Citation: Wang, Z. Y.; Xu, G. Q.; Zhou, L.; Lv, C. D.; Yang, R. L.; Dong, B. Z.; Wang, Q. G. Isoselective ring-opening polymerization of racemic lactide catalyzed by N -heterocyclic olefin/(thio)urea organocatalysts. Chinese J. Polym. Sci. https://doi.org/10.1007/s10118-021-2535-x doi: 10.1007/s10118-021-2535-x shu

Isoselective Ring-opening Polymerization of Racemic Lactide Catalyzed by N-heterocyclic Olefin/(Thio)urea Organocatalysts

Figures(8) / Tables(1)

  • The isoselective ring-opening polymerization of racemic lactide was achieved by combining N-heterocyclic olefin (NHO) with mono(thio)ureas or bis(thio)ureas as catalytic systems. The polymerization process shows high stereoselectivity, controllability and reactivity, delivering multi-block isotactic polylactides with high chain-end fidelity and narrow molecular weight distributions. The enhancement of catalytic performance was observed in the following order: bisthiourea (DTU) < monothiourea (TU) < bisurea (DU) < urea (U). The highest Pm (probability of forming a meso dyad) = 0.91 was observed at −70 °C when using NHO/U1 catalytic system and the high stereoselectivity was attributed to chain-end control mechanism.
  • 加载中
    1. [1]

      Rangari, D.; Vasanthan, N. Study of strain-induced crystallization and enzymatic degradation of drawn poly(L-lactic acid) (PLLA) films. Macromolecules 2012, 45, 7397−7403. doi: 10.1021/ma301482j

    2. [2]

      Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841−1846. doi: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E

    3. [3]

      Wachsen, O.; Platkowski, K.; Reichert, K. H. Thermal degradation of poly-L-lactide—studies on kinetics, modelling and melt stabilisation. Polym. Degrad. Stabil. 1997, 57, 87−94. doi: 10.1016/S0141-3910(96)00226-1

    4. [4]

      Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 2004, 104, 6147−6176. doi: 10.1021/cr040002s

    5. [5]

      Tang, X. Y.; Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 2019, 5, 284−312. doi: 10.1016/j.chempr.2018.10.011

    6. [6]

      Xu, G. Q.; Mahmood, Q.; Lv, C. D.; Yang, R. L.; Zhou, L.; Wang, Q. G. Asymmetric kinetic resolution polymerization. Coordin. Chem. Rev. 2020, 414, 213296. doi: 10.1016/j.ccr.2020.213296

    7. [7]

      Nomura, N.; Hasegawa, J.; Ishii, R. A direct function relationship between isotacticity and melting temperature of multiblock stereocopolymer poly(rac-lactide). Macromolecules 2009, 42, 4907−4909. doi: 10.1021/ma900760z

    8. [8]

      Orhan, B.; Tschan, M. J. L.; Wirotius, A. L.; Dove, A. P.; Coulembier, O.; Taton, D. Isoselective ring-opening polymerization of rac-lactide from chiral Takemoto’s organocatalysts: elucidation of stereocontrol. ACS Macro Lett. 2018, 7, 1413−1419. doi: 10.1021/acsmacrolett.8b00852

    9. [9]

      Zhang, X. Y.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 2016, 8, 1047−1053. doi: 10.1038/nchem.2574

    10. [10]

      Ottou, W. N.; Sardon, H.; Mecerreyes, D.; Vignolle, J.; Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 2016, 56, 64−115. doi: 10.1016/j.progpolymsci.2015.12.001

    11. [11]

      Spassky, N.; Wisniewski, M.; Pluta, C.; LeBorgne, A. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff's base/aluminium alkoxide initiator. Macromol. Chem. Phys. 1996, 197, 2627−2637. doi: 10.1002/macp.1996.021970902

    12. [12]

      Zhong, Z. Y.; Dijkstra, P. J.; Feijen, J. [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic D,L-lactide. Angew. Chem. Int. Ed. 2002, 41, 4510−4513. doi: 10.1002/1521-3773(20021202)41:23<4510::AID-ANIE4510>3.0.CO;2-L

    13. [13]

      Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen- and homosalen-aluminum complexes. Chem. Eur. J. 2007, 13, 4433−4451. doi: 10.1002/chem.200601308

    14. [14]

      Maudoux, N.; Roisnel, T.; Dorcet, V.; Carpentier, J. F.; Sarazin, Y. Chiral (1,2)-diphenylethylene-salen complexes of triel metals: coordination patterns and mechanistic considerations in the isoselective ROP of lactide. Chem. Eur. J. 2014, 20, 6131−6147. doi: 10.1002/chem.201304788

    15. [15]

      Abbina, S.; Du, G. D. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide. ACS Macro Lett. 2014, 3, 689−692. doi: 10.1021/mz5002959

    16. [16]

      Kan, C.; Hu, J. W.; Huang, Y.; Wang, H. B.; Ma, H. Y. Highly isoselective and active zinc catalysts for rac-lactide polymerization: effect of pendant groups of aminophenolate ligands. Macromolecules 2017, 50, 7911−7919. doi: 10.1021/acs.macromol.7b01420

    17. [17]

      Marin, P.; Tschan, M. J. L.; Isnard, F.; Robert, C.; Haquette, P.; Trivelli, X.; Chamoreau, L. M.; Guerineau, V.; del Rosal, I.; Maron, L.; Venditto, V.; Thomas, C. M. Polymerization of rac-lactide using achiral iron complexes: access to thermally stable stereocomplexes. Angew. Chem. Int. Ed. 2019, 58, 12585−12589. doi: 10.1002/anie.201903224

    18. [18]

      Zhang, J. J.; Xiong, J.; Sun, Y. Y.; Tang, N.; Wu, J. C. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide. Macromolecules 2014, 47, 7789−7796. doi: 10.1021/ma502000y

    19. [19]

      Chen, C. J.; Jiang, J. X.; Mao, X. Y.; Cong, Y.; Cui, Y. Q.; Pan, X. B.; Wu, J. C. Isoselective polymerization of rac-lactide catalyzed by ion-paired potassium amidinate complexes. Inorg. Chem. 2018, 57, 3158−3168. doi: 10.1021/acs.inorgchem.7b03184

    20. [20]

      Kan, Z.; Luo, W. L.; Shi, T.; Wei, C. Z.; Han, B. H.; Zheng, D. J.; Liu, S. F. Facile preparation of stereoblock PLA from ring-opening polymerization of rac-lactide by a synergetic binary catalytic system containing ureas and alkoxides. Front. Chem. 2018, 6, 547. doi: 10.3389/fchem.2018.00547

    21. [21]

      Arnold, P. L.; Buffet, J. C.; Blaudeck, R. P.; Sujecki, S.; Blake, A. J.; Wilson, C. C3-symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide. Angew. Chem. Int. Ed. 2008, 47, 6033−6036. doi: 10.1002/anie.200801279

    22. [22]

      Myers, D.; White, A. J. P.; Forsyth, C. M.; Bown, M.; Williams, C. K. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations. Angew. Chem. Int. Ed. 2017, 56, 5277−5282. doi: 10.1002/anie.201701745

    23. [23]

      Xu, T. Q.; Yang, G. W.; Liu, C.; Lu, X. B. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide. Macromolecules 2017, 50, 515−522. doi: 10.1021/acs.macromol.6b02439

    24. [24]

      Jones, M. D.; Hancock, S. L.; McKeown, P.; Schafer, P. M.; Buchard, A.; Thomas, L. H.; Mahon, M. F.; Lowe, J. P. Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide. Chem. Commun. 2014, 50, 15967−15970. doi: 10.1039/C4CC07871C

    25. [25]

      Rosen, T.; Rajpurohit, J.; Lipstman, S.; Venditto, V.; Kol, M. Isoselective polymerization of rac-lactide by highly active sequential {ONNN} magnesium complexes. Chem. Eur. J. 2020, DOI: 10.1002/chem.202003616.

    26. [26]

      Dove, A. P.; Li, H. B.; Pratt, R. C.; Lohmeijer, B. G. G.; Culkin, D. A.; Waymouth, R. M.; Hedrick, J. L. Stereoselective polymerization of rac- and meso-lactide catalyzed by sterically encumbered N-heterocyclic carbenes. Chem. Commun. 2006, 27, 2881−2883.

    27. [27]

      Zhang, L.; Nederberg, F.; Messman, J. M.; Pratt, R. C.; Hedrick, J. L.; Wade, C. G. Organocatalytic stereoselective ring-opening polymerization of lactide with dimeric phosphazene bases. J. Am. Chem. Soc. 2007, 129, 12610−12611. doi: 10.1021/ja074131c

    28. [28]

      Liu, S. F.; Li, H. K.; Zhao, N.; Li, Z. B. Stereoselective ring-opening polymerization of rac-lactide using organocatalytic cyclic trimeric phosphazene base. ACS Macro Lett. 2018, 7, 624−628. doi: 10.1021/acsmacrolett.8b00353

    29. [29]

      Sanchez-Sanchez, A.; Rivilla, I.; Agirre, M.; Basterretxea, A.; Etxeberria, A.; Veloso, A.; Sardon, H.; Mecerreyes, D.; Cossío, F. P. Enantioselective ring-opening polymerization of rac-lactide dictated by densely substituted amino acids. J. Am. Chem. Soc. 2017, 139, 4805−4814. doi: 10.1021/jacs.6b13080

    30. [30]

      Zhou, L.; Xu, G. Q.; Mahmood, Q.; Lv, C. D.; Wang, X. W.; Sun, X. T.; Guo, K.; Wang, Q. G. N-Heterocyclic olefins and thioureas as an efficient cooperative catalyst system for ring-opening polymerization of δ-valerolactone. Polym. Chem. 2019, 10, 1832−1838. doi: 10.1039/C9PY00018F

    31. [31]

      Zhou, L.; Wang, Z. Y.; Xu, G. Q.; Yang, R. L.; Yan, H. T.; Hao, X. Q.; Wang, Q. G. N-Heterocyclic olefins catalyzed ring-opening polymerization of N-tosyl aziridines. Eur. Polym. J. 2020, 140, 110046. doi: 10.1016/j.eurpolymj.2020.110046

    32. [32]

      Kronig, S.; Jones, P. G.; Tamm, M. Preparation of 2-alkylidene-substituted 1,3,4,5-tetramethylimidazolines and their reactivity towards RhI complexes and B(C6F5)3. Eur. J. Inorg. Chem. 2013, 13, 2301−2314.

    33. [33]

      Naumann, S.; Thomas, A. W.; Dove, A. P. N-heterocyclic olefins as organocatalysts for polymerization: preparation of well-defined poly(propylene oxide). Angew. Chem. Int. Ed. 2015, 54, 9550−9554. doi: 10.1002/anie.201504175

    34. [34]

      Strukil, V.; Igrc, M. D.; Eckert-Maksic, M.; Friscic, T. Click mechanochemistry: quantitative synthesis of "ready to use" chiral organocatalysts by efficient two-fold thiourea coupling to vicinal diamines. Chem. Eur. J. 2012, 18, 8464−8473. doi: 10.1002/chem.201200632

    35. [35]

      Lv, C. D.; Zhou, L.; Yuan, R. T.; Mahmood, Q.; Xu, G. Q.; Wang, Q. G. Isoselective ring-opening polymerization and asymmetric kinetic resolution polymerization of rac-lactide catalyzed by bifunctional iminophosphorane-thiourea/urea catalysts. New J. Chem. 2020, 44, 1648−1655. doi: 10.1039/C9NJ05074D

    36. [36]

      Yuan, R. T.; Xu, G. Q.; Lv, C. D.; Zhou, L.; Yang, R. L.; Wang, Q. G. Bifunctional phosphazene-thiourea/urea catalyzed ring-opening polymerization of cyclic esters. Mater. Today Commun. 2020, 22, 100747. doi: 10.1016/j.mtcomm.2019.100747

    37. [37]

      Lin, B. H.; Waymouth, R. M. Organic ring-opening polymerization catalysts: reactivity control by balancing acidity. Macromolecules 2018, 51, 2932−2938. doi: 10.1021/acs.macromol.8b00540

    38. [38]

      Zhang, X. Y.; Jones, G. O.; Hedrick, J. L.; Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 2016, 8, 1047−1053. doi: 10.1038/nchem.2574

    39. [39]

      Lin, B. H.; Waymouth, R. M. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc. 2017, 139, 1645−1652. doi: 10.1021/jacs.6b11864

    40. [40]

      Fastnacht, K. V.; Spink, S. S.; Dharmaratne, N. U.; Pothupitiya, J. U.; Datta, P. P.; Kiesewetter, E. T.; Kiesewetter, M. K. Bis- and tris-urea H-bond donors for ring-opening polymerization: unprecedented activity and control from an organocatalyst. ACS Macro Lett. 2016, 5, 982−986. doi: 10.1021/acsmacrolett.6b00527

    41. [41]

      Hewawasam, R. S.; Kalana, U. L. D. I.; Dharmaratne, N. U.; Wright, T. J.; Bannin, T. J.; Kiesewetter, E. T.; Kiesewetter, M. K. Bisurea and bisthiourea H-bonding organocatalysts for ring-opening polymerization: cues for the catalyst design. Macromolecules 2019, 52, 9232−9237. doi: 10.1021/acs.macromol.9b01875

    42. [42]

      Shen, Y.; Xiong, W.; Li, Y. Z.; Zhao, Z. C.; Lu, H.; Li, Z. B. Chemoselective polymerization of fully biorenewable α-methylene-γ-butyrolactone using organophosphazene/urea binary catalysts toward sustainable polyesters. CCS Chem. 2020, 2, 620−630.

    43. [43]

      Moins, S.; Hoyas, S.; Lemaur, V.; Orhan, B.; Delle Chiaie, K.; Lazzaroni, R.; Taton, D.; Dove, A. P.; Coulembier, O. Stereoselective ROP of rac- and meso-lactides using achiral TBD as catalyst. Catalysts 2020, 10, 620. doi: 10.3390/catal10060620

    44. [44]

      Lv, C. D.; Xu, G. Q.; Yang, R. L.; Zhou, L.; Wang, Q. G. Chiral phosphoric acid catalyzed asymmetric kinetic resolution polymerization of 6-aryl-ε-caprolactones. Polym. Chem. 2020, 11, 4203−4207. doi: 10.1039/D0PY00514B

    45. [45]

      Li, H.; Ai, B. R.; Hong, M. Stereoselective ring-opening polymerization of rac-lactide by bulky chiral and achiral N-heterocyclic carbenes. Chinese J. Polym. Sci. 2018, 36, 231−236. doi: 10.1007/s10118-018-2071-5

    46. [46]

      Mahmood, Q.; Xu, G. Q.; Zhou, L.; Guo, X. H.; Wang, Q. G. Chiral 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed stereoselective ring-opening polymerization of rac-lactide: high reactivity for isotactic enriched polylactides (PLAs). Polymers 2020, 12, 2365. doi: 10.3390/polym12102365

    47. [47]

      Pratt, R. C.; Lohmeijer, B. G. G.; Long, D. A.; Waymouth, R. M.; Hedrick, J. L. Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 2006, 128, 4556−4557. doi: 10.1021/ja060662+

    48. [48]

      Orhan, B.; Tschan, M. J. L.; Wirotius, A. L.; Dove, A. P.; Coulembier, O.; Taton, D. Isoselective ring-opening polymerization of rac-lactide from chiral Takemoto’s organocatalysts: elucidation of stereocontrol. ACS Macro Lett. 2018, 7, 1413−1419. doi: 10.1021/acsmacrolett.8b00852

    49. [49]

      Kou, X. H; Shen, Y.; Li, Z. B. Stereoselective ring-opening polymerization of rac-lactide using chiral urea/strong organobase binary catalyst system. Acta Polymerica Sinica (in Chinese) 2020, 51, 1121−1129.

  • 加载中
    1. [1]

      Hui LiBai-Ru AiMiao Hong . Stereoselective Ring-opening Polymerization of rac-Lactide by Bulky Chiral and Achiral N-heterocyclic Carbenes. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2071-5

    2. [2]

      Yong ShenZhibo LiHarm-Anton Klok . Polypeptide Brushes Grown via Surface-initiated Ring-opening Polymerization of -Amino Acid N-Carboxyanhydrides. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1654-7

    3. [3]

      Wei ZhaoChuan-Yang LiChun-Ji WuXin-Li LiuZe-Huai MouChang-Guang YaoDong-Mei Cui . Synthesis of Ultraviolet Absorption Polylactide via Immortal Polymerization of rac-Lactide Initiated by a Salan-yttrium Catalyst. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2050-x

    4. [4]

      Xiu-li ZhuangHai-yang YuZhao-hui TangKenichi OyaizuHiroyuki NishideXue-si Chen . POLYMERIZATION OF LACTIC O-CARBOXYLIC ANHYDRIDE USING ORGANOMETALLIC CATALYSTS. Chinese J. Polym. Sci, doi: 10.1007/s10118-010-1013-7

    5. [5]

      Jian-qiang ZhangZhi-fang LiZheng ZhangHui-xia FengZong-bao WangYa LiPeng ChenQun Gu . Correlation between Polymerization of Cyclic Butylene Terephthalate (CBT) and Crystallization of Polymerized CBT. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1662-7

    6. [6]

      Dong XiangJian-fang YuWei-lin Sun . Rare Earth Complexes [Ln(EDBP)2(DME)Na(DME)3] as CATALYSTS for the polymerization of 2,2-Dimethyltrimethylene carbonate. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1041-y

    7. [7]

      Hong-Jun YangChen-Qiong ChaiYong-Kang ZuoJin-Feng HuangYi-Ye SongLi JiangWen-Yan HuangQi-Min JiangXiao-Qiang XueBi-Biao Jiang . Hybrid Copolymerization via the Combination of Proton Transfer and Ring-opening Polymerization. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2341-x

    8. [8]

      Zhuo-Lun JiangJun-Peng ZhaoGuang-Zhao Zhang . Readily Prepared and Tunable Ionic Organocatalysts for Ring-opening Polymerization of Lactones. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2285-1

    9. [9]

      Chen-Yang HuRan-Long DuanJing-Wei YangShu-Jun DongZhi-Qiang SunXuan PangXian-Hong WangXue-Si Chen . Enolic Schiff Base Zinc Amide Complexes: Highly Active Catalysts for Ring-Opening Polymerization of Lactide and ε-Caprolactone. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2129-4

    10. [10]

      Tong ShiQuan-De ZhengWei-Wei ZuoShao-Feng LiuZhi-Bo Li . Bimetallic Aluminum Complexes Supported by Bis(salicylaldimine) Ligand: Synthesis, Characterization and Ring-opening Polymerization of Lactide. Chinese J. Polym. Sci, doi: 10.1007/s10118-018-2039-5

    11. [11]

      Na ZhaoXin-Xin CaoJin-Feng ShiZhi-Bo Li . Preparation of Degradable Polymenthide and Its Elastomers from Biobased Menthide via Organocatalyzed Ring-opening Polymerization and UV Curing. Chinese J. Polym. Sci, doi: 10.1007/s10118-020-2415-9

    12. [12]

      Fan LiuLi-li MeiZhi-lin TanGuo-ping YanJun-fang GuoQiao ZhangHui LiuJun Yang . Studies on Microwave-assisted Ring-opening Polymerization and Property of Poly(9-phenyl-2,4,8,10-tetraoxaspiro-[5,5]undcane-3-one). Chinese J. Polym. Sci, doi: 10.1007/s10118-016-1852-y

    13. [13]

      Jing HuangJian-fang YuHan-jian YuWei-lin SunZhi-quan Shen . RING-OPENING POLYMERIZAION OF 2,2-DIMETHYLTRIMETHYLENE CARBONATE INITIATED BY IN SITU GENERATED, TETRAHYDROSALEN STABLIZED YTTRIUM BOROHYDRIDE COMPLEX AND RANDOM COPOLYMERIZATION WITH e-CAPROLACTONE. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1044-8

    14. [14]

      Rui-lei YuLi-sheng ZhangYu-hong FengRuo-yu ZhangJin Zhu . Improvement in Toughness of Polylactide by Melt Blending with Bio-based Poly(ester)urethane. Chinese J. Polym. Sci, doi: 10.1007/s10118-014-1487-9

    15. [15]

      Yan-ping HaoHui-li YangGui-bao ZhangHui-liang ZhangGe GaoLi-song Dong . Rheological, Thermal and Mechanical Properties of Biodegradable Poly(propylene carbonate)/Polylactide/Poly(1,2-propylene glycol adipate) Blown Films. Chinese J. Polym. Sci, doi: 10.1007/s10118-015-1714-z

    16. [16]

      Yan-ping HaoHuan-huan GeLi-jing HanHui-liang ZhangLi-song Dong . THERMAL AND MECHANICAL PROPERTIES OF POLYLACTIDE TOUGHENED WITH A BUTYL ACRYLATE-ETHYL ACRYLATE-GLYCIDYL METHACRYLATE COPOLYMER. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1350-4

    17. [17]

      Hao WangHong-rui SongYong CuiYing-jie DengXue-si Chend . MAGNOLOL ENTRAPPED ULTRA-FINE FIBROUS MATS ELECTROSPUN FROM POLY(ETHYLENE GLYCOL)-b-POLY(L-LACTIDE) AND IN VITRO RELEASE. Chinese J. Polym. Sci, doi: 10.1007/s10118-011-1024-z

    18. [18]

      Tian-Wen BaiXu-Feng NiJun LingZhi-Quan Shen . Mechanism of Janus Polymerization: A DFT Study. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2318-9

    19. [19]

      Huan QiuZhe-Ning YangJun Ling . Facile Synthesis of Functional Poly(ε-caprolactone) via Janus Polymerization. Chinese J. Polym. Sci, doi: 10.1007/s10118-019-2242-z

    20. [20]

      Ya-qiong ZhangZhi-gang Wang . INCREASED SPHERULITIC GROWTH RATES OF SEMICRYSTALLINE POLYMER DUE TO ENHANCED LIMITED LOCAL CHAIN SEGMENTAL MOBILITY AT THE INTERFACE OF DOUBLE-LAYER THIN FILMS. Chinese J. Polym. Sci, doi: 10.1007/s10118-013-1326-4

Article Metrics
  • PDF Downloads(0)
  • Abstract views(314)
  • HTML views(183)
  • Cited By(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

DownLoad:  Full-Size Img  PowerPoint
Return