-3927(20011201)22:18<1463::AID-MARC1463>3.0.CO;2-F
-
[3]
Guo, A. R.; Yang, W. X.; Yang, F.; Yu, R.; Wu, Y. X. Well-defined poly(γ-benzyl-L-glutamate)-g-polytetrahydrofuran: synthesis, characterization, and properties. Macromolecules 2014, 47, 5450−5461. doi: 10.1021/ma501060y
-
[4]
Cheradame, H.; Sassatelli, M.; Pomel, C.; Sanh, A.; Gau-Racine, J.; Bacri, L.; Attvray, L.; Guégan, P. Tuning macromolecular structures of synthetic vectors for gene therapy. Macromol. Symp. 2008, 261, 167−181. doi: 10.1002/masy.200850122
-
[5]
Mu, C. G.; Fan, X. D.; Tian, W.; Bai, Y.; Yang, Z.; Fan, W. W.; Chen, H. Synthesis and stimulus-responsive micellization of a well-defined H-shaped terpolymer. Polym. Chem. 2012, 3, 3330−3339. doi: 10.1039/c2py20586f
-
[6]
Cao, J. B.; Siefker, D.; Chan, B. A.; Yu, T. Y.; Lu, L.; Saputra, M. A.; Fronczek, F. R.; Xie, W. W.; Zhang, D. H. Interfacial ring-opening polymerization of amino-acid-derived N-thiocarboxyanhydrides toward well-defined polypeptides. ACS Macro Lett. 2017, 6, 836−840. doi: 10.1021/acsmacrolett.7b00411
-
[7]
Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic polypeptides: from polymer design to supramolecular assembly and biomedical application. Chem. Soc. Rev. 2017, 46, 6570−6599. doi: 10.1039/C7CS00460E
-
[8]
Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2016, 116, 786−808. doi: 10.1021/acs.chemrev.5b00292
-
[9]
Deng, C.; Wu, J. T.; Cheng, R.; Meng, F. H.; Klok, H. A.; Zhong, Z. Y. Functional polypeptide and hybrid materials: precision synthesis via α-amino acid N-carboxyanhydride polymerization and emerging biomedical applications. Prog. Polym. Sci. 2014, 39, 330−364. doi: 10.1016/j.progpolymsci.2013.10.008
-
[10]
Shen, Y.; Fu, X. H.; Fu, W. X.; Li, Z. B. Biodegradable stimuli-responsive polypeptide materials prepared by ring opening polymerization. Chem. Soc. Rev. 2015, 44, 612−622. doi: 10.1039/C4CS00271G
-
[11]
Gu, L.; Jiang, Y. Z.; Hu, J. L. Scalable spider-silk-like supertough fibers using a pseudoprotein polymer. Adv. Mater. 2019, 31, e1904311. doi: 10.1002/adma.201904311
-
[12]
Ebrahimi, D.; Tokareva, O.; Rim, N. G.; Wong, J. Y.; Kaplan, D. L.; Buehler, M. J. Silk-its mysteries, how it is made, and how it is used. ACS Biomater. Sci. Eng. 2015, 1, 864−876. doi: 10.1021/acsbiomaterials.5b00152
-
[13]
Yarger, J. L.; Cherry, B. R.; van der Vaart, A. Uncovering the structure-function relationship in spider silk. Nat. Rev. Mater. 2018, 3, 18008. doi: 10.1038/natrevmats.2018.8
-
[14]
Eisoldt, L.; Smith, A.; Scheibel, T. Decoding the secrets of spider silk. Mater. Today 2011, 14, 80−86. doi: 10.1016/S1369-7021(11)70057-8
-
[15]
Tian, Z.; Wang, M.; Zhang, A. Y.; Feng, Z. G. Preparation and evaluation of novel amphiphilic glycopeptide block copolymers as carriers for controlled drug release. Polymer 2008, 49, 446−454. doi: 10.1016/j.polymer.2007.11.048
-
[16]
Tian, Z.; Zhang, A. Y.; Ye, L.; Wang, M.; Feng, Z. G. Preparation and evaluation of a linoleic-acid-modified amphiphilic polypeptide copolymer as a carrier for controlled drug release. Biomed. Mater. 2008, 3, 044116. doi: 10.1088/1748-6041/3/4/044116
-
[17]
Wessely, F.; Riedl, K.; Tuppy, H. Untersuchungen uber α-amino-N-carbonsaureanhydride. 6. Monatsh. Chem. 1950, 81, 861−872. doi: 10.1007/BF00899328
-
[18]
Tao, X. F.; Deng, C.; Ling, J. PEG-amine-initiated polymerization of sarcosine N-thiocarboxyanhydrides toward novel double-hydrophilic PEG-b-polysarcosine diblock copolymers. Macromol. Rapid. Commun. 2014, 35, 875−81. doi: 10.1002/marc.201400066
-
[19]
Tao, X. F.; Zheng, B. T.; Kricheldorf, H. R.; Ling, J. Are N-substituted glycine N-thiocarboxyanhydride monomers really hard to polymerize? J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 404−410. doi: 10.1002/pola.28402
-
[20]
Tao, X. F.; Zheng, B. T.; Bai, T. W.; Li, M. H.; Ling, J. Polymerization of N-substituted glycine N-thiocarboxyanhydride through regioselective initiation of cysteamine: a direct way toward thiol-capped polypeptoids. Macromolecules 2018, 51, 4494−4501. doi: 10.1021/acs.macromol.8b00259
-
[21]
Tao, X. F.; Deng, Y. W.; Shen, Z. Q.; Ling, J. Controlled polymerization of N-substituted glycine N-thiocarboxyanhydrides initiated by rare earth borohydrides toward hydrophilic and hydrophobic polypeptoids. Macromolecules 2014, 47, 6173−6180. doi: 10.1021/ma501131t
-
[22]
Zheng, B. T.; Bai, T. W.; Tao, X. F.; Schlaad, H.; Ling, J. Identifying the hydrolysis of carbonyl sulfide as a side reaction impeding the polymerization of N-substituted glycine N-thiocarboxyanhydride. Biomacromolecules 2018, 19, 4263−4269. doi: 10.1021/acs.biomac.8b01119
-
[23]
Tao, X. F; Zheng, B. T.; Bai, T. W.; Zhu, B. K.; Ling, J. Hydroxyl group tolerated polymerization of N-substituted glycine N-thiocarboxyanhydride mediated by aminoalcohols: a simple way to α-hydroxyl-ω-aminotelechelic polypeptoids. Macromolecules 2017, 50, 3066−3077. doi: 10.1021/acs.macromol.7b00309
-
[24]
Tao, X. F.; Li, M. H.; Ling, J. α-Amino acid N-thiocarboxyanhydrides: a novel synthetic approach toward poly(α-amino acid)s. Eur. Polym. J. 2018, 109, 26−42. doi: 10.1016/j.eurpolymj.2018.08.039
-
[25]
Miao, Y. D.; Xie, F. N.; Cen, J. Y.; Zhou, F.; Tao, X. F.; Luo, J. F.; Han, G. C.; Kong, X. L.; Yang, X. M.; Sun, J. H.; Ling, J. Fe3+@polyDOPA-b-polysarcosine, a T1-weighted MRI contrast agent via controlled NTA polymerization. ACS Macro Lett. 2018, 7, 693−698. doi: 10.1021/acsmacrolett.8b00287
-
[26]
Cen, J. Y.; Zheng, B. T.; Yang, Y.; Wu, J. D.; Mao, Z. W.; Ling, J.; Han, G. C. Ag@polyDOPA-b-polysarcosine hybrid nanoparticles with antimicrobial properties from in situ reduction and NTA polymerization. Eur. Polym. J. 2019, 121, 109269. doi: 10.1016/j.eurpolymj.2019.109269
-
[27]
Birke, A.; Ling, J.; Barz, M. Polysarcosine-containing copolymers: synthesis, characterization, self-assembly, and applications. Prog. Polym. Sci. 2018, 81, 163−208. doi: 10.1016/j.progpolymsci.2018.01.002
-
[28]
Bai, T. W.; Shen, B.; Cai, D.; Luo, Y. F.; Zhou, P.; Xia, J. Y.; Zheng, B. T.; Zhang, K.; Xie, R. Z.; Ni, X. F.; Xu, M. S.; Ling, J.; Song, J. H. Understanding ring-closing and racemization to prepare α-amino acid NCA and NTA monomers: a DFT study. Phys. Chem. Chem. Phys. 2020, 22, 14868−14874. doi: 10.1039/D0CP01174F
-
[29]
You, L.; Hogen-Esch, T. E.; Zhu, Y. H.; Ling, J.; Shen, Z. Q. Brønsted acid-free controlled polymerization of tetrahydrofuran catalyzed by recyclable rare earth triflates in the presence of epoxides. Polymer 2012, 53, 4112−4118. doi: 10.1016/j.polymer.2012.07.047
-
[30]
Bernaerts, K. V.; Schacht, E. H.; Goethals, E. J.; Prez, F. E. D. Synthesis of poly(tetrahydrofuran)-b-polystyrene block copolymers from dual initiators for cationic ring-opening polymerization and atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2003, 41, 3206−3217. doi: 10.1002/pola.10921
-
[31]
Siefker, D.; Williams, A. Z.; Stanley, G. G.; Zhang, D. H. Organic acid promoted controlled ring-opening polymerization of α-amino acid-derived N-thiocarboxyanhydrides (NTAs) toward well-defined polypeptides. ACS Macro Lett. 2018, 7, 1272−1277. doi: 10.1021/acsmacrolett.8b00743
-
[32]
Mäemets, V.; Koppel, I. 17O and 1H NMR chemical shifts of hydroxide and hydronium ion in aqueous solutions of strong electrolytes. J. Chem. Soc., Faraday Trans. 1997, 93, 1539−1542. doi: 10.1039/a607441c
-
[33]
Fetsch, C.; Grossmann, A.; Holz, L.; Nawroth, J. F.; Luxenhofer, R. Polypeptoids from N-substituted glycine N-carboxyanhydrides: hydrophilic, hydrophobic, and amphiphilic polymers with poisson distribution. Macromolecules 2011, 44, 6746−6758. doi: 10.1021/ma201015y
-
[34]
Mats, L.; Adrian, H.; John, D. Suspension stability: why particle size, zeta potential and rheology are important. Ann. Trans. Nordic Rheol. Soc. 2012, 20, 209−214.