Citation: Wang, H.; Liu, H. C.; Zhang, Y.; Xu, H.; Jin, B. Q.; Cao, Z. X.; Wu, H. T.; Huang, G. S.; Wu, J. R. A triple crosslinking design toward epoxy vitrimers and carbon fiber composites of high performance and multi-shape memory. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2538-7 doi: 10.1007/s10118-021-2538-7 shu

A Triple Crosslinking Design toward Epoxy Vitrimers and Carbon Fiber Composites of High Performance and Multi-shape Memory

  • Corresponding author: Jin-Rong Wu, E-mail: wujinrong@scu.edu.cn
  • Received Date: 2020-10-09
    Available Online: 2021-01-05

Figures(4)

  • It remains a challenge to use a simple approach to fabricate a multi-shape memory material with high mechanical performances. Here, we report a triple crosslinking design to construct a multi-shape memory epoxy vitrimer (MSMEV), which exhibits high mechanical properties, multi-shape memory property and malleability. The triple crosslinking network is formed by reacting diglycidyl ether of bisphenol F (DGEBF) with 4-aminophenyl disulfide, γ-aminopropyltriethoxysilane (APTS) and poly(propylene glycol) bis(2-aminopropyl ether) (D2000). The triple crosslinking manifests triple functions: the disulfide bonds and the silyl ether linkages enable malleability of the epoxy network; the silyl ether linkages impart the network with high heterogeneity and broaden the glass transition region, leading to multi-shape memory property; a small amount of D2000 increases the modulus difference between the glassy and rubbery states, thereby improving the shape fixity ratio. Meanwhile, the high crosslinking density and rigid structure provide the MSMEV with high tensile strength and Young’s modulus. Moreover, integrating carbon fibers and MSMEV results in shape memory composites. The superior mechanical properties of the composites and the recyclability of carbon fiber derived from the dissolvability of MSMEV make the composites hold great promise as structural materials in varied applications.
  • 加载中
    1. [1]

      Alteheld, A.; Feng, Y.; Kelch, S.; Lendlein, A. Biodegradable, amorphous copolyester-urethane networks having shape-memory properties. Angew. Chem. Int. Ed. 2005, 44, 1188−1192. doi: 10.1002/anie.200461360

    2. [2]

      Behl, M.; Razzaq, M. Y.; Lendlein, A. Multifunctional shape-memory polymers. Adv. Mater. 2010, 22, 3388−3410. doi: 10.1002/adma.200904447

    3. [3]

      Liu, C.; Qin, H.; Mather, P. Review of progress in shape-memory polymers. J. Mater. Chem. 2007, 17, 1543−1558. doi: 10.1039/b615954k

    4. [4]

      Liu, Y.; Han, C.; Tan, H.; Du, X. Thermal, mechanical and shape memory properties of shape memory epoxy resin. Mater. Sci. Eng. A 2010, 527, 2510−2514. doi: 10.1016/j.msea.2009.12.014

    5. [5]

      Rousseau, I. A. Challenges of shape memory polymers: a review of the progress toward overcoming SMP's limitations. Polym. Eng. Sci. 2008, 48, 2075−2089. doi: 10.1002/pen.21213

    6. [6]

      Gunes, I. S.; Jana, S. C. Shape memory polymers and their nanocomposites: a review of science and technology of new multifunctional materials. J. Nanosci. Nanotechnol. 2008, 8, 1616−1637. doi: 10.1166/jnn.2008.18227

    7. [7]

      Ge, Q.; Luo, X.; Iversen, C. B.; Mather, P. T.; Dunn, M. L.; Qi, H. J. Mechanisms of triple-shape polymeric composites due to dual thermal transitions. Soft Matter 2013, 9, 2212−2223. doi: 10.1039/c2sm27063c

    8. [8]

      Qi, X.; Guo, Y.; Wei, Y.; Dong, P.; Fu, Q. Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem. B 2016, 120, 11064−11073. doi: 10.1021/acs.jpcb.6b08536

    9. [9]

      Lendlein, A. Progress in actively moving polymers. J. Mater. Chem. 2010, 20, 3332−3334. doi: 10.1039/c004361n

    10. [10]

      Bai, Y.; Chen, Y.; Wang, Q.; Wang, T. Poly(vinyl butyral) based polymer networks with dual-responsive shape memory and self-healing properties. J. Mater. Chem. A 2014, 2, 9169−9177. doi: 10.1039/c4ta00856a

    11. [11]

      Zhang, R.; Guo, X.; Liu, Y.; Leng, J. Theoretical analysis and experiments of a space deployable truss structure. Compos. Struct. 2014, 112, 226−230. doi: 10.1016/j.compstruct.2014.02.018

    12. [12]

      Xie, T. Tunable polymer multi-shape memory effect. Nature 2010, 464, 267−270. doi: 10.1038/nature08863

    13. [13]

      He, Z.; Satarkar, N.; Xie, T.; Cheng, Y. T.; Hilt, J. Z. Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations. Adv. Mater. 2011, 23, 3192−3196. doi: 10.1002/adma.201100646

    14. [14]

      Bellin, I.; Kelch, S.; Langer, R.; Lendlein, A. Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 18043−18047. doi: 10.1073/pnas.0608586103

    15. [15]

      Chen, H.; Liu, Y.; Gong, T.; Wang, L.; Zhao, K.; Zhou, S. Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv. 2013, 3, 7048−7056. doi: 10.1039/c3ra00091e

    16. [16]

      Zhao, J.; Chen, M.; Wang, X.; Zhao, X.; Wang, Z.; Dang, Z. M.; Ma, L.; Hu, G. H.; Chen, F. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture. ACS Appl. Mater. Interfaces 2013, 5, 5550−5556. doi: 10.1021/am400769j

    17. [17]

      Torbati, A. H.; Nejad, H. B.; Ponce, M.; Sutton, J. P.; Mather, P. T. Properties of triple shape memory composites prepared via polymerization-induced phase separation. Soft Matter 2014, 10, 3112−3121. doi: 10.1039/C3SM52599F

    18. [18]

      Shao, Y.; Lavigueur, C.; Zhu, X. Multishape memory effect of norbornene-based copolymers with cholic acid pendant groups. Macromolecules 2012, 45, 1924−1930. doi: 10.1021/ma202506b

    19. [19]

      Chatani, S.; Wang, C.; Podgórski, M.; Bowman, C. N. Triple shape memory materials incorporating two distinct polymer networks formed by selective Thiol-Michael addition reactions. Macromolecules 2014, 47, 4949−4954. doi: 10.1021/ma501028a

    20. [20]

      Li, J.; Liu, T.; Xia, S.; Pan, Y.; Zheng, Z.; Ding, X.; Peng, Y. A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments. J. Mater. Chem. 2011, 21, 12213−12217. doi: 10.1039/c1jm12496j

    21. [21]

      Li, X.; Pan, Y.; Zheng, Z.; Ding, X. A Facile and general approach to recoverable high-strain multishape shape memory polymers. Macromol. Rapid Commun. 2018, 39, 1700613. doi: 10.1002/marc.201700613

    22. [22]

      Wang, K.; Jia, Y. G.; Zhu, X. Biocompound-based multiple shape memory polymers reinforced by photo-cross-linking. ACS Biomater Sci. Eng. 2015, 1, 855−863. doi: 10.1021/acsbiomaterials.5b00226

    23. [23]

      Qi, X.; Guo, Y.; Wei, Y.; Dong, P.; Fu, Q. Multishape and temperature memory effects by strong physical confinement in poly(propylene carbonate)/graphene oxide nanocomposites. J. Phys. Chem B 2016, 120, 11064−11073. doi: 10.1021/acs.jpcb.6b08536

    24. [24]

      Gunes, I. S.; Cao, F.; Jana, S. C. Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 2008, 49, 2223−2234. doi: 10.1016/j.polymer.2008.03.021

    25. [25]

      Xie, T.; Xiao, X.; Cheng, Y. T. Revealing triple-shape memory effect by polymer bilayers. Macromol. Rapid Commun. 2009, 30, 1823−1827. doi: 10.1002/marc.200900409

    26. [26]

      Kuang, X.; Liu, G.; Dong, X.; Wang, D. Triple-shape memory epoxy based on Diels-Alder adduct molecular switch. Polymer 2016, 84, 1−9. doi: 10.1016/j.polymer.2015.12.033

    27. [27]

      Dong, Y.; Xia, H.; Zhu, Y.; Ni, Q. Q.; Fu, Y. Effect of epoxy-graft-polyoxyethylene octyl phenyl ether on preparation, mechanical properties and triple-shape memory effect of carbon nanotube/water-borne epoxy nanocomposites. Compos. Sci. Technol. 2015, 120, 17−25. doi: 10.1016/j.compscitech.2015.09.011

    28. [28]

      Ponyrko, S.; Donato, R.; Matějka, L. Tailored high performance shape memory epoxy-silica nanocomposites. Structure design. Polym. Chem. 2016, 7, 560−572.

    29. [29]

      Mirzaeifar, R.; Dimas, L. S.; Qin, Z.; Buehler, M. J. Defect-tolerant bioinspired hierarchical composites: simulation and experiment. ACS Biomater. Sci. Eng. 2015, 1, 295−304. doi: 10.1021/ab500120f

    30. [30]

      Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-catalyzed transesterification for healing and assembling of thermosets. J. Am. Chem. Soc. 2012, 134, 7664−7667.

    31. [31]

      Zhou, F.; Guo, Z.; Wang, W.; Lei, X.; Zhang, B.; Zhang, H.; Zhang, Q. Preparation of self-healing, recyclable epoxy resins and low-electrical resistance composites based on double-disulfide bond exchange. Compos. Sci. Technol. 2018, 167, 79−85. doi: 10.1016/j.compscitech.2018.07.041

    32. [32]

      Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J. A catalyst-free epoxy vitrimer system based on multifunctional hyperbranched polymer. Macromolecules 2018, 51, 6789−6799. doi: 10.1021/acs.macromol.8b01424

    33. [33]

      Wu, X.; Yang, X.; Yu, R.; Zhao, X. J.; Zhang, Y.; Huang, W. A facile access to stiff epoxy vitrimers with excellent mechanical properties via siloxane equilibration. J. Mater. Chem. A 2018, 6, 10184−10188. doi: 10.1039/C8TA02102C

    34. [34]

      Zhou, L.; Zhang, G.; Feng, Y.; Zhang, H.; Li, J.; Shi, X. Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. J. Mater. Sci. 2018, 53, 7030−7047. doi: 10.1007/s10853-018-2015-z

    35. [35]

      Shi, Q.; Yu, K.; Dunn, M. L.; Wang, T.; Qi, H. J. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers. Macromolecules 2016, 49, 5527−5537. doi: 10.1021/acs.macromol.6b00858

    36. [36]

      Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Qi, H. J. Recyclable 3D printing of vitrimer epoxy. Mater. Horiz. 2017, 4, 598−607. doi: 10.1039/C7MH00043J

    37. [37]

      de Luzuriaga, A. R.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Mater. Horiz. 2016, 3, 241−247. doi: 10.1039/C6MH00029K

    38. [38]

      Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H. J. Recycling of epoxy thermoset and composites via good solvent assisted and small molecules participated exchange reactions. ACS Sustain. Chem. Eng. 2018, 6, 9189−9197. doi: 10.1021/acssuschemeng.8b01538

    39. [39]

      Wang, M.; Zhuge, J.; Li, C.; Jiang, L.; Yang, H. Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties. Iran. Polym. J. 2020, 29, 569−579. doi: 10.1007/s13726-020-00821-9

    40. [40]

      Zhang, F.; Zhang, Z.; Liu, Y.; Lu, H.; Leng, J. The quintuple-shape memory effect in electrospun nanofiber membranes. Smart Mater. Struct. 2013, 22, 085020. doi: 10.1088/0964-1726/22/8/085020

    41. [41]

      Yang, X.; Guo, L.; Xu, X.; Shang, S.; Liu, H. A fully bio-based epoxy vitrimer: self-healing, triple-shape memory and reprocessing triggered by dynamic covalent bond exchange. Mater. Design 2020, 186, 108248. doi: 10.1016/j.matdes.2019.108248

    42. [42]

      Chen, S.; Mo, F.; Yang, Y.; Stadler, F. J.; Chen, S.; Yang, H.; Ge, Z. Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J. Mater. Chem. A 2015, 3, 2924−2933. doi: 10.1039/C4TA06304J

    43. [43]

      Feng, P.; Zhang, C.; Liang, H.; Liang, D.; Lin, Z.; Chen, Q.; Wang, Q. Renewable castor oil based waterborne polyurethane networks: simultaneously showing high strength, self-healing, processability and tunable multi-shape memory. Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.202014299.

    44. [44]

      Niu, X.; Wang, F.; Kui, X.; Zhang, R.; Wang, X.; Li, X.; Chen, T.; Sun, P.; Shi, A. C. Dual cross-linked vinyl vitrimer with efficient self-catalysis achieving triple-shape-memory properties. Macromol. Rapid Commun. 2019, 40, 1900313. doi: 10.1002/marc.201900313

    45. [45]

      Yang, Y.; Terentjev, E. M.; Wei, Y.; Ji, Y. Solvent-assisted programming of flat polymer sheets into reconfigurable and self-healing 3D structures. Nat. Commun. 2018, 9, 1. doi: 10.1038/s41467-017-02088-w

    46. [46]

      Van der Mee, M.; l’Abee, R.; Portale, G.; Goossens, J.; van Duin, M. Synthesis, structure, and properties of ionic thermoplastic elastomers based on maleated ethylene/propylene copolymers. Macromolecules 2008, 41, 5493−5501. doi: 10.1021/ma8007509

    47. [47]

      Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide vitrimers. ACS Macro Lett. 2014, 3, 607−610. doi: 10.1021/mz500269w

    48. [48]

      Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous urethane vitrimers. Adv. Funct. Mater. 2015, 25, 2451−2457. doi: 10.1002/adfm.201404553

    49. [49]

      Obadia, M. M.; Mudraboyina, B. P.; Serghei, A.; Montarnal, D.; Drockenmuller, E. Reprocessing and recycling of highly cross-linked ion-conducting networks through transalkylation exchanges of C―N bonds. J. Am. Chem. Soc. 2015, 137, 6078−6083. doi: 10.1021/jacs.5b02653

  • 加载中
    1. [1]

      Long-mei WuShuang-quan LiaoSheng-jun ZhangXiao-ying BaiXue Hou . Enhancement of Mechanical Properties of Natural Rubber with Maleic Anhydride Grafted Liquid Polybutadiene Functionalized Graphene Oxide. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1652-9

    2. [2]

      Jian-hua RongLi-jun JiZhen-zhong Yang . SOME KEY ORDERED MACROPOROUS COMPOSITES. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1324-6

    3. [3]

      Yin NaChen Shi-yanCao Yi-mengWang Hua-pingWu Qing-kai . Improvement in Mechanical Properties and Biocompatibility of Biosynthetic Bacterial Cellulose/Lotus Root Starch Composites. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1903-z

    4. [4]

      Yan-yan Yang aKai-zhou Zhang bYi-hu Song aQiang Zheng a . PREPARATION AND PROPERTIES OF WHEAT GLUTEN/RICE PROTEIN COMPOSITES PLASTICIZED WITH GLYCEROL. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-9185-8

    5. [5]

      Jing-xiao HuXuan CaiShao-bo MoLi ChenXin-yu ShenHua Tong . Fabrication and Characterization of Chitosan-Silk Fibroin/Hydroxyapatite Composites via in situ Precipitation for Bone Tissue Engineering. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1710-3

    6. [6]

      Shu-ying ShangZheng-ping Fang . DYNAMICS OF AND ' RELAXATION IN LAYERED SILICATE/POLYSTYRENE NANOCOMPOSITES STUDIED BY ANELASTIC SPECTROSCOPY. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1339-z

    7. [7]

      Jian-bin LuoShu-xuan QiuYong-li WangRong-hui LaiXing-yi Xie . Preparation and Physicochemical Properties of Hydroxyapatite/Polyurethane Nanocomposites. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1414-0

    8. [8]

      Jia-Hui ChenXu-Pei AnYi-Dong LiMing WangJian-Bing Zeng . Reprocessible Epoxy Networks with Tunable Physical Properties: Synthesis, Stress Relaxation and Recyclability. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2027-9

    9. [9]

      Jing WangHong-ming LiJiang-ping GuoQi-gu HuangJian-jun YiYun-fang LiuKe-jing GaoWan-tai Yang . Coral-shaped and Core-Shell Structure Copolyethylene Nanocomposites Particles Prepared by in situ Coordination Polymerization. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1719-7

    10. [10]

      Xiao-li YaoYu-hong MaChang-wen ZhaoWan-tai Yang . CORRELATION OF SiOx LAYER THICKNESS AND PROPERTIES OF BOPP/SiOx COMPOSITE FILMS WITH SPIN COATING PROCESS PARAMETERS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1224-9

    11. [11]

      Kun WangGuang-ming ZhuXiao-gang YanFang RenXiao-ping Cui . Electroactive Shape Memory Cyanate/Polybutadiene Epoxy Composites Filled with Carbon Black. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1766-8

    12. [12]

      Yong-kun WangWen-chao TianGuang-ming ZhuJian-qiang Xie . Thermomechanical and Shape Memory Properties of SCF/SBS/LLDPE Composites. Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1838-9

    13. [13]

      Han JiaKun ChangShu-Ying Gu . Synthesis and Properties of Reversible Disulfide Bond-based Self-healing Polyurethane with Triple Shape Memory Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2268-2

    14. [14]

      Fang-Lan GuanFei AnJing YangXiaofeng LiXing-Hua LiZhong-Zhen Yu . Fiber-reinforced Three-dimensional Graphene Aerogels for Electrically Conductive Epoxy Composites with Enhanced Mechanical Properties. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1972-z

    15. [15]

      Bao-feng PanNan-ying NingJun LiuLan-ying BaiQiang Fu . MECHANICAL PROPERTIES OF SMC WHISKER REINFORCED HIGH DENSITY POLYETHYLENE COMPOSITES. Chinese J. Polym. Sci,

    16. [16]

      Xiao-Hui ShiLi ChenBo-Wen LiuJia-Wei LongYing-Jun XuYu-Zhong Wang . Carbon Fibers Decorated by Polyelectrolyte Complexes toward Their Epoxy Resin Composites with High Fire Safety. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2164-1

    17. [17]

      Rabia SattarAyesha KausarMuhammad Siddiq . Thermal, Mechanical and Electrical Studies of Novel Shape Memory Polyurethane/Polyaniline Blends. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1680-5

    18. [18]

      Yong ZhuJing-Li GaoLin-Jun ZhangYan PengHao WangFang-Wei LingGuang-Su HuangJin-Rong Wu . An Interfacial Dynamic Crosslinking Approach toward Catalyst-free and Mechanically Robust Elastomeric Vitrimer with a Segregated Structure. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2479-6

    19. [19]

      ZHU JinOU YuchunFENG Yupeng . STUDIES ON THE MECHANICAL PROPERTIES AND CRYSTALLIZATION BEHAVIOR OF POLYETHYLENE COMPOSITES*. Chinese J. Polym. Sci,

    20. [20]

      Qi ChenShun WangFeng QinKuan LiuQian LiuQing ZhaoXing-Yi WangYan-Hong Hu . Soluble Polyimide-reinforced TGDDM and DGEBA Epoxy Composites. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2395-9

Article Metrics
  • PDF Downloads(2)
  • Abstract views(459)
  • HTML views(188)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return