Citation: Zhang, H. T.; Wei, Z. T.; Zhang, F.; Yang, T.; Wu, Y. X. Nanocrystallization-locked network of poly(styrene- b -isobutylene- b -styrene)- g -polytetrahydrofuran block graft copolymer. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2536-9 doi: 10.1007/s10118-021-2536-9 shu

Nanocrystallization-locked Network of Poly(styrene-b-isobutylene-b-styrene)-g-Polytetrahydrofuran Block Graft Copolymer

  • Corresponding author: Yi-Xian Wu, E-mail: wuyx@mail.buct.edu.cn
  • Received Date: 2020-10-13
    Available Online: 2021-01-08

Figures(15)

  • Poly(styrene-b-isobutylene-b-styrene) triblock copolymer (SIBS), a kind of thermoplastic elastomer with biocompatibility and biostability containing fully saturated soft segments, could be synthesized via living cationic copolymerization. A novel poly[(styrene-co-methylstyrene)-b-isobutylene-b-(styrene-co-methylstyrene)]-g-polytetrahydrofuran (M-SIBS-g-PTHF) block graft copolymer was prepared to increase the polarity and service temperature of SIBS by grafting polar PTHF segments onto SIBS. A series of the above block graft copolymers with average grafting numbers from 2 to 6 and molecular weights of PTHF branches ranging from 200 g·mol−1 to 4200 g·mol−1 were successfully synthesized via living cationic ring-opening polymerization of tetrahydrofuran (THF) coinitiated by AgClO4. The introduction of PTHF branches led to an obvious microphase separation due to thermodynamic incompatibility among the three kinds of segments of polyisobutylene (PIB), polystyrene (PS) and PTHF. Moreover, the microphase separation promotes the rearrangement of PTHF branches to form the nanocrystallization-locked physically cross-linked network after storage at room temperature for 2 months, leading to insolubility of the copolymers even in good solvents. The melting temperature and enthalpy of PTHF nanocrystallization locked in hard domains of M-SIBS-g5-PTHF-1.1k block graft copolymer increased remarkably up to 153 °C and 117.0 J·g−1 by 23 °C and 11.6 J·g−1 respectively after storage for long time. Storage modulus (G') is higher than loss modulus (G'') of M-SIBS-g-PTHF block graft copolymer at temperatures ranging from 100 °C to 180 °C, which is much higher than those of the SIBS triblock copolymer. To the best of our knowledge, this is the first example of high performance M-SIBS-g-PTHF block graft copolymers containing segments of PIB, PS and PTHF with nanocrystallization-locked architecture.
  • 加载中
    1. [1]

      Yan, P. F.; Guo, A. R.; Liu, Q.; Wu, Y. X. Living cationic polymerization of isobutylene coinitiated by FeCl3 in the presence of isopropanol. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3383−3392. doi: 10.1002/pola.26126

    2. [2]

      Pinchuk, L.; Wilson, G. J.; Barry, J. J.; Schoephoerster, R. T.; Parel, J. M.; Kennedy, J. P. Medical applications of poly(styrene-triblock-isobutylene-triblock-styrene) ("SIBS"). Biomaterials 2008, 29, 448−460. doi: 10.1016/j.biomaterials.2007.09.041

    3. [3]

      Kang, E.; Wang, H.; Kwon, I. K.; Song, Y. H.; Kamath, K.; Miller, K. M.; Barry, J.; Cheng, J. X.; Park, K. Application of coherent anti-Stokes Raman scattering microscopy to image the changes in a paclitaxel-poly(styrene-b-isobutylene-b-styrene) matrix pre- and post-drug elution. J. Biomed. Mater. Res. Part A 2008, 87, 913−920. doi: 10.1002/jbm.a.31813

    4. [4]

      Kleinedler, J. J.; Foley, J. D.; Alexander, J. S.; Roerig, S. C.; Hebert, V. Y.; Dugas, T. R. Synergistic effect of resveratrol and quercetin released from drug-eluting polymer coatings for endovascular devices. J. Biomed. Mater. Res. Part B 2011, 99B, 266−275. doi: 10.1002/jbm.b.31894

    5. [5]

      McDermott, M. K.; Kim, C. S.; Saylor, D. M.; Patwardhan, D. V. Impact of copolymer ratio on drug distribution in styrene-isobutylene-styrene triblock copolymers. J. Biomed. Mater. Res. Part B 2013, 101, 1191−1199. doi: 10.1002/jbm.b.32930

    6. [6]

      Pinchuk, L.; Riss, I.; Batlle, J. F.; Kato, Y. P.; Martin, J. B.; Arrieta, E.; Palmberg, P.; Parrish, R. K.; Weber, B. A.; Kwon, Y.; Parel, J. M. The use of poly(styrene-triblock-isobutylene-triblock-styrene) as a microshunt to treat glaucoma. Regen. Biomater. 2016, 3, 137−142. doi: 10.1093/rb/rbw005

    7. [7]

      Morales, B.; Kaskar, O.; Grace, L. R. Design and processing of an elastomeric nanocomposite for biomedical pressure sensing applications. Mater. Today Commun. 2018, 17, 278−288. doi: 10.1016/j.mtcomm.2018.09.019

    8. [8]

      Yuan, S. S.; Luan, S. F.; Yan, S. J.; Shi, H. C.; Yin, J. H. Facile fabrication of lubricant-infused wrinkling surface for preventing thrombus formation and infection. ACS Appl. Mater. Interfaces 2015, 7, 19466−19473. doi: 10.1021/acsami.5b05865

    9. [9]

      Knauer, K. M.; Zhu, Y.; Storey, R. F.; Morgan, S. E. Phase separation and permeability in polyisobutylene-based miktoarm star polymers. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 916−925. doi: 10.1002/polb.23996

    10. [10]

      Sipos, L.; Som, A.; Faust, R.; Richard, R.; Schwarz, M.; Ranade, S.; Boden, M.; Chan, K. Controlled delivery of paclitaxel from stent coatings using poly(hydroxystyrene-b-isobutylene-b-hydroxystyrene) and its acetylated derivative. Biomacromolecules 2005, 6, 2570−2582. doi: 10.1021/bm050299j

    11. [11]

      BouchéKif, H.; Som, A.; Sipos, L.; Faust, R. Living cationic sequential triblock copolymerization of isobutylene with 4-tert-butoxystyrene: synthesis and characterization of poly(p-hydroxystyrene-b-isobutylene-b-p-hydroxystyrene) triblock copolymers. J. Macromol. Sci., Part A: Pure Appl. Chem. 2007, 44, 359−366. doi: 10.1080/10601320601187986

    12. [12]

      Wu, Y. B.; Li, K.; Xiang, D.; Zhang, M.; Yang, D.; Zhang, J. H.; Mao, J.; Wang, H.; Guo, W. L. Surface immobilization of heparin on functional polyisobutylene-based thermoplastic elastomer as a potential artificial vascular graft. Appl. Surf. Sci. 2018, 445, 8−15. doi: 10.1016/j.apsusc.2018.03.048

    13. [13]

      Yang, S. X.; Fan, Z. Y.; Zhang, F. Y.; Li, S. H.; Wu, Y. X. Functionalized copolymers of isobutylene with vinyl phenol: synthesis, characterization, and property. Chinese J. Polym. Sci. 2019, 37, 919−929. doi: 10.1007/s10118-019-2329-6

    14. [14]

      Elabd, Y. A.; Napadensky, E. Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers at high ion-exchange capacities. Polymer 2004, 45, 3037−3043. doi: 10.1016/j.polymer.2004.02.061

    15. [15]

      Avilés-Barreto, S. L.; Suleiman, D. Transport properties of sulfonated poly(styrene-isobutylene-styrene) membranes with counter-ion substitution. J. Appl. Polym. Sci. 2013, 129, 2294−2304. doi: 10.1002/app.38952

    16. [16]

      Yuan, S. S.; Li, Y. G.; Luan, S. F.; Shi, H. C.; Yan, S. J.; Yin, J. H. Infection-resistant styrenic thermoplastic elastomers that can switch from bactericidal capability to anti-adhesion. J. Mater. Chem. B 2016, 4, 1081−1089. doi: 10.1039/C5TB02138C

    17. [17]

      Dai, P.; Mo, Z. H.; Xu, R. W.; Zhang, S.; Lin, X.; Lin, W. F.; Wu, Y. X. Development of a cross-linked quaternized poly(styrene-b-isobutylene-b-styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application. RSC Adv. 2016, 6, 52122−52130. doi: 10.1039/C6RA08037E

    18. [18]

      Mo, Z. H.; Yang, R.; Hong, S.; Wu, Y. X. In situ preparation of cross-linked hybrid anion exchange membrane of quaternized poly (styrene-b-isobutylene-b-styrene) covalently bonded with graphene. Int. J. Hydrogen Energy 2018, 43, 1790−1804. doi: 10.1016/j.ijhydene.2017.11.064

    19. [19]

      Mo, Z. H.; Wu, Y. X. Arc-bridge polydimethylsiloxane grafted graphene incorporation into quaternized poly(styrene-b-isobutylene-b-styrene) for construction of anion exchange membranes. Polymer 2019, 177, 290−297. doi: 10.1016/j.polymer.2019.05.042

    20. [20]

      Gao, L. C.; Zhang, C. L.; Liu, X.; Fan, X. H.; Wu, Y. X.; Chen, X. F.; Shen, Z.; Zhou, Q. F. ABA type liquid crystalline triblock copolymers by combination of living cationic polymerizaition and ATRP: synthesis and self-assembly. Soft Matter 2008, 4, 1230−1236. doi: 10.1039/b718558h

    21. [21]

      Gao, L. C.; Yao, J.; Shen, Z. H.; Wu, Y. X.; Chen, X. F.; Fan, X. H.; Zhou, Q. F. Self-assembly of rod-coil-rod triblock copolymer and homopolymer blends. Macromolecules 2009, 42, 1047−1050. doi: 10.1021/ma802566e

    22. [22]

      Storey, R. F.; Scheuer, A. D.; Achord, B. C. Amphiphilic poly(acrylic acid-b-styrene-b-isobutylene-b-styrene-b-acrylic acid) pentatriblock copolymers from a combination of quasiliving carbocationic and atom transfer radical polymerization. Polymer 2005, 46, 2141−2152. doi: 10.1016/j.polymer.2004.12.041

    23. [23]

      Storey, R. F.; Scheuer, A. D.; Achord, B. C. Poly(acrylate-b-styrene-b-isobutylene-b-styrene-b-acrylate) triblock copolymers via carbocationic and atom transfer radical polymerizations. J. Macromol. Sci. Part A Pure Appl. Chem. 2006, 43, 1493−1512. doi: 10.1080/10601320600896645

    24. [24]

      Kopchick, J. G.; Storey, R. F.; Jarrett, W. L.; Mauritz, K. A. Morphology of poly[(t-butyl acrylate)-b-styrene-b-isobutylene-b-styrene-b-(t-butyl acrylate)] pentatriblock terpolymers and their thermal conversion to the acrylic acid form. Polymer 2008, 49, 5045−5052. doi: 10.1016/j.polymer.2008.08.045

    25. [25]

      Zhu, Y.; Storey, R. F. Synthesis of polyisobutylene-based miktoarm star polymers from a dicationic monoradical dual initiator. Macromolecules 2012, 45, 5347−5357. doi: 10.1021/ma3007762

    26. [26]

      Yuan, S. S.; Zhao, J.; Luan, S. F.; Yan, S. J.; Zheng, W. L.; Yin, J. H. Nuclease-functionalized poly(styrene-b-isobutylene-b-styrene) surface with anti-infection and tissue integration bifunctions. ACS Appl. Mater. Interfaces 2014, 6, 18078−18086. doi: 10.1021/am504955g

    27. [27]

      Theiler, S.; Diamantouros, S. E.; Jockenhoevel, S.; Keul, H.; Moeller, M. Synthesis and characterization of biodegradable polyester/polyether resins via Michael-type addition. Polym. Chem. 2011, 2, 2273−2283. doi: 10.1039/c1py00262g

    28. [28]

      Zhang, F.; Zhang, H. T.; Yang, T.; Kong, B.; Guo, A. R.; Zhang, Q.; Wu, Y. X. Synthesis and property of novel functionalized polytetrahydrofuran-b-polyisobutylene-b-polytetrahydrofuran triblock copolymers. Acta Polymerica Sinica (in Chinese) 2020, 51, 98−116. doi: 10.11777/j.issn1000-3304.2020.19151

    29. [29]

      Hourston, D. J.; Williams, G. D.; Satguru, R.; Padget, J. C.; Pears, D. The influence of the degree of neutralization, the ionic moiety, and the counterion on water-dispersible polyurethanes. J. Appl. Polym. Sci. 1999, 74, 556−566. doi: 10.1002/(SICI)1097-4628(19991017)74:3<556::AID-APP10>3.0.CO;2-D

    30. [30]

      Jikei, M.; Aikawa, Y.; Matsumoto, K. Synthesis and properties of poly(ether sulfone)-poly(tetrahydrofuran) multitriblock copolymers. High Perform. Polym. 2016, 28, 1015−1023. doi: 10.1177/0954008315613423

    31. [31]

      Zhang, H. T.; Zhang, F.; Wu, Y. X. Robust stretchable thermoplastic polyurethanes with long soft segments and steric semisymmetric hard segments. Ind. Eng. Chem. Res. 2020, 59, 4483−4492. doi: 10.1021/acs.iecr.9b06107

    32. [32]

      Rasolonjatovo, B.; Pitard, B.; Haudebourg, T.; Bennevault, V.; Guégan, P. Synthesis of tetraarm star triblock copolymer based on polytetrahydrofuran and poly(2-methyl-2-oxazoline) for gene delivery applications. Eur. Polym. J. 2017, 88, 689−700. doi: 10.1016/j.eurpolymj.2016.09.042

    33. [33]

      Wei, M. J.; Zhang, Q.; Zhang, H. T.; Wu, Y. X. In situ preparation and properties of poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene)/Ag nanocomposites via cationic polymerization. Acta Polymerica Sinica (in Chinese) 2018, 464−474. doi: 10.11777/j.issn1000-3304.2017.17130

    34. [34]

      Chang, T. X.; Zhang, H. T.; Lu, C. J.; Wu, Y. X. In situ synthesis and characterization of chitosan-g-polytetrahydrofuran graft copolymer/Ag nanocomposite via living cationic polymerization. Acta Polymerica Sinica (in Chinese) 2018, 700−711. doi: 10.11777/j.issn1000-3304.2017.17290

    35. [35]

      Gao, Y. Z.; Chang, T. X.; Wu, Y. X. In situ preparation and properties of bio-renewable acylated sodium alginate-g-polytetrahydrofuran/Ag-NPs nanocomposites. Appl. Surf. Sci. 2019, 483, 1027−1036. doi: 10.1016/j.apsusc.2019.03.103

    36. [36]

      Deng, J. R.; Zhao, C. L.; Wu, Y. X. Antibacterial and pH-responsive quaternized hydroxypropyl cellulose-g-poly(THF-co-epichlorohydrin) graft copolymer: synthesis, characterization and properties. Chinese J. Polym. Sci. 2020, 38, 704−714. doi: 10.1007/s10118-020-2372-3

    37. [37]

      Guo, A. R.; Yang, W. X.; Yang, F.; Yu, R.; Wu, Y. X. Well-defined poly(γ-benzyl-L-glutamate)-g-polytetrahydrofuran: synthesis, characterization, and properties. Macromolecules 2014, 47, 5450−5461. doi: 10.1021/ma501060y

    38. [38]

      Liu, X.; Li, S. R.; Wu, Y. X. Synthesis and characterization of poly(vinyl acetate)-g-polytetrahydrofuran graft copolymer with silver nanoparticles via combination of living cationic polymerization and grafting-onto approach. Acta Polymerica Sinica (in Chinese) 2017, 1753−1761. doi: 10.11777/j.issn1000-3304.2017.17023

    39. [39]

      Wei, M. J.; Guo, A. R.; Wu, Y. X. Microstructure and micromorphology of poly(γ-benzyl-L-glutamate)-g-(polytetrahydrofuran-b-polyisobutylene) copolymer. Acta Polymerica Sinica (in Chinese) 2017, 506−515. doi: 10.11777/j.issn1000-3304.2017.16152

    40. [40]

      Gao, Y. Z.; Chang, T. X.; Wu, Y. X. In-situ synthesis of acylated sodium alginate-g-(tetrahydrofuran5-b-polyisobutylene) terpolymer/Ag-NPs nanocomposites. Carbohydr. Polym. 2019, 219, 201−209. doi: 10.1016/j.carbpol.2019.04.087

    41. [41]

      Chang, T. X.; Wei, Z. T.; Wu, M. Y.; Zhang, H. T.; Gao, Y. Z.; Wu, Y. X. Amphiphilic chitosan-g-polyisobutylene graft copolymers: synthesis, characterization, and properties. ACS Appl. Polym. Mater. 2020, 2, 234−247. doi: 10.1021/acsapm.9b00771

    42. [42]

      Deng, J. R.; Wu, Y. X. Green synthesis and biomedical properties of novel hydroxypropyl cellulose-g-polytetrahydrofuran graft copolymers with silver nanoparticles. Ind. Eng. Chem. Res. 2019, 59, 732−742. doi: 10.1021/acs.iecr.9b04799

    43. [43]

      Kennedy, J. P.; Smith, R. A. New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). II. Synthesis and characterization of α,ω-di(tert-chloro)polyisobutylenes. J. Polym. Sci. Polym. Chem. Ed. 1980, 18, 1523−1537. doi: 10.1002/pol.1980.170180510

    44. [44]

      Wu, H. X.; Zhang, X. H.; Huang, L.; Ma, L. F.; Liu, C. J. Ditriblock polymer brush (PHEAA-b-PFMA): microphase separation behavior and anti-protein adsorption performance. Langmuir 2018, 34, 11101−11109. doi: 10.1021/acs.langmuir.8b02584

    45. [45]

      Han, C. D.; Kim, J.; Kim, J. K. T. Determination of the order-disorder transition temperature of triblock copolymers. Macromolecules 1989, 22, 383−394. doi: 10.1021/ma00191a071

    46. [46]

      Van, Beek D. J. M.; Spiering, A. J. H.; Peters, G. W. M.; Nijenhuis K.; Sijbesma, R. P. Unidirectional dimerization and stacking of ureidopyrimidinone end groups in polycaprolactone supramolecular polymers. Macromolecules 2007, 40, 8464−8475. doi: 10.1021/ma0712394

    47. [47]

      Yang, J. H.; Lee, J.; Lim, S.; Jung, S.; Jang, S. H.; Jang, S. H.; Kwak, S. Y.; Ahn, S.; Jung, Y.; C.;, Priestley R. D.; Chung, J. W. Understanding and controlling the self-healing behavior of 2-ureido-4[1H]-pyrimidinone-functionalized clustery and dendritic dual dynamic supramolecular network. Polymer 2019, 172, 13−26. doi: 10.1016/j.polymer.2019.03.027

  • 加载中
    1. [1]

      Ming LiLi-fen ZhangMei-xia TaoZhen-ping ChengXiu-lin Zhu . Photo-induced Living Cationic Copolymerization of Isobutyl Vinyl Ether and Vinyl Ether with Carbazolyl Groups. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1540-8

    2. [2]

      Ping RenYi-bo WuWen-li GuoShu-xin LiYing Chen . ABA TRIBLOCK COPOLYMERS WITH PENDANT HYDROXYL GROUPS PREPARED BY CONTROLLED CATIONIC POLYMERIZATION AND THEIR USE AS DELIVERY CARRIER FOR PACLITAXEL. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1216-9

    3. [3]

      Mineto UchiyamaMasataka SakaguchiKotaro SatohMasami Kamigaito . A User-friendly Living Cationic Polymerization: Degenerative Chain-transfer Polymerization of Vinyl Ethers by Simply Using Mixtures of Weak and Superstrong Protonic Acids. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2233-0

    4. [4]

      . SYNTHESIS AND CHARACTERIZATION OF FOUR-ARMED BLOCK POLY(STYRENE-b-p-NITROPHENYL METHACRYLATE)PREPARED BY THE ATRP METHOD*. Chinese J. Polym. Sci,

    5. [5]

      . SYNTHESIS OF TRIBLOCK COPOLYMERS OF STYRENE AND ISOPRENE BY A NITROXIDE-MEDIATED LIVING FREE RADICAL POLYMERIZATION. Chinese J. Polym. Sci,

    6. [6]

      Zheng-guo CaiHai-hui SuTakeshi Shiono . PRECISE SYNTHESIS OF OLEFIN BLOCK COPOLYMERS USING A SYNDIOSPECIFIC LIVING POLYMERIZATION SYSTEM. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1250-7

    7. [7]

      . CONTROLLED/"LIVING" RADICAL POLYMERIZATION OF STYRENE IN AN AQUEOUS DISPERSION SYSTEM. Chinese J. Polym. Sci,

    8. [8]

      Ting YuJian-qiang ZhangYa LiSu-dan ShenWen-feng WeiPeng ChenZong-bao WangQun Gu . SOLUTION CRYSTALLIZATION BEHAVIOR OF LINEAR AND STAR-SHAPED POLY(ETHYLENE GLYCOL)-b-POLY(-CAPROLACTONE) BLOCK COPOLYMERS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1365-x

    9. [9]

      YAO Ning . DETERMINATION OFTHE CRYSTALLINITY IN DIFFERENT TYPE POLY (OXYETHYLENE-STYRENE)BLOCK COPOLYMERS BY X-RAY DIFFRACTION METHOD. Chinese J. Polym. Sci,

    10. [10]

      Cong-Shu FengYun ChenJun ShaoGao LiHao-Qing Hou . The Crystallization and Melting Behaviors of PDLA-b-PBS-b-PDLA Tri-block Copolymers. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2361-6

    11. [11]

      Yan LiYi-xian WuLi-hu LiangYan LiGuan-ying Wu . CATIONIC POLYMERIZATION OF ISOBUTYLENE COINITIATED BY AlCl3 IN THE PRESENCE OF ETHYL BENZOATE. Chinese J. Polym. Sci,

    12. [12]

      Zi-xiu Du aJun-ting Xu abZhi-qiang Fan ab . CRYSTALLIZATION KINETICS OF ETHYLENE-PROPYLENE COPOLYMERS PREPARED BY LIVING COORDINATION POLYMERIZATION. Chinese J. Polym. Sci,

    13. [13]

      Peng ZhouXuan-Geng DaiJie KongJun Ling . Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(α-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides. Chinese J. Polym. Sci, doi: 10.1007/s10118-021-2539-6

    14. [14]

      . SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION(ATRP)*. Chinese J. Polym. Sci,

    15. [15]

      ZHOU PeiguangXIE Hongquan . SYNTHESIS OF AB AND ABA TYPES POLYSTYRENE (A)-POLYOXYETHYLENE(B) BLOCK COPOLYMERS AND CHARACTERIZATION OF THEIR STRUCTURES*. Chinese J. Polym. Sci,

    16. [16]

      Jian-Hua WangLi-Ping ZhuZhuan YiJian-Hua LiYou-Yi XuBao-Ku Zhu . SUPERCRITICAL CARBON DIOXIDE ASSISTED SYNTHESIS OF AMPHIPHILIC GRAFT COPOLYMERS BASED ON POLY(STYRENE-CO-MALEIC ANHYDRIDE) WITH METHOXYL POLY(ETHYLENE GLYCOL) SIDE CHAINS. Chinese J. Polym. Sci, doi: 10.1007/s10118-012-1109-3

    17. [17]

      . PHASE STRUCTURE AND THERMAL BEHAVIOR OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE. Chinese J. Polym. Sci,

    18. [18]

      . SYNTHESIS AND CHARACTERIZATION OF LIQUID CRYSTALLINE MULTI-BLOCK COPOLYMERS,POLY[1,6-BIS(4-OXYBENZOYL-OXY)HEXANE TEREPHTHALATE]-b-BISPHENOL A POLYCARBONATE. Chinese J. Polym. Sci,

    19. [19]

      Dutchanee PholharnOnanong CheerarotYodthong Baimark . Stereocomplexation and Mechanical Properties of Polylactide-b-poly(propylene glycol)-b-polylactide Blend Films:Effects of Polylactide Block Length and Blend Ratio. Chinese J. Polym. Sci, doi: 10.1007/s10118-017-1989-3

    20. [20]

      . MECHANISM-TRANSFORMATION SYNTHESIS AND CHARACTERIZATION OF POLY(STYRENE-b-2-ETHYL-2-OXAZOLINE) DIBLOCK COPOLYMER*. Chinese J. Polym. Sci,

Article Metrics
  • PDF Downloads(2)
  • Abstract views(451)
  • HTML views(223)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return