Citation: Wang, C.; Liu, F.; Chen, Q. M.; Xiao, C. Y.; Wu, Y. G.; Li, W. W. Benzothiadiazole-based conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2021, 39, 525–536 doi: 10.1007/s10118-021-2537-8 shu

Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells


  • Benzothiadiazole (BT) is an electron-deficient unit with fused aromatic core, which can be used to construct conjugated polymers for application in organic solar cells (OSCs). In the past twenty years, huge numbers of conjugated polymers based on BT unit have been developed, focusing on the backbone engineering (such as by using different copolymerized building blocks), side chain engineering (such as by using linear or branch side units), using heteroatoms (such as F, O and S atoms, and CN group), etc. These modifications enable BT-polymers to exhibit distinct absorption spectra (with onset varied from 600 nm to 1000 nm), different frontier energy levels and crystallinities. As a consequence, BT-polymers have gained much attention in recent years, and can be simultaneously used as electron donor and electron acceptor in OSCs, providing the power conversion efficiencies (PCEs) over 18% and 14% in non-fullerene and all-polymer OSCs. In this article, we provide an overview of BT-polymers for OSCs, from donor to acceptor, via selecting some typical BT-polymers in different periods. We hope that the summary in this article can invoke the interest to study the BT-polymers toward high performance OSCs, especially with thick active layers that can be potentially used in large-area devices.
    1. [1]

      Yeh, N.; Yeh, P. Organic solar cells: their developments and potentials. Renew. Sus. Energy Rev. 2013, 21, 421−431. doi: 10.1016/j.rser.2012.12.046

    2. [2]

      He, P.; Li, Z.; Hou, Q.; Wang, Y. Application of benzothiadiazole in organic solar cells. Chinese J. Org. Chem. 2013, 33, 288−304. doi: 10.6023/cjoc201208009

    3. [3]

      Cui, H. Q.; Peng, R. X.; Song, W.; Zhang, J. F.; Huang, J. M.; Zhu, L. Q.; Ge, Z. Y. Optimization of ethylene glycol doped PEDOT:PSS transparent electrodes for flexible organic solar cells by drop-coating method. Chinese J. Polym. Sci. 2019, 37, 760−766. doi: 10.1007/s10118-019-2257-5

    4. [4]

      Yan, N.; Zhao, C.; You, S.; Zhang, Y.; Li, W. Recent progress of thin-film photovoltaics for indoor application. Chin. Chem. Lett. 2020, 31, 643−653. doi: 10.1016/j.cclet.2019.08.022

    5. [5]

      Li, Y.; Xu, Y.; Yang, F.; Jiang, X.; Li, C.; You, S.; Li, W. Simple non-fullerene electron acceptors with unfused core for organic solar cells. Chin. Chem. Lett. 2019, 30, 222−224. doi: 10.1016/j.cclet.2018.09.014

    6. [6]

      Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; Mcculloch, I. Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 2015, 48, 2803−2812. doi: 10.1021/acs.accounts.5b00199

    7. [7]

      Dang, D.; Yu, D.; Wang, E. Conjugated donor-acceptor terpolymers toward high-efficiency polymer solar cells. Adv. Mater. 2019, 31, 1807019. doi: 10.1002/adma.201807019

    8. [8]

      Li, C.; Wu, X.; Sui, X.; Wu, H.; Wang, C.; Feng, G.; Wu, Y.; Liu, F.; Liu, X.; Tang, Z.; Li, W. Crystalline cooperativity of donor and acceptor segments in double-cable conjugated polymers toward efficient single-component organic solar cells. Angew. Chem. Int. Ed. 2019, 58, 15532−15540. doi: 10.1002/anie.201910489

    9. [9]

      Zhao, C.; Guo, Y.; Zhang, Y.; Yan, N.; You, S.; Li, W. Diketopyrrolopyrrole-based conjugated materials for non-fullerene organic solar cells. J. Mater. Chem. A 2019, 7, 10174−10199. doi: 10.1039/C9TA01976F

    10. [10]

      Feng, G.; Li, J.; He, Y.; Zheng, W.; Wang, J.; Li, C.; Tang, Z.; Osvet, A.; Li, N.; Brabec, C. J.; Yi, Y.; Yan, H.; Li, W. Thermal-driven phase separation of double-cable polymers enables efficient single-component organic solar cells. Joule 2019, 3, 1765−1781. doi: 10.1016/j.joule.2019.05.008

    11. [11]

      Liu, F.; Wang, D.; Li, J. Y.; Xiao, C. Y.; Wu, Y. G.; Li, W. W.; Fu, G. S. Side-chains engineering of conjugated polymers toward additive-free non-fullerene organic solar cells. Chinese J. Polym. Sci. 2021, 39, 43−50. doi: 10.1007/s10118-020-2490-y

    12. [12]

      Liu, F.; Li, C.; Li, J.; Wang, C.; Xiao, C.; Wu, Y.; Li, W. Ternary organic solar cells based on polymer donor, polymer acceptor and PCBM components. Chin. Chem. Lett. 2020, 31, 865−868. doi: 10.1016/j.cclet.2019.06.051

    13. [13]

      Geng, Y. Crystalline cooperativity in double-cable conjugated polymers. Acta Phys. Chim. Sin. 2019, 35, 1311−1312. doi: 10.3866/PKU.WHXB201909019

    14. [14]

      Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Xu, Y.; Xian, K.; Gao, B.; Qin, J.; Zhang, J.; Wei, Z.; Hou, J. Achieving over 15% efficiency in organic photovoltaic cells via copolymer design. Adv. Mater. 2019, 31, 1808356. doi: 10.1002/adma.201808356

    15. [15]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv. Mater. 2015, 27, 1170−1174. doi: 10.1002/adma.201404317

    16. [16]

      Zhang, Y.; Xu, Y.; Ford, M. J.; Li, F.; Sun, J.; Ling, X.; Wang, Y.; Gu, J.; Yuan, J.; Ma, W. Thermally stable all-polymer solar cells with high tolerance on blend ratios. Adv. Energy Mater. 2018, 8, 1800029. doi: 10.1002/aenm.201800029

    17. [17]

      Liu, S.; Yuan, J.; Deng, W.; Luo, M.; Xie, Y.; Liang, Q.; Zou, Y.; He, Z.; Wu, H.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 2020, 14, 300−305.

    18. [18]

      Guo, Y.; Liu, Y.; Zhu, Q.; Li, C.; Jin, Y.; Puttisong, Y.; Chen, W.; Liu, F.; Zhang, F.; Ma, W.; Li, W. Effect of side groups on the photovoltaic performance based on porphyrin-perylene bisimide electron acceptors. ACS Appl. Mater. Interfaces 2018, 10, 32454−32461. doi: 10.1021/acsami.8b10955

    19. [19]

      Feng, S.; Lu, H.; Liu, Z.; Liu, Y.; Li, C.; Bo, Z. Designing a high-performance A-D-A fused-ring electron acceptor via noncovalently conformational locking and tailoring Iits end groups. Acta Phys. Chim. Sin. 2019, 35, 355−360. doi: 10.3866/PKU.WHXB201805161

    20. [20]

      Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; Yang, S.; Zhang, X.; Ding, L. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272−275. doi: 10.1016/j.scib.2020.01.001

    21. [21]

      Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 2011, 133, 9638−9641. doi: 10.1021/ja201131h

    22. [22]

      Liu, F.; Xiao, C.; Feng, G.; Li, C.; Wu, Y.; Zhou, E.; Li, W. End group engineering on the side chains of conjugated polymers toward efficient non-fullerene organic solar cells. ACS Appl. Mater. Interfaces 2020, 12, 6151−6158. doi: 10.1021/acsami.9b22275

    23. [23]

      Ma, J.; Feng, G.; Liu, F.; Yang, F.; Guo, Y.; Wu, Y.; Li, W. A conjugated polymer based on alkylthio-substituted benzo[1,2-c:4,5-c′]dithiophene-4,8-dione acceptor for polymer solar cells. Dyes Pigments 2019, 165, 335−340. doi: 10.1016/j.dyepig.2019.02.040

    24. [24]

      Zheng, Z.; Yao, H.; Ye, L.; Xu, Y.; Zhang, S.; Hou, J. PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater. Today 2020, 35, 115−130. doi: 10.1016/j.mattod.2019.10.023

    25. [25]

      Yang, F.; Zhao, W.; Zhu, Q.; Li, C.; Ma, W.; Hou, J.; Li, W. Boosting the performance of non-fullerene organic solar cells via cross-linked donor polymers design. Macromolecules 2019, 52, 2214−2221. doi: 10.1021/acs.macromol.8b02526

    26. [26]

      Zhang, Y.; Wang, Y.; Ma, R.; Luo, Z.; Liu, T.; Kang, S. H.; Yan, H.; Yuan, Z.; Yang, C.; Chen, Y. Wide band-gap two-dimension conjugated polymer donors with different amounts of chlorine substitution on alkoxyphenyl conjugated side chains for non-fullerene polymer solar cells. Chinese J. Polym. Sci. 2020, 38, 797−805. doi: 10.1007/s10118-020-2435-5

    27. [27]

      Ning, Z.; Tian, H. Triarylamine: a promising core unit for efficient photovoltaic materials. Cheminform 2009, 41, 5483−5495.

    28. [28]

      Pivrikas, A.; Neugebauer, H.; Sariciftci, N. S. Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: a comparative review. Sol. Energy 2011, 85, 1226−1237. doi: 10.1016/j.solener.2010.10.012

    29. [29]

      Li, Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 2012, 45, 723−733. doi: 10.1021/ar2002446

    30. [30]

      Qin, R.; Li, W.; Li, C.; Du, C.; Veit, C.; Schleiermacher, H. F.; Andersson, M.; Bo, Z.; Liu, Z.; Inganäs, O.; Wuerfel, U.; Zhang, F. A planar copolymer for high efficiency polymer solar cells. J. Am. Chem. Soc. 2009, 131, 14612−14613. doi: 10.1021/ja9057986

    31. [31]

      Bouffard, J.; Swager, T. M. Fluorescent conjugated polymers that incorporate substituted 2,1,3-benzooxadiazole and 2,1,3-benzothiadiazole units. Macromolecules 2008, 41, 5559−5562. doi: 10.1021/ma8010679

    32. [32]

      Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. Int. Ed. 2011, 50, 2995−2998. doi: 10.1002/anie.201005451

    33. [33]

      Neto, B. A. D.; Lapis, A. A. M.; da Silva Júnior, E. N.; Dupont, J. 2,1,3-Benzothiadiazole and derivatives: synthesis, properties, reactions, and applications in light technology of small molecules. Eur. J. Org. Chem. 2013, 2013, 228−255.

    34. [34]

      Heiskanen, J. P.; Vivo, P.; Saari, N. M.; Hukka, T. I.; Kastinen, T.; Kaunisto, K.; Lemmetyinen, H. J.; Hormi, O. E. O. Synthesis of benzothiadiazole derivatives by applying C-C cross-couplings. J. Org. Chem. 2016, 81, 1535−1546. doi: 10.1021/acs.joc.5b02689

    35. [35]

      Dhanabalan, A.; van Dongen, J. L. J.; van Duren, J. K. J.; Janssen, H. M.; van Hal, P. A.; Janssen, R. A. J. Synthesis, characterization, and electrooptical properties of a new alternating N-dodecylpyrrole-benzothiadiazole copolymer. Macromolecules 2001, 34, 2495−2501. doi: 10.1021/ma001732e

    36. [36]

      Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 2016, 1, 15027. doi: 10.1038/nenergy.2015.27

    37. [37]

      Jia, T.; Zhang, J.; Zhong, W.; Liang, Y.; Zhang, K.; Dong, S.; Ying, L.; Liu, F.; Wang, X.; Huang, F.; Cao, Y. 14.4% Efficiency all-polymer solar cell with broad absorption and low energy loss enabled by a novel polymer acceptor. Nano Energy 2020, 72, 104718. doi: 10.1016/j.nanoen.2020.104718

    38. [38]

      Wang, M.; Li, C.; Lv, A.; Wang, Z.; Bo, Z. Spirobifluorene-based conjugated polymers for polymer solar cells with high open-circuit voltage. Macromolecules 2012, 45, 3017−3022. doi: 10.1021/ma202752h

    39. [39]

      Wang, N.; Chen, Z.; Wei, W.; Jiang, Z. Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. J. Am. Chem. Soc. 2013, 135, 17060−17068. doi: 10.1021/ja409881g

    40. [40]

      Chochos, C. L.; Leclerc, N.; Gasparini, N.; Zimmerman, N.; Tatsi, E.; Katsouras, A.; Moschovas, D.; Serpetzoglou, E.; Konidakis, I.; Fall, S.; Lévêque, P.; Heiser, T.; Spanos, M.; Gregoriou, V. G.; Stratakis, E.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. The role of chemical structure in indacenodithienothiophene-alt-benzothiadiazole copolymers for high performance organic solar cells with improved photo-stability through minimization of burn-in loss. J. Mater. Chem. A 2017, 5, 25064−25076. doi: 10.1039/C7TA09224E

    41. [41]

      Kini, G. P.; Hoang, Q. V.; Song, C. E.; Lee, S. K.; Shin, W. S.; So, W. W.; Uddin, M. A.; Woo, H. Y.; Lee, J. C. Thiophene-benzothiadiazole based D-A1-D-A2 type alternating copolymers for polymer solar cells. Polym. Chem. 2017, 8, 3622−3631. doi: 10.1039/C7PY00696A

    42. [42]

      Kim, J. H.; Schaefer, C.; Ma, T.; Zhao, J.; Turner, J.; Ghasemi, M.; Constantinou, I.; So, F.; Yan, H.; Gadisa, A.; Ade, H. The critical impact of material and process compatibility on the active layer morphology and performance of organic ternary solar cells. Adv. Energy Mater. 2019, 9, 1802293. doi: 10.1002/aenm.201802293

    43. [43]

      Singh, R.; Suranagi, S. R.; Lee, J.; Lee, H.; Kim, M.; Cho, K. Unraveling the efficiency-limiting morphological issues of the perylene diimide-based non-fullerene organic solar cells. Sci. Rep. 2018, 8, 2849. doi: 10.1038/s41598-018-21162-x

    44. [44]

      Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, 6, 497−500. doi: 10.1038/nmat1928

    45. [45]

      Dhanabalan, A.; van Duren, J. K. J.; van Hal, P. A.; van Dongen, J. L. J.; Janssen, R. A. J. Synthesis and characterization of a low bandgap conjugated polymer for bulk heterojunction photovoltaic cells. Adv. Funct. Mater. 2001, 11, 255−262. doi: 10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I

    46. [46]

      Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J. M.; Inganäs, O.; Andersson, M. R. High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv. Mater. 2003, 15, 988−991. doi: 10.1002/adma.200304150

    47. [47]

      Blouin, N.; Michaud, A.; Leclerc, M. A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 2007, 19, 2295−2300. doi: 10.1002/adma.200602496

    48. [48]

      Bundgaard, E.; Krebs, F. C. A comparison of the photovoltaic response of head-to-head and head-to-tail coupled poly{(benzo-2,1,3-thiadiazol-4,7-diyl)-(dihexyl[2,2′]dithiophene-5,5′-diyl}. Polym. Bull. 2005, 55, 157−164. doi: 10.1007/s00289-005-0423-0

    49. [49]

      Zhu, Z.; Waller, D.; Gaudiana, R.; Morana, M.; Mühlbacher, D.; Scharber, M.; Brabec, C. Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules 2007, 40, 1981−1986. doi: 10.1021/ma062376o

    50. [50]

      Beaupré, S.; Leclerc, M. PCDTBT: en route for low cost plastic solar cells. J. Mater. Chem. A 2013, 1, 11097. doi: 10.1039/c3ta12420g

    51. [51]

      Park, S. H.; Roy, A.; Beaupré, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297−302. doi: 10.1038/nphoton.2009.69

    52. [52]

      Song, J.; Bo, Z. Planar copolymers for high-efficiency polymer solar cells. Sci. China Chem. 2019, 62, 9−13. doi: 10.1007/s11426-018-9363-8

    53. [53]

      Subbiah, J.; Purushothaman, B.; Chen, M.; Qin, T.; Gao, M.; Vak, D.; Scholes, F. H.; Chen, X.; Watkins, S. E.; Wilson, G. J.; Holmes, A. B.; Wong, W. W. H.; Jones, D. J. Organic solar cells using a high-molecular-weight benzodithiophene-benzothiadiazole copolymer with an efficiency of 9.4%. Adv. Mater. 2015, 27, 702−705. doi: 10.1002/adma.201403080

    54. [54]

      Hu, H.; Jiang, K.; Yang, G.; Liu, J.; Li, Z.; Lin, H.; Liu, Y.; Zhao, J.; Zhang, J.; Huang, F.; Qu, Y.; Ma, W.; Yan, H. Terthiophene-based D-A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells. J. Am. Chem. Soc. 2015, 137, 14149−14157. doi: 10.1021/jacs.5b08556

    55. [55]

      Liu, Y.; Zhao, J.; Li, Z.; Mu, C.; Ma, W.; Hu, H.; Jiang, K.; Lin, H.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293. doi: 10.1038/ncomms6293

    56. [56]

      Hu, H.; Chow, P. C. Y.; Zhang, G.; Ma, T.; Liu, J.; Yang, G.; Yan, H. Design of donor polymers with strong temperature-dependent aggregation property for efficient organic photovoltaics. Acc. Chem. Res. 2017, 50, 2519−2528. doi: 10.1021/acs.accounts.7b00293

    57. [57]

      Chen, Z.; Cai, P.; Chen, J.; Liu, X.; Zhang, L.; Lan, L.; Peng, J.; Ma, Y.; Cao, Y. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv. Mater. 2014, 26, 2586−2591. doi: 10.1002/adma.201305092

    58. [58]

      Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 16144−16145. doi: 10.1021/ja806687u

    59. [59]

      You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G.; Yang, Y. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446. doi: 10.1038/ncomms2411

    60. [60]

      Shi, S.; Liao, Q.; Tang, Y.; Guo, H.; Zhou, X.; Wang, Y.; Yang, T.; Liang, Y.; Cheng, X.; Liu, F.; Guo, X. Head-to-head linkage containing bithiophene-based polymeric semiconductors for highly efficient polymer solar cells. Adv. Mater. 2016, 28, 9969−9977. doi: 10.1002/adma.201603112

    61. [61]

      Li, W.; Cai, J.; Cai, F.; Yan, Y.; Yi, H.; Gurney, R. S.; Liu, D.; Iraqi, A.; Wang, T. Achieving over 11% power conversion efficiency in PffBT4T-2OD-based ternary polymer solar cells with enhanced open-circuit-voltage and suppressed charge recombination. Nano Energy 2018, 44, 155−163. doi: 10.1016/j.nanoen.2017.12.005

    62. [62]

      Li, W.; Hendriks, K. H.; Furlan, A.; Roelofs, W. S. C.; Wienk, M. M.; Janssen, R. A. J. Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J. Am. Chem. Soc. 2013, 135, 18942−18948. doi: 10.1021/ja4101003

    63. [63]

      Nketia-Yawson, B.; Lee, H. S.; Seo, D.; Yoon, Y.; Park, W. T.; Kwak, K.; Son, H. J.; Kim, B.; Noh, Y. Y. A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors. Adv. Mater. 2015, 27, 3045−3052. doi: 10.1002/adma.201500233

    64. [64]

      Liu, X.; Nian, L.; Gao, K.; Zhang, L.; Qing, L.; Wang, Z.; Ying, L.; Xie, Z.; Ma, Y.; Cao, Y.; Liu, F.; Chen, J. Low band gap conjugated polymers combining siloxane-terminated side chains and alkyl side chains: side-chain engineering achieving a large active layer processing window for PCE > 10% in polymer solar cells. J. Mater. Chem. A 2017, 5, 17619−17631. doi: 10.1039/C7TA05583H

    65. [65]

      Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. doi: 10.1038/natrevmats.2018.3

    66. [66]

      Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119. doi: 10.1038/nmat5063

    67. [67]

      Zhang, Z.; Zhang, S.; Liu, Z.; Zhang, Z.; Li, Y.; Li, C.; Chen, H. A simple electron acceptor with unfused backbone for polymer solar cells. Acta Phys. Chim. Sin. 2019, 35, 394−400. doi: 10.3866/PKU.WHXB201805091

    68. [68]

      Lin, H.; Chen, S.; Li, Z.; Lai, J. Y. L.; Yang, G.; McAfee, T.; Jiang, K.; Li, Y.; Liu, Y.; Hu, H.; Zhao, J.; Ma, W.; Ade, H.; Yan, H. High-performance non-fullerene polymer solar cells based on a pair of donor-acceptor materials with complementary absorption properties. Adv. Mater. 2015, 27, 7299−7304. doi: 10.1002/adma.201502775

    69. [69]

      Kini, G. P.; Choi, J. Y.; Jeon, S. J.; Suh, I. S.; Moon, D. K. Effect of mono alkoxy-carboxylate-functionalized benzothiadiazole-based donor polymers for non-fullerene solar cells. Dyes Pigments 2019, 164, 62−71. doi: 10.1016/j.dyepig.2018.12.058

    70. [70]

      An, C.; Zheng, Z.; Hou, J. Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chem. Commun. 2020, 56, 4750−4760. doi: 10.1039/D0CC01038C

    71. [71]

      Hu, H.; Jiang, K.; Chow, P. C. Y.; Ye, L.; Zhang, G.; Li, Z.; Carpenter, J. H.; Ade, H.; Yan, H. Influence of donor polymer on the molecular ordering of small molecular acceptors in nonfullerene polymer solar cells. Adv. Energy Mater. 2018, 8, 1701674. doi: 10.1002/aenm.201701674

    72. [72]

      Zhang, J.; Liu, W.; Zhang, M.; Xu, S.; Liu, F.; Zhu, X. PCE11-based polymer solar cells with high efficiency over 13% achieved by room-temperature processing. J. Mater. Chem. A 2020, 8, 8661−8668. doi: 10.1039/D0TA02271C

    73. [73]

      Chen, Z.; Hu, Z.; Liang, Y.; Zhou, C.; Xiao, J.; Zhang, G.; Huang, F. Highly efficient, green-solvent processable, and stable non-fullerene polymer solar cells enabled by a random polymer donor. Org. Electron. 2020, 85, 105874. doi: 10.1016/j.orgel.2020.105874

    74. [74]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; Zhang, Z. G.; Guo, X.; Zhang, M.; Sun, Y.; Gao, F.; Wei, Z.; Ma, W.; Wang, C.; Hodgkiss, J.; Bo, Z.; Inganäs, O.; Li, Y.; Zhan, X. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155

    75. [75]

      Gong, X.; Li, G.; Feng, S.; Wu, L.; Liu, Y.; Hou, R.; Li, C.; Chen, X.; Bo, Z. Influence of polymer side chains on the photovoltaic performance of non-fullerene organic solar cells. J. Mater. Chem. C 2017, 5, 937−942.

    76. [76]

      Xie, Y.; Xia, R.; Li, T.; Ye, L.; Zhan, X.; Yip, H. L.; Sun, Y. Highly transparent organic solar cells with all-near-infrared photoactive materials. Small Methods 2019, 3, 1900424. doi: 10.1002/smtd.201900424

    77. [77]

      Zhao, J.; Li, Y.; Lin, H.; Liu, Y.; Jiang, K.; Mu, C.; Ma, T.; Lai, J. Y. L.; Hu, H.; Yu, D.; Yan, H. High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy Environ. Sci. 2015, 8, 520−525. doi: 10.1039/C4EE02990A

    78. [78]

      Chen, S.; Zhang, L.; Ma, C.; Meng, D.; Zhang, J.; Zhang, G.; Li, Z.; Chow, P. C. Y.; Ma, W.; Wang, Z.; Wong, K. S.; Ade, H.; Yan, H. Alkyl chain regiochemistry of benzotriazole-based donor polymers influencing morphology and performances of non-fullerene organic solar cells. Adv. Energy Mater. 2018, 8, 1702427. doi: 10.1002/aenm.201702427

    79. [79]

      Chen, S.; Wang, Y.; Zhang, L.; Zhao, J.; Chen, Y.; Zhu, D.; Yao, H.; Zhang, G.; Ma, W.; Friend, R. H.; Chow, P. C. Y.; Gao, F.; Yan, H. Efficient nonfullerene organic solar cells with small driving forces for both hole and electron transfer. Adv. Mater. 2018, 30, 1804215. doi: 10.1002/adma.201804215

    80. [80]

      Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.; Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu, K.; Gao, F.; Yan, H. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089. doi: 10.1038/nenergy.2016.89

    81. [81]

      Zhang, J.; Li, Y.; Huang, J.; Hu, H.; Zhang, G.; Ma, T.; Chow, P. C. Y.; Ade, H.; Pan, D.; Yan, H. Ring-fusion of perylene diimide acceptor enabling efficient nonfullerene organic solar cells with a small voltage loss. J. Am. Chem. Soc. 2017, 139, 16092−16095. doi: 10.1021/jacs.7b09998

    82. [82]

      Zhang, X.; Zhang, J.; Lu, H.; Wu, J.; Li, G.; Li, C.; Li, S.; Bo, Z. A 1,8-naphthalimide based small molecular acceptor for polymer solar cells with high open circuit voltage. J. Mater. Chem. C 2015, 3, 6979−6985. doi: 10.1039/C5TC01148E

    83. [83]

      Hou, R.; Feng, S.; Gong, X.; Liu, Y.; Zhang, J.; Li, C.; Bo, Z. Side chain effect of nonfullerene acceptors on the photovoltaic performance of wide band gap polymer solar cells. Synth. Met. 2016, 220, 578−584. doi: 10.1016/j.synthmet.2016.07.015

    84. [84]

      Zhang, J.; Zhang, X.; Li, G.; Xiao, H.; Li, W.; Xie, S.; Li, C.; Bo, Z. A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chem. Commun. 2016, 52, 469−472. doi: 10.1039/C5CC08023A

    85. [85]

      Kang, H.; Uddin, M. A.; Lee, C.; Kim, K. H.; Nguyen, T. L.; Lee, W.; Li, Y.; Wang, C.; Woo, H. Y.; Kim, B. J. Determining the role of polymer molecular weight for high-performance all-polymer solar cells: its effect on polymer aggregation and phase separation. J. Am. Chem. Soc. 2015, 137, 2359−2365. doi: 10.1021/ja5123182

    86. [86]

      Kranthiraja, K.; Kim, S.; Lee, C.; Gunasekar, K.; Sree, V. G.; Gautam, B.; Gundogdu, K.; Jin, S. H.; Kim, B. J. The impact of sequential fluorination of π-conjugated polymers on charge generation in all-polymer solar cells. Adv. Funct. Mater. 2017, 27, 1701256. doi: 10.1002/adfm.201701256

    87. [87]

      Wang, N.; Zhang, S.; Zhao, R.; Feng, J.; Ding, Z.; Ma, W.; Hu, J.; Liu, J. Designed polymer donors to match an amorphous polymer acceptor in all-polymer solar cells. ACS Appl. Electron. Mater. 2020, 2, 2274−2281. doi: 10.1021/acsaelm.0c00451

    88. [88]

      Ge, C. W.; Mei, C. Y.; Ling, J.; Wang, J. T.; Zhao, F. G.; Liang, L.; Li, H. J.; Xie, Y. S.; Li, W. S. Acceptor-acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for all-polymer solar cells. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 1200−1215. doi: 10.1002/pola.27108

    89. [89]

      Liu, F.; Li, H.; Wu, Y.; Gu, C.; Fu, H. Naphthalene diimide and benzothiadiazole copolymer acceptor for all-polymer solar cells with improved open-circuit voltage and morphology. RSC Adv. 2015, 5, 92151−92158. doi: 10.1039/C5RA14887A

    90. [90]

      Liu, M.; Yang, J.; Yin, Y.; Zhang, Y.; Zhou, E.; Guo, F.; Zhao, L. Novel perylene diimide-based polymers with electron-deficient segments as the comonomer for efficient all-polymer solar cells. J. Mater. Chem. A 2018, 6, 414−422. doi: 10.1039/C7TA09930D

    91. [91]

      Tang, A.; Li, J.; Zhang, B.; Peng, J.; Zhou, E. Low-bandgap n-type polymer based on a fused-DAD-type heptacyclic ring for all-polymer solar cell application with a power conversion efficiency of 10.7%. ACS Macro Lett. 2020, 9, 706−712. doi: 10.1021/acsmacrolett.0c00234

    92. [92]

      Zhao, R.; Wang, N.; Yu, Y.; Liu, J. Organoboron polymer for 10% efficiency all-polymer solar cells. Chem. Mater. 2020, 32, 1308−1314. doi: 10.1021/acs.chemmater.9b04997

    93. [93]

      Wang, N.; Yu, Y.; Zhao, R.; Ding, Z.; Liu, J.; Wang, L. Improving active layer morphology of all-polymer solar cells by solution temperature. Macromolecules 2020, 53, 3325−3331. doi: 10.1021/acs.macromol.0c00633

    94. [94]

      McNeill, C. R.; Abrusci, A.; Zaumseil, J.; Wilson, R.; McKiernan, M. J.; Burroughes, J. H.; Halls, J. J. M.; Greenham, N. C.; Friend, R. H. Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Appl. Phys. Lett. 2007, 90, 193506. doi: 10.1063/1.2738197

    95. [95]

      McNeill, C. R.; Halls, J. J. M.; Wilson, R.; Whiting, G. L.; Berkebile, S.; Ramsey, M. G.; Friend, R. H.; Greenham, N. C. Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices: device physics and annealing effects. Adv. Funct. Mater. 2008, 18, 2309−2321. doi: 10.1002/adfm.200800182

    96. [96]

      Sepe, A.; Rong, Z.; Sommer, M.; Vaynzof, Y.; Sheng, X.; Müller-Buschbaum, P.; Smilgies, D. M.; Tan, Z. K.; Yang, L.; Friend, R. H.; Steiner, U.; Hüttner, S. Structure formation in P3HT/F8TBT blends. Energy Environ. Sci. 2014, 7, 1725−1736. doi: 10.1039/C3EE44125C

    97. [97]

      McNeill, C. R.; Abrusci, A.; Hwang, I.; Ruderer, M. A.; Müller-Buschbaum, P.; Greenham, N. C. Photophysics and photocurrent generation in polythiophene/polyfluorene copolymer blends. Adv. Funct. Mater. 2009, 19, 3103−3111. doi: 10.1002/adfm.200900801

    98. [98]

      Shi, S.; Chen, P.; Chen, Y.; Feng, K.; Liu, B.; Chen, J.; Liao, Q.; Tu, B.; Luo, J.; Su, M.; Guo, H.; Kim, M. G.; Facchetti, A.; Guo, X. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv. Mater. 2019, 31, 1905161. doi: 10.1002/adma.201905161

    99. [99]

      Feng, K.; Huang, J.; Zhang, X.; Wu, Z.; Shi, S.; Thomsen, L.; Tian, Y.; Woo, H. Y.; McNeill, C. R.; Guo, X. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV. Adv. Mater. 2020, 32, 2001476. doi: 10.1002/adma.202001476

    100. [100]

      Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140−1151. doi: 10.1016/j.joule.2019.01.004

    101. [101]

      Wang, W.; Wu, Q.; Sun, R.; Guo, J.; Wu, Y.; Shi, M.; Yang, W.; Li, H.; Min, J. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule 2020, 4, 1070−1086. doi: 10.1016/j.joule.2020.03.019

    102. [102]

      Du, J.; Hu, K.; Meng, L.; Angunawela, I.; Zhang, J.; Qin, S.; Liebman-Pelaez, A.; Zhu, C.; Zhang, Z.; Ade, H.; Li, Y. High-performance all-polymer solar cells: synthesis of polymer acceptor by a random ternary copolymerization strategy. Angew. Chem. Int. Ed. 2020, 59, 15181−15185. doi: 10.1002/anie.202005357

    103. [103]

      Gobalasingham, N. S.; Carlé, J. E.; Krebs, F. C.; Thompson, B. C.; Bundgaard, E.; Helgesen, M. Conjugated polymers via direct arylation polymerization in continuous flow: minimizing the cost and batch-to-batch variations for high-throughput energy conversion. Macromol. Rapid Commun. 2017, 38, 1700526. doi: 10.1002/marc.201700526

    104. [104]

      Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J. Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 2012, 45, 9611−9617. doi: 10.1021/ma301900h

  • 加载中
    1. [1]

      Fan YangCheng LiGui-tao FengXu-dong JiangAn-dong ZhangWei-wei Li . Bisperylene Bisimide Based Conjugated Polymer as Electron Acceptor for Polymer-Polymer Solar Cellsh. Chinese J. Polym. Sci, 2017, 35(2): 239-248. doi: 10.1007/s10118-017-1870-4

    2. [2]

      Amjad IslamZhi-yang LiuRui-xiang PengWei-gang JiangTao LeiWang LiLei ZhangRong-juan YangGuan QianZi-yi Ge . Furan-containing Conjugated Polymers for Organic Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 171-183. doi: 10.1007/s10118-017-1886-9

    3. [3]

      Feng LiuDan WangJun-Yu LiCheng-Yi XiaoYong-Gang WuWei-Wei LiGuang-Sheng Fu . Side-chains Engineering of Conjugated Polymers toward Additive-free Non-fullerene Organic Solar Cells. Chinese J. Polym. Sci, 2021, 39(1): 43-50. doi: 10.1007/s10118-020-2490-y

    4. [4]

      Youdi ZhangYong WangRuijie MaZhenghui LuoTao LiuSo-Huei KangHe YanZhongyi YuanChangduk YangYiwang Chen . Wide Band-gap Two-dimension Conjugated Polymer Donors with Different Amounts of Chlorine Substitution on Alkoxyphenyl Conjugated Side Chains for Non-fullerene Polymer Solar Cells. Chinese J. Polym. Sci, 2020, 38(8): 797-805. doi: 10.1007/s10118-020-2435-5

    5. [5]

      Xiu-li ChenWei-feng ZengXiao-dong YangXin-wei LuJin-qing QuRui-yuan Liu . Thiourea Based Conjugated Polymer Fluorescent Chemosensor for Cu+ and Its Use for the Detection of Hydrogen Peroxide and Glucose. Chinese J. Polym. Sci, 2016, 34(3): 324-331. doi: 10.1007/s10118-016-1760-1

    6. [6]

      Jing CaoJun-xiang Feng . Recovery of PET-quenched Fluorescent Conjugated Polymers with Aza-15-crown-5 as Pendant Groups on Interaction with Ions. Chinese J. Polym. Sci, 2014, 32(3): 371-376. doi: 10.1007/s10118-014-1389-x

    7. [7]

      Hui-Qin CuiRui-Xiang PengWei SongJian-Feng ZhangJia-Ming HuangLi-Qiang ZhuZi-Yi Ge . Optimization of Ethylene Glycol Doped PEDOT:PSS Transparent Electrodes for Flexible Organic Solar Cells by Drop-coating Method. Chinese J. Polym. Sci, 2019, 37(8): 760-766. doi: 10.1007/s10118-019-2257-5

    8. [8]

      R. VenkatesanN. SomanathanN. Rajeswari . Structure and Properties of Functionalized Polyfluorenone Containing Hetero Aromatic Side Chains. Chinese J. Polym. Sci, 2014, 32(5): 667-674. doi: 10.1007/s10118-014-1439-4

    9. [9]

      Zhong-qiu TongHai-ming LvJiu-peng ZhaoYao Li . Near-infrared and Multicolor Electrochromic Device Based on Polyaniline Derivative. Chinese J. Polym. Sci, 2014, 32(8): 1040-1051. doi: 10.1007/s10118-014-1483-0

    10. [10]

      Xiang GaoRu-bo XingJian-gang LiuYan-chun Han . UNIAXIAL ALIGNMENT OF POLY(3-HEXYLTHIOPHENE) NANOFIBERS BY ZONE-CASTING APPROACH. Chinese J. Polym. Sci, 2013, 31(5): 748-759. doi: 10.1007/s10118-013-1284-x

    11. [11]

      Wei-chao ChenMan-jun XiaoChun-peng YangLin-rui DuanRen-qiang Yang . Efficient P3HT: PC61BM Solar Cells Employing 1, 2, 4-Trichlorobenzene as the Processing Additives. Chinese J. Polym. Sci, 2017, 35(2): 302-308. doi: 10.1007/s10118-017-1892-y

    12. [12]

      Yu-Lin ZhangJun-Tao RenHuai-Yu GaoJia-Wei LiuWen-Jie XiaWen-Qiang QiaoZhi-Yuan Wang . Characterizations and Photothermal Properties of Narrow Bandgap Conjugated Polymer Nanoparticles. Chinese J. Polym. Sci, 2020, 38(8): 814-818. doi: 10.1007/s10118-020-2420-z

    13. [13]

      Ying-Zhong WuYi-Chen ZhangJia-Jun ChenLi-Juan Fan . Synthesis of Conjugated Polymers Containing Diketopyrrolopyrrole (DPP) Building Block and the Photophysical Study. Chinese J. Polym. Sci, 2019, 37(11): 1092-1098. doi: 10.1007/s10118-019-2248-6

    14. [14]

      Kai GuoYu JiangYing SuiYun-Feng DengYan-Hou Geng . Dimethylacetamide-promoted Direct Arylation Polycondensation of 6,6′-Dibromo-7,7′-diazaisoindigo and (E)-1,2-bis(3,4-difluorothien-2-yl)ethene toward High Molecular Weight n-Type Conjugated Polymers. Chinese J. Polym. Sci, 2019, 37(11): 1099-1104. doi: 10.1007/s10118-019-2277-1

    15. [15]

      Jian-fei QuJian LiuSi-da LiZhi-yuan XieYan-hou Geng . DONOR-ACCEPTOR CONJUGATED COOLIGOMERS FOR SINGLE MOLECULE SOLAR CELLS. Chinese J. Polym. Sci, 2013, 31(5): 815-822. doi: 10.1007/s10118-013-1276-x

    16. [16]

      Xiao-Cheng LiuQing-Wu YinZhi-Cheng HuZhen-Feng WangFei HuangYong Cao . Perylene Diimide Based Isomeric Conjugated Polymers as Efficient Electron Acceptors for All-polymer Solar Cells. Chinese J. Polym. Sci, 2019, 37(1): 18-27. doi: 10.1007/s10118-019-2188-1

    17. [17]

      Shi-fan WangYa-nan LiuJie YangYou-tian TaoYan GuoXu-dong CaoZhi-guo ZhangYong-fang LiWei Huang . Orthogonal Solubility in Fully Conjugated Donor-Acceptor Block Copolymers: Compatibilizers for Polymer/Fullerene Bulk-Heterojunction Solar Cells. Chinese J. Polym. Sci, 2017, 35(2): 207-218. doi: 10.1007/s10118-017-1889-6

    18. [18]

      Qi YuYa-Long WangZe-Qiang ChenPeng-Ju ZhaoCheng FanChong LiMing-Qiang Zhu . Geminal Cross Coupling (GCC) Reaction for AIE Materials. Chinese J. Polym. Sci, 2019, 37(4): 327-339. doi: 10.1007/s10118-019-2207-2

    19. [19]

      Li ZhouZhi-qiang JiangNa XuNa LiuZong-quan Wu . Polythiophene-block-poly(phenyl isocyanide) Copolymers:One-pot Synthesis, Properties and Applications. Chinese J. Polym. Sci, 2017, 35(12): 1447-1456. doi: 10.1007/s10118-017-2003-9

    20. [20]

      Yang LiuXiao FengJian-bing ShiJun-ge ZhiBin TongYu-ping Dong . AGGREGATION-INDUCED EMISSION ENHANCEMENT IN POLY(PHENYLENE- ETHYNYLENE)S BEARING ANILINE GROUPS. Chinese J. Polym. Sci, 2012, 30(3): 443-450. doi: 10.1007/s10118-012-1135-1

Article Metrics
  • PDF Downloads(3)
  • Abstract views(513)
  • HTML views(196)
  • Cited By(0)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


DownLoad:  Full-Size Img  PowerPoint